TELECOM

Paris

5.4 i |

Data Structures for Incremental Maintenance
of String Properties under Updates

Antoine Amarilli
May 9, 2022

Teléecom Paris

1/22

Incremental maintenance on strings

The concept: incremental maintenance

- You have a string:

— e.g., aaaabaabaca

2/22

Incremental maintenance on strings

The concept: incremental maintenance

- You have a string:

— €.g., aaaabaabaca

- You are interested in a property
— e.g, having at least one a

2/22

Incremental maintenance on strings

The concept: incremental maintenance

- You have a string:

— €.g., aaaabaabaca

- You are interested in a property
— e.g, having at least one a

- The string is updated
— e.g, replace the 3rd character by an a

2/22

Incremental maintenance on strings

The concept: incremental maintenance

- You have a string:

— €.g., aaaabaabaca

- You are interested in a property
— e.g, having at least one a

- The string is updated
— e.g, replace the 3rd character by an a

- You want to maintain the property efficiently
— e.g, with low running time or memory overhead

2/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm:

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update:

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm:

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's
- If you replace an a by another character, decrement «

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's

- If you replace an a by another character, decrement «
- If you replace another character by an a, increment x

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's

- If you replace an a by another character, decrement «
- If you replace another character by an a, increment x
- If K > 0 then w contains an a

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's
- If you replace an a by another character, decrement «
- If you replace another character by an a, increment x
- If K > 0 then w contains an a
— Complexity per update:

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

- Naive algorithm: After each substitution, go over w and search for an a
— Complexity per update: linear in the length of w, i.e,, in O(n)

- Clever algorithm: Maintain a counter x of the number of a's
- If you replace an a by another character, decrement «
- If you replace another character by an a, increment x
- If K > 0 then w contains an a
— Complexity per update: constant (in the RAM model)

3/22

Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
- A general-purpose O(logn) algorithm
- Better algorithms for specific languages: [A,, Jachiet, Paperman, ICALP'21]

4/22

Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
- A general-purpose O(logn) algorithm
- Better algorithms for specific languages: [A,, Jachiet, Paperman, ICALP'21]

- Dynamic membership under other update operations

- Endpoint updates: push and pop at the beginning and end
- Insertions and deletions
- Splitting and joining

4/22

Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
- A general-purpose O(logn) algorithm
- Better algorithms for specific languages: [A,, Jachiet, Paperman, ICALP'21]

- Dynamic membership under other update operations
- Endpoint updates: push and pop at the beginning and end

- Insertions and deletions
- Splitting and joining

- Beyond dynamic membership: incremental maintenance for enumeration

4/22

Regular languages and
substitution updates

Problem: dynamic membership for regular languages under substitutions

- Fix a regular language L
— Eg, L= (ab)*

- Read an input string w with n := |w|
— E.g,w=abbbab

5/22

Problem: dynamic membership for regular languages under substitutions

- Fix a regular language L
— Eg, L= (ab)*

- Read an input string w with n := |w|
— E.g,w=abbbab

- Maintain the membership of w to L under substitution updates
— Initially, we have w ¢ L
— Replace character at position 3 with a: we now have w < L
— The length n never changes

5/22

Problem: dynamic membership for regular languages under substitutions

- Fix a regular language L
— Eg, L= (ab)*

- Read an input string w with n := |w|
— E.g,w=abbbab

- Maintain the membership of w to L under substitution updates
— Initially, we have w ¢ L
— Replace character at position 3 with a: we now have w < L
— The length n never changes

- Model: RAM model

- Cell size in ©(log(n))
- Unit-cost arithmetics

5/22

A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

6/22

A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

- Build a balanced binary tree on the input string w = abbbab

6/22

A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

- Build a balanced binary tree on the input string w = abbbab

6/22

A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

- Build a balanced binary tree on the input string w = abbbab
- Label each node n by the transition monoid element: all pairs g ~ @’ such
that we can go from g to g’ by reading the factor below n

a b b b a b

6/22

A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

- Build a balanced binary tree on the input string w = abbbab
- Label each node n by the transition monoid element: all pairs g ~ @’ such
that we can go from g to g’ by reading the factor below n

0
_
0 0~ 0
ov»o/ \@ om0

6/22

A general-purpose O(log n) algorithm

a
Fix the language L = (ab)*: start .‘
b

- Build a balanced binary tree on the input string w = abbbab
- Label each node n by the transition monoid element: all pairs g ~ @’ such
that we can go from g to g’ by reading the factor below n

0
/(Z)\ ___—o~o
0O~ 0 /@\ 0O~ 0

- The tree root describes if w € L
- We can update the tree for each substitution in O(log n)
- Can be improved to O(log n/ loglogn) with a log-ary tree

6/22

Improving on O(log n) for some languages

For our language L = (ab)* we can handle updates in O(1):

7/22

Improving on O(log n) for some languages

For our language L = (ab)* we can handle updates in O(1):

- Check that n is even
- Count violations: @’s at even positions and b's at odd positions
- Maintain this counter in constant time

- We have w € L iff there are no violations

7122

Improving on O(log n) for some languages

For our language L = (ab)* we can handle updates in O(1):

- Check that n is even
- Count violations: @’s at even positions and b's at odd positions
- Maintain this counter in constant time

- We have w € L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

7122

Summary of our results

(h

- We identify a class QLZG of regular languages:
- for any language in OLZG, dynamic membership is in O(1)
- for any language not in OLZG, we can reduce from a
problem that we conjecture is not in O(1)

QLZG: in 0(1)

QSG: in O(loglogn)
not in O(1)?

All: in ©(logn/ loglog n)

8/22

Summary of our results

e

QLZG: in 0(1)

QSG: in O(loglogn)
not in O(1)?

All: in ©(logn/ log log n)

~N

- We identify a class QLZG of regular languages:

- for any language in OLZG, dynamic membership is in O(1)
- for any language not in OLZG, we can reduce from a
problem that we conjecture is not in O(1)

- We identify a class QSG of regular languages:

- for any language in OSG, the problem is in O(loglogn)
- for any language not in OSG, it is in Q(logn/loglogn)
(lower bound of Skovbjerg Frandsen et al.)

8/22

Summary of our results

e

QLZG: in 0(1)

QSG: in O(loglogn)
not in O(1)?

All: in ©(logn/ log log n)

~N

- We identify a class QLZG of regular languages:

- for any language in OLZG, dynamic membership is in O(1)
- for any language not in OLZG, we can reduce from a
problem that we conjecture is not in O(1)

- We identify a class QSG of regular languages:

- for any language in OSG, the problem is in O(loglogn)
- for any language not in OSG, it is in Q(logn/loglogn)
(lower bound of Skovbjerg Frandsen et al.)

- The problem is always in O(logn/loglogn)

8/22

Regular languages
and more expressive updates

Endpoint updates

- Simplest updates that change the string length: endpoint updates

9/22

Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter

9/22

Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter
— Similar to a doubly-ended queue (deque)
— Special case: sliding window

9/22

Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter
— Similar to a doubly-ended queue (deque)
— Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof:

9/22

Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter
— Similar to a doubly-ended queue (deque)
— Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

9/22

Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter
— Similar to a doubly-ended queue (deque)
— Special case: sliding window
Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof:

9/22

Endpoint updates

- Simplest updates that change the string length: endpoint updates
- Insert a letter at the beginning of the string, or delete the first letter
- Insert a letter at the end of the string, or delete the last letter
— Similar to a doubly-ended queue (deque)
— Special case: sliding window
Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed reqular language under endpoint updates is
possible in constant time

10/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)

Dynamic membership to any fixed reqular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

- Store the string in an amortized circular buffer

- We will again store the transition monoid element achieved by some factors

10/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)

Dynamic membership to any fixed reqular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

- Store the string in an amortized circular buffer

- We will again store the transition monoid element achieved by some factors
- Naive idea: split the string in two (put a guardian in the middle):

- store the transition monoid elements of all suffixes of the first half
- and of all prefixes of the second half

10/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed reqular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

- Store the string in an amortized circular buffer

- We will again store the transition monoid element achieved by some factors
- Naive idea: split the string in two (put a guardian in the middle):
- store the transition monoid elements of all suffixes of the first half
- and of all prefixes of the second half
- Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle

10/22

Richer updates

Which other updates do we want on strings in practice?

1/22

Richer updates

Which other updates do we want on strings in practice?

- Insertion and deletion at arbitrary positions

1/22

Richer updates

Which other updates do we want on strings in practice?

- Insertion and deletion at arbitrary positions
- Split a string in two, and join two strings
- Special case: cut and paste a factor to a different place

1/22

Richer updates

Which other updates do we want on strings in practice?

- Insertion and deletion at arbitrary positions
- Split a string in two, and join two strings
- Special case: cut and paste a factor to a different place

Theorem (Folklore?)

Dynamic membership to any fixed reqgular language under insertion, substitution,
deletion, split, join is possible in O(logn) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions

1/22

Doing better than O(log n) with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

- Is the same true when allowing arbitrary insertions and deletions?

12/22

Doing better than O(log n) with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

- Is the same true when allowing arbitrary insertions and deletions?
— No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)

12/22

Doing better than O(log n) with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

- Is the same true when allowing arbitrary insertions and deletions?

— No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)

Maintaining membership to the language ~*a%>* (“does the string contain an a”)
under insertions and deletions is in Q(logn/ loglog n)

12/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates:

13/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)

13/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)
- With substitution updates:

13/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)
- With substitution updates:

- General bound O(logn/ loglog n)
- Characterization of some (all?) O(1) cases and O(log log n) cases
— Open question: are there other classes?

13/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)
- With substitution updates:

- General bound O(logn/ loglog n)
- Characterization of some (all?) O(1) cases and O(log log n) cases
— Open question: are there other classes?

- With insertion and deletions:

13/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)
- With substitution updates:

- General bound O(logn/ loglog n)
- Characterization of some (all?) O(1) cases and O(log log n) cases
— Open question: are there other classes?

- With insertion and deletions:

- General O(log n) bound with AVL-trees, event with split and join
- Lower bound Q(logn/ loglog n) for essentially all languages

13/22

Summary for dynamic membership to fixed regular languages

- With endpoint updates: always doable in O(1)
- With substitution updates:

- General bound O(logn/ loglog n)
- Characterization of some (all?) O(1) cases and O(log log n) cases
— Open question: are there other classes?

- With insertion and deletions:

- General O(log n) bound with AVL-trees, event with split and join
- Lower bound Q(logn/ loglog n) for essentially all languages

— Open question: combination of substitutions + endpoint updates
— Open question: different models, e.g.,, doubly linked lists?

13/22

Incremental maintenance
for enumeration structures

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set

- ldeas:

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set

- ldeas:
- “what is the first factor ab*c?”

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set
- ldeas:

- “what is the first factor ab*c?”
- “how many factors ab*c are there?”

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set

- ldeas:

- “what is the first factor ab*c?”
- “how many factors ab*c are there?”
- “compute an index to test efficiently if a factor is of the form ab*c?”

/22

Beyond dynamic membership

- So far, we have only talked about maintaining Boolean information
— “does the string contain a factor ab*c?”

- More interesting: maintain non-Boolean information, i.e., a set of results:
— “what are the factors ab*c?”

- Problem: there can be many results, so we cannot maintain the full set

- ldeas:
- “what is the first factor ab*c?”
- “how many factors ab*c are there?”
- “compute an index to test efficiently if a factor is of the form ab*c?”
— “compute an index to enumerate efficiently the factors ab*c”

/22

Generalizing factors

What is the right notion of result that we want to find in a string?

- Factors? suffixes? prefixes?

15/22

Generalizing factors

What is the right notion of result that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?

15/22

Generalizing factors

What is the right notion of result that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?

A robust notion: automata with captures

b
x@a@c@y®

Q
(3

?b7

start

(o

15/22

Generalizing factors

What is the right notion of result that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?

A robust notion: automata with captures

b
x@a@c@y®

- Equivalently: monadic second-order queries with free variables

Q

b,

(@)

start

(o

- Special case: document spanners studied in information extraction

15/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

b
6] 5 7
b b C

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

b
5 7
b C

] 3
w= Db a ¢ b a

Set of results of A on w:

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

a,b,c b a,b,c
AN e SN ey ()
start o) 1 2 3 A
NN AN NG
o 1 2 3 4 5 6 7 8 9
w = b a c b a b b C c

Set of results of A on w: positions where to insert x and v in w such that A accepts

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

a,b,c b a,b,c
AN e SN ey ()
start o) 1 2 3 A
NN AN NG
o 1 2 3 4 5 6 7 8 9
w = b a c b a b b C c

Set of results of A on w: positions where to insert x and v in w such that A accepts

Here, two results:

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

o 1 2 3 4 5
W= b xa ¢ Vb a b

b
7

Set of results of A on w: positions where to insert x and v in w such that A accepts

Here, two results:

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

o 1 2 3 4 5
W= b xa ¢ Vb a b

b
7

Set of results of A on w: positions where to insert x and v in w such that A accepts

Here, two results: {x:1,y: 3} and

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

a,b,c b a,b,c
AN e SN ey ()
start o} 1 2 3 4
N NG NG NG
o 1 2 3 4 5 6 7 8 9
w = b a C b xa b c Ve

Set of results of A on w: positions where to insert x and v in w such that A accepts

Here, two results: {x:1,y: 3} and

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

a,b,c b a,b,c
AN e SN ey ()
start o} 1 2 3 4
N NG NG NG
o 1 2 3 4 5 6 7 8 9
w = b a C b xa b c Ve

Set of results of A on w: positions where to insert x and v in w such that A accepts

Here, two results: {x : 1,y : 3} and {x: 4,y : 8}

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

a,b,c b a,b,c
AN e SN ey ()
start o) 1 2 3 A
N Y Y
o 1 2 3 4 5 6 7 8 9
w = b a c b a b b C c

Set of results of A on w: positions where to insert x and v in w such that A accepts
Here, two results: {x : 1,y : 3} and {x : 4,y : 8}

In this case: endpoints of the factors which are in language ab*c

16/22

Enumeration algorithms

We want all the results of an automaton with captures on a string

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions
- Performance: maximal delay between two consecutive results

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions
- Performance: maximal delay between two consecutive results

a,b,c a,b,c a,b,c

AR
Example: enumerate the results of start \C_)/ 1

Goal: constant-delay, independent from the string length. Several uses:

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions
- Performance: maximal delay between two consecutive results

a,b,c a,b,c a,b,c

AR
Example: enumerate the results of start \?/ 1

Goal: constant-delay, independent from the string length. Several uses:

- We can check if there is at least one result, in constant time
- We can produce all results in output-linear time

17/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?
Theorem ([Florenzano et al., 2018])

For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w
- Annotate variable transitions with the position in w

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?
Theorem ([Florenzano et al., 2018])

For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w
- Annotate variable transitions with the position in w
- Replace non-variable transitions by e

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?
Theorem ([Florenzano et al., 2018])

For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w

- Annotate variable transitions with the position in w

- Replace non-variable transitions by e

- Do a form of e-removal (can be done in linear time here)

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w

- Annotate variable transitions with the position in w

- Replace non-variable transitions by e

- Do a form of e-removal (can be done in linear time here)
- Enumerate the paths of the resulting DAG

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

- Do a product of Aand w

- Annotate variable transitions with the position in w

- Replace non-variable transitions by e

- Do a form of e-removal (can be done in linear time here)
- Enumerate the paths of the resulting DAG

— Can we incrementally maintain enumeration structures under updates?

18/22

Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

19/22

Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])

The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)

19/22

Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])

The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)
Conjecture
Both are doable: support join and split in time O(logn) and constant-delay

Also: support endpoint updates with constant time and constant-delay 19/22

Improving the complexity

- Can we have a complexity better than O(logn)?

20/22

Improving the complexity

- Can we have a complexity better than O(logn)?

- ldea: restricting to specific languages of automata with captures
(like in our classification of regular languages under updates)

20/22

Improving the complexity

- Can we have a complexity better than O(logn)?

- ldea: restricting to specific languages of automata with captures
(like in our classification of regular languages under updates)

— Open research question!

20/22

Conclusion and perspectives

High-level summary

- We want to incrementally maintain information on a string under updates
- Simple Boolean problem: dynamic membership to a regular language

- More expressive problem: maintaining an enumeration structure for an
automaton with captures
- General case: everything should always be in O(log n) (?)
- Better cases:
- Endpoint updates: everything is in O(1) (?)
- Substitution updates for dynamic membership: O(1) or O(loglog n) or
O(logn/loglogn) (... or?) depending on the language

- Future research: identify more cases below O(log n)

21/22

Future directions

- Maintaining a structure for infix testing, membership testing, etc.
— Without updates: factorization forests, or structure of [Bojanczyk, 2009]
— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too

22/22

Future directions

- Maintaining a structure for infix testing, membership testing, etc.
— Without updates: factorization forests, or structure of [Bojanczyk, 2009]
— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too

- Maintaining a count: number of results, acceptance probability, etc.

22/22

Future directions

- Maintaining a structure for infix testing, membership testing, etc.
— Without updates: factorization forests, or structure of [Bojanczyk, 2009]
— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too

- Maintaining a count: number of results, acceptance probability, etc.

- Extending from regular languages to context-free languages
— Related work: incremental parsing?
— Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al,, 2022]
— More research and more algebraic tools needed

22/22

Future directions

- Maintaining a structure for infix testing, membership testing, etc.
— Without updates: factorization forests, or structure of [Bojanczyk, 2009]
— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too

- Maintaining a count: number of results, acceptance probability, etc.

- Extending from regular languages to context-free languages
— Related work: incremental parsing?
— Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al,, 2022]
— More research and more algebraic tools needed

- Extending from string to trees
— Doable in O(log” n) [Losemann and Martens, 2014]
— Still O(log n)? [Amarilli et al., 2019], proof currently broken
— Better than O(log n): more research and more algebraic tools needed

22/22

Future directions

- Maintaining a structure for infix testing, membership testing, etc.
— Without updates: factorization forests, or structure of [Bojanczyk, 2009]
— With substitutions: amounts to incremental maintenance for another language
— With endpoint updates: should be possible in constant-time too

- Maintaining a count: number of results, acceptance probability, etc.

- Extending from regular languages to context-free languages
— Related work: incremental parsing?
— Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al,, 2022]
— More research and more algebraic tools needed

- Extending from string to trees
— Doable in O(log” n) [Losemann and Martens, 2014]
— Still O(log n)? [Amarilli et al., 2019], proof currently broken
— Better than O(log n): more research and more algebraic tools needed

Thanks for your attention! /22

References i

[Amarilli, A, Bourhis, P, Mengel, S., and Niewerth, M. (2019).
Enumeration on Trees With Tractable Combined Complexity and Efficient
Updates.
In PODS.
[Amarilli, A, Jachiet, L, Mufioz, M., and Riveros, C. (2022).
Efficient Enumeration Algorithms for Annotated Grammars.
In PODS.
@ Amarilli, A, Jachiet, L, and Paperman, C. (2021).
Dynamic Membership for Regular Languages.
In ICALP.

https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/2201.00549
https://2022.sigmod.org/
http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/

References ii

@ Amarilli, A. and Paperman, C. (2021).
Locality and Centrality: The Variety ZG.
Under review.
[d Bojanczyk, M. (2009).
Factorization Forests.
In DLT.
[4 Eppstein, D.
On the Complexity of a “List” Datastructure in the RAM Model.

Theoretical Computer Science Stack Exchange.
URL: https://cstheory.stackexchange.com/q/46749 (version: 2020-05-25).

http://arxiv.org/abs/2102.07724
https://www.mimuw.edu.pl/~bojan/papers/forests-dlt.pdf
https://cstheory.stackexchange.com/q/46749

References iii

[§ Florenzano, F, Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant Delay Algorithms for Regular Document Spanners.
In PODS.
[§ Jachiet, L.
Constraints on Sliding Windows.
Theoretical Computer Science Stack Exchange.
URL: https://cstheory.stackexchange.com/q/46762 (version: 2020-05-06).
[Losemann, K. and Martens, W. (2014).
MSO Queries on Trees: Enumerating Answers Under Updates.
In CSL-LICS.

https://www.mimuw.edu.pl/~bojan/papers/forests-dlt.pdf
https://cstheory.stackexchange.com/q/46762
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf

References iv

[d Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO Queries on Strings with Constant Delay and
Logarithmic Updates.
In PODS.
[Peterfreund, L. (2021).
Grammars for Document Spanners.
In ICDT.
[§ Schmid, M. and Schweikardt, N. (2022).
Query Evaluation Over SLP-Represented Document Databases With Complex
Document Editing.
In PODS.

https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-update-words.pdf
https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-update-words.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/13715/pdf/LIPIcs-ICDT-2021-7.pdf
https://hal.archives-ouvertes.fr/hal-03652005/
https://hal.archives-ouvertes.fr/hal-03652005/

References v

[§ Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic Word Problems.
JACM, 14(2).

Other research themes

00 - Enumeration algorithms, links to circuit classes
01 - Enumeration for regular spanners and grammars
- In-order enumeration

- Connections to knowledge compilation

Other research themes

0 - Enumeration algorithms, links to circuit classes
1 - Enumeration for regular spanners and grammars
- In-order enumeration
- Connections to knowledge compilation

0
0

- Efficient maintenance of query results on dynamic data

1 - Supporting membership queries, counts, enumeration structures...
O)&O 1 - For regular languages, regular tree languages, context-free languages...
- On string, trees, graphs...
- Under substitution updates or other updates

Other research themes

00
0l

1
0801

0?7 50%
1?7 50%

- Enumeration algorithms, links to circuit classes

- Enumeration for regular spanners and grammars
- In-order enumeration
- Connections to knowledge compilation

- Efficient maintenance of query results on dynamic data

- Supporting membership queries, counts, enumeration structures...

- For regular languages, regular tree languages, context-free languages...
- On string, trees, graphs...

- Under substitution updates or other updates

- Query evaluation on probabilistic data

- Dichotomies for homomorphism-closed queries
- Uniform model counting
- Treewidth-based and grid-minor-based methods

Other research themes

00
0l

1
0801

0?7 50%
1?7 50%

- Enumeration algorithms, links to circuit classes

- Enumeration for regular spanners and grammars
- In-order enumeration
- Connections to knowledge compilation

- Efficient maintenance of query results on dynamic data

- Supporting membership queries, counts, enumeration structures...

- For regular languages, regular tree languages, context-free languages...
- On string, trees, graphs...

- Under substitution updates or other updates

- Query evaluation on probabilistic data

- Dichotomies for homomorphism-closed queries
- Uniform model counting
- Treewidth-based and grid-minor-based methods

- Database theory, provenance, logics...

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaél Fijalkow)

TheoretiCS

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaél Fijalkow)

TheoretiCS

A pledge to reduce the carbon footprint of your research travels é a
’WWW .tcs4f.org \‘ :[Sé.gf
. . o COMPUTER
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée) SCIENTISTS

FOR FUTURE

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaél Fijalkow)

TheoretiCS

A pledge to reduce the carbon footprint of your research travels ? a
’ www.tcs4f . org \‘ :[Sé.gf
. . o COMPUTER
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée) SCIENTISTS
FOR FUTURE
NO FREE VIEW? A pledge not to review for conferences and journals that do not

publish their research as open access

QO
7

’www.nofreeviewnoreview.org

O REVIEWS (with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

	Regular languages and substitution updates
	Regular languages and more expressive updates
	Incremental maintenance for enumeration structures
	Conclusion and perspectives
	Appendix

