Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	00000	000	00	0

Uncertainty in Crowd Data Sourcing under Structural Constraints

Antoine Amarilli^{1,2} Yael Amsterdamer¹ Tova Milo¹

¹Tel Aviv University, Tel Aviv, Israel

²Télécom ParisTech, Paris, France

April 21, 2014

Introduction • oo Basic method • oo Order constraints Interpolation • oo Order constraints Order Conclusion • oo Order Conclusion

- Crowdsourcing: reducing hard problems to elementary queries asked to an indiscriminate crowd of human users
- Crowd data sourcing: extracting knowledge from the crowd
- ⇒ Would you recommend this restaurant for Indian food?
- ⇒ What is the topic of the following text?
- ⇒ Which of these designs seems neater to you?

Introduction	Basic method	Order constraints	Interpolation	Conclusion
OOO	00000		00	O
Answers are	uncertain			

- Crowd answers are noisy!
 - How would you rate the quality of this sound file?
 - ⇒ 8/10
 - ⇒ 7/10
 - \Rightarrow 5/10 (didn't actually listen)
 - \Rightarrow 1/10 (has lousy headphones)
 - \Rightarrow 10/10 (has poor taste)
 - Truth finding approaches but still different tastes
- \Rightarrow We are interested in the average answer

 Introduction
 Basic method
 Order constraints
 Interpolation
 Conclusion

 00
 0000
 000
 00
 00
 0
 0

Problem statement

- We have a bunch of questions
 - \Rightarrow What is the quality of file i?
- We want to be efficient
 - ⇒ Don't ask too many questions
 - \Rightarrow Compute quickly the next question to ask
- We have an overall objective
 - \Rightarrow Which file has average quality rating closest to 7/10?
- \Rightarrow How to choose our next question?

Introduction 000	Basic method	Order constraints	Interpolation 00	Conclusion O
Table of cor	itents			

Order constraints

Interpolation

5 Conclusion

Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	•0000		00	O
Crowd mod	el			

- For each question i, a random variable X_i to model answers
- Asking a question means getting a observation
 - \Rightarrow User gave grade 4/10 to file i
- Our desired answer is the unknown mean of X_i
 - ⇒ Average user grade for file i
- Objective: minimize the loss of our current prediction
- Overall loss is a sum of each question's loss
 - \Rightarrow How many files are misclassified w.r.t. the threshold 7/10

Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	⊙●○○○		00	O
Normal vari	ables			

So far, the questions are independent. Consider file *i*:

- We have already obtained answers S
- We assume the random variable X_i is Gaussian
- Unknown parameters of X_i
 - \Rightarrow Mean μ (desired answer)
 - $\Rightarrow \text{ Variance } \sigma^2$

Basic method

Order constraints

Interpolation 00 Conclusion O

Maximum Likelihood Estimation

- Maximum likelihood estimator $(\widehat{\mu}, \widehat{\sigma}^2)$ for S:
 - $\Rightarrow~\widehat{\mu}$ is the sample mean
 - $\Rightarrow \hat{\sigma}^2$ is the sample variance
 - \Rightarrow Those parameters give the highest probability to S
- Example: answers $S = \{7/10, 9/10\}$

$$\Rightarrow \hat{\mu} = 8/10$$

Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	000●0		00	O
Error estima	ation			

- \bullet Assume that our guess $(\widehat{\mu},\,\widehat{\sigma}^2)$ is the truth
- Consider which answers we could have obtained: How often would we still believe $(\hat{\mu}, \hat{\sigma}^2)$?
 - \Rightarrow Say we see answers $S = \{1/10, 9/10\}$
 - $\Rightarrow~\widehat{\mu}=5/10$ and high $\widehat{\sigma}^2$
 - \Rightarrow Under $(\widehat{\mu}, \widehat{\sigma}^2)$ we could have seen $S' = \{2/10, 3/10\}$
 - \Rightarrow We would have guessed $(\widehat{\mu}, \widehat{\sigma}^2)$ differently then
- Formally: expected loss of the MLE for outcomes under the estimated distribution according to the computed MLE.

Best error decrease

- We can estimate our error...
- ... but how much does one more answer help?
- Our predicted $(\widehat{\mu}, \widehat{\sigma}^2)$ tells us which answers to expect
- We can compute a new error estimation for each answer
- \Rightarrow Average error decrease, under the estimated distribution

Overall, we should ask the question with the highest decrease.

 Introduction
 Basic method
 Order constraints
 Interpolation
 Conclusion

 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

1 Introduction

2 Basic method

Order constraints

Interpolation

5 Conclusion

Order on numerical answers

- The previous approach assumes independent variables
- Sometimes, they are ordered
 - \Rightarrow Sound file quality with various compression levels
 - ⇒ Target price for various deals (flight, flight and hotel)
 - ⇒ Frequency of activity combinations (beach, beach and surfing)
- Order on true answers but not on our observations!
 - User A rates lossless with 6/10
 - User B rates high compression with 8/10
 - ⇒ Monotonicity only on the mean values!

Introduction 000 Basic method

Order constraints

Interpolation 00 Conclusion O

Joint distribution and MLE

- We assume normal distributions
- Parameters (μ_i, σ_i^2) for each variable
- Assumption $\mu_1 < \mu_2 < \cdots < \mu_n$
- What are the most likely parameters in this space?
- \Rightarrow No obvious closed form for the MLE

Introduction 000 Basic method 00000 Order constraints

Interpolation 00 Conclusion O

Approximating the MLE

- Approximation: first determine the mean values
 - \Rightarrow Enforce the monotonicity constraint
 - \Rightarrow Remain close to the sample mean of each variable...
 - \Rightarrow ... depending on the sample variances
- \Rightarrow Least squares under linear inequalities: quadratic programming
- \Rightarrow Then readjust the variances based on those means

Estimated error and error decrease like before (but for all variables).

 Introduction
 Basic method
 Order constraints
 Interpolation
 Conclusion

 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Introduction

2 Basic method

Order constraints

Interpolation

5 Conclusion

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables
- \Rightarrow Under exact answers: interpolation search

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables

 \Rightarrow Under exact answers: interpolation search

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables
- \Rightarrow Under exact answers: interpolation search

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables
- \Rightarrow Under exact answers: interpolation search

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables
- \Rightarrow Under exact answers: interpolation search

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables
- \Rightarrow Under exact answers: interpolation search

- We have a large collection of totally ordered variables
 - \Rightarrow e.g., 100 possible bitrate levels
- We want to find a threshold value
 - \Rightarrow Which is the strongest compression with quality $\geq 7/10?$
- We cannot ask questions about all variables
- \Rightarrow Under exact answers: interpolation search

 Introduction
 Basic method
 Order constraints
 Interpolation
 Conclusion

 000
 0000
 000
 00
 0
 0

Interpolation issues

- Linear interpolation for the means
- Which interpolation for the variances?
 - \Rightarrow Variance from the neighboring points
 - \Rightarrow Variance from the interpolation uncertainty
- Computing expected decrease for each point may be too slow!

Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	00000		00	○
Table of cor	itents			

Introduction

- 2 Basic method
- Order constraints

Interpolation

Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	00000		00	•
Conclusion				

- A general scheme to choose questions in crowd data sourcing
- A method to incorporate order constraints on the variables
- Ways to perform interpolation for questions with no answers
- Ongoing work:
 - \Rightarrow A general interpolation scheme for arbitrary partial orders
 - \Rightarrow Support for complex queries
 - \Rightarrow Other criteria to choose next question
 - ⇒ Experiments for activity recommendations

Introduction	Basic method	Order constraints	Interpolation	Conclusion
000	00000		00	•
Conclusion				

- A general scheme to choose questions in crowd data sourcing
- A method to incorporate order constraints on the variables
- Ways to perform interpolation for questions with no answers
- Ongoing work:
 - \Rightarrow A general interpolation scheme for arbitrary partial orders
 - \Rightarrow Support for complex queries
 - \Rightarrow Other criteria to choose next question
 - ⇒ Experiments for activity recommendations

Thanks for your attention!