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Incremental maintenance on strings

The concept: incremental maintenance

- You have a string:

— €.g., aaaabaabaca

- You are interested in a property
— e.g, having at least one a

- The string is updated
— e.g, replace the 3rd character by an a

- You want to maintain the property efficiently
— e.g, with low running time or memory overhead
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Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm:
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Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's
- If you replace an a by another character, decrement «
- If you replace another character by an a, increment x
- If K > 0 then w contains an a
— Complexity per update: constant (in the RAM model)
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Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
- A general-purpose O(logn) algorithm
- Better algorithms for specific languages: [A,, Jachiet, Paperman, ICALP'21]
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Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
- A general-purpose O(logn) algorithm
- Better algorithms for specific languages: [A,, Jachiet, Paperman, ICALP'21]

- Dynamic membership under other update operations
- Endpoint updates: push and pop at the beginning and end

- Insertions and deletions
- Splitting and joining

- Beyond dynamic membership: incremental maintenance for enumeration
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Regular languages and
substitution updates




Problem: dynamic membership for regular languages under substitutions

- Fix a regular language L
— Eg, L= (ab)*

- Read an input string w with n := |w|
— E.g,w=abbbab
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Problem: dynamic membership for regular languages under substitutions

- Fix a regular language L
— Eg, L= (ab)*

- Read an input string w with n := |w|
— E.g,w=abbbab

- Maintain the membership of w to L under substitution updates
— Initially, we have w ¢ L
— Replace character at position 3 with a: we now have w < L
— The length n never changes

- Model: RAM model

- Cell size in ©(log(n))
- Unit-cost arithmetics
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A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b
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A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

- Build a balanced binary tree on the input string w = abbbab
- Label each node n by the transition monoid element: all pairs g ~ @’ such
that we can go from g to g’ by reading the factor below n

0
/(Z)\ ___—o~o
0O~ 0 /@\ 0O~ 0

- The tree root describes if w € L
- We can update the tree for each substitution in O(log n)
- Can be improved to O(log n/ loglogn) with a log-ary tree
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Improving on O(log n) for some languages

For our language L = (ab)* we can handle updates in O(1):
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Improving on O(log n) for some languages

For our language L = (ab)* we can handle updates in O(1):

- Check that n is even
- Count violations: @’s at even positions and b's at odd positions
- Maintain this counter in constant time

- We have w € L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

7122



Summary of our results

( h

- We identify a class QLZG of regular languages:
- for any language in OLZG, dynamic membership is in O(1)
- for any language not in OLZG, we can reduce from a
problem that we conjecture is not in O(1)

QLZG: in 0(1)

QSG: in O(loglogn)
not in O(1)?

All: in ©(logn/ loglog n)
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e

QLZG: in 0(1)

QSG: in O(loglogn)
not in O(1)?

All: in ©(logn/ log log n)

~N

- We identify a class QLZG of regular languages:

- for any language in OLZG, dynamic membership is in O(1)
- for any language not in OLZG, we can reduce from a
problem that we conjecture is not in O(1)

- We identify a class QSG of regular languages:

- for any language in OSG, the problem is in O(loglogn)
- for any language not in OSG, it is in Q(logn/loglogn)
(lower bound of Skovbjerg Frandsen et al.)

- The problem is always in O(logn/loglogn)
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Regular languages
and more expressive updates




Endpoint updates

- Simplest updates that change the string length: endpoint updates
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Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter
— Similar to a doubly-ended queue (deque)
— Special case: sliding window
Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22



Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed reqular language under endpoint updates is
possible in constant time
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Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed reqular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

- Store the string in an amortized circular buffer

- We will again store the transition monoid element achieved by some factors
- Naive idea: split the string in two (put a guardian in the middle):
- store the transition monoid elements of all suffixes of the first half
- and of all prefixes of the second half
- Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle
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Richer updates

Which other updates do we want on strings in practice?

- Insertion and deletion at arbitrary positions
- Split a string in two, and join two strings
- Special case: cut and paste a factor to a different place

Theorem (Folklore?)

Dynamic membership to any fixed reqgular language under insertion, substitution,
deletion, split, join is possible in O(logn) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions
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Doing better than O(log n) with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

- Is the same true when allowing arbitrary insertions and deletions?
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Doing better than O(log n) with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

- Is the same true when allowing arbitrary insertions and deletions?

— No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)

Maintaining membership to the language ~*a%>* (“does the string contain an a”)
under insertions and deletions is in Q(logn/ loglog n)
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Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)
- With substitution updates:

- General bound O(logn/ loglog n)
- Characterization of some (all?) O(1) cases and O(log log n) cases
— Open question: are there other classes?

- With insertion and deletions:

- General O(log n) bound with AVL-trees, event with split and join
- Lower bound Q(logn/ loglog n) for essentially all languages

— Open question: combination of substitutions + endpoint updates
— Open question: different models, e.g.,, doubly linked lists?
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Incremental maintenance
for enumeration structures




Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”
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Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set

- ldeas:
- “what is the first factor ab*c?”
- “how many factors ab*c are there?”
- “compute an index to test efficiently if a factor is of the form ab*c?”
— “compute an index to enumerate efficiently the factors ab*c”

/22
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Generalizing factors

What is the right notion of result that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?

A robust notion: automata with captures

b
x@a@c@y®

- Equivalently: monadic second-order queries with free variables

Q

b,

(@)

start

(o

- Special case: document spanners studied in information extraction
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Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

b
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Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

a,b,c b a,b,c
AN e SN ey ()
start o) 1 2 3 A
N Y Y
o 1 2 3 4 5 6 7 8 9
w = b a c b a b b C c

Set of results of A on w: positions where to insert x and v in w such that A accepts
Here, two results: {x : 1,y : 3} and {x : 4,y : 8}

In this case: endpoints of the factors which are in language ab*c

16/22



Enumeration algorithms

We want all the results of an automaton with captures on a string
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Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions
- Performance: maximal delay between two consecutive results

a,b,c a,b,c a,b,c

AR
Example: enumerate the results of start \?/ 1

Goal: constant-delay, independent from the string length. Several uses:

- We can check if there is at least one result, in constant time
- We can produce all results in output-linear time

17/22



Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?
Theorem ([Florenzano et al., 2018])

For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay
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How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w

- Annotate variable transitions with the position in w

- Replace non-variable transitions by e

- Do a form of e-removal (can be done in linear time here)
- Enumerate the paths of the resulting DAG

— Can we incrementally maintain enumeration structures under updates?
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Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).
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Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])

The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)
Conjecture
Both are doable: support join and split in time O(logn) and constant-delay

Also: support endpoint updates with constant time and constant-delay 19/22



Improving the complexity
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Improving the complexity

- Can we have a complexity better than O(logn)?

- ldea: restricting to specific languages of automata with captures
(like in our classification of regular languages under updates)

— Open research question!
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Conclusion and perspectives




High-level summary

- We want to incrementally maintain information on a string under updates
- Simple Boolean problem: dynamic membership to a regular language

- More expressive problem: maintaining an enumeration structure for an
automaton with captures
- General case: everything should always be in O(log n) (?)
- Better cases:
- Endpoint updates: everything is in O(1) (?)
- Substitution updates for dynamic membership: O(1) or O(loglog n) or
O(logn/loglogn) (... or?) depending on the language

- Future research: identify more cases below O(log n)
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Future directions

- Maintaining a structure for infix testing, membership testing, etc.
— Without updates: factorization forests, or structure of [Bojanczyk, 2009]
— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too
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— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too

- Maintaining a count: number of results, acceptance probability, etc.

- Extending from regular languages to context-free languages
— Related work: incremental parsing?
— Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al,, 2022]
— More research and more algebraic tools needed

- Extending from string to trees
— Doable in O(log” n) [Losemann and Martens, 2014]
— Still O(log n)? [Amarilli et al., 2019], proof currently broken
— Better than O(log n): more research and more algebraic tools needed

Thanks for your attention! /22
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