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Uncertain Data Management

Database systems usually assume that data is correct and complete

Incomplete and missing data
Imprecise data
Noisy data
Untrustworthy data

→ Which applications produce uncertain data nowadays?
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Uncertain Data Management

Never-Ending Language Learning

NELL: Read the Web
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Uncertain Data Management

Information extraction

DeepDive: extract facts from journal articles
����������������

�������������� ��������� ���������� �����

�������������������������������� ���������������

����

���

���

��� �������� ��������� ��������� ���� �������
��

���
��

���� ����

������� ������� �������

�������� ��������� ��� ��

�������� ��������� ��� �������

������������������� ����������

��������������
�����
��� ���������

�������� ���������

4/12



Uncertain Data Management

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”
Natural language parsing:
“such cities as New York”, “such cities as Mohenjo-Daro”
“the classification of such cities as urban”
Anaphora resolution:
“Obama told Hollande that he was not a spying target”
Noise:

Incompleteness
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Uncertain Data Management

Crowdsourcing
Amazon Mechanical Turk

→ Users are untrustworthy!
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Sentiment analysis

n Most positive n-grams Most negative n-grams

1 engaging; best; powerful; love; beautiful bad; dull; boring; fails; worst; stupid; painfully
2 excellent performances; A masterpiece; masterful

film; wonderful movie; marvelous performances
worst movie; very bad; shapeless mess; worst
thing; instantly forgettable; complete failure

3 an amazing performance; wonderful all-ages tri-
umph; a wonderful movie; most visually stunning

for worst movie; A lousy movie; a complete fail-
ure; most painfully marginal; very bad sign

5 nicely acted and beautifully shot; gorgeous im-
agery, effective performances; the best of the
year; a terrific American sports movie; refresh-
ingly honest and ultimately touching

silliest and most incoherent movie; completely
crass and forgettable movie; just another bad
movie. A cumbersome and cliche-ridden movie;
a humorless, disjointed mess

8 one of the best films of the year; A love for films
shines through each frame; created a masterful
piece of artistry right here; A masterful film from
a master filmmaker,

A trashy, exploitative, thoroughly unpleasant ex-
perience ; this sloppy drama is an empty ves-
sel.; quickly drags on becoming boring and pre-
dictable.; be the worst special-effects creation of
the year

→ Possible mistakes!
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Schema mappings

(a)

(b)

(c)
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Scientific data

→ Measurement errors
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Speech recognition and OCR

→ Decoding output is uncertain
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Robotics
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Other applications

Data integration: combine data across sources
Data cleaning: fix errors in stale/outdated data
Machine learning: predictions are uncertain
Data mining: trends extracted from large datasets
Computational biology: genomic data management

... and much more!
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Image Credits

Slide 5: http://rtw.ml.cmu.edu/
Slide 7: https://en.wikipedia.org/wiki/Template:Disputed
Slide 6: [Zhang, 2015], page 9
Slide 13: https://www.mturk.com/
Slide 15: [Socher et al., 2013], page 10
Slide 16: [Dong et al., 2009], page 4
Slide 17:
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2015-041/fig_06b.png

Slide 18: https:
//code.google.com/p/transducersaurus/wiki/CascadeTutorial
Slide 19: https://www.cs.washington.edu/robotics/mcl/
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