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Databases

Computers often use databases to store data and query it

→ Let’s see a few examples...
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Database example: SMS on Android

42% 13:37

John Doe

Hi there! :-)

Just wanted to let you know that I'm
at your defense!

How is it going?

Just started

Dunno yet

OK. Good luck! I hope they won't get
tired of self-referential jokes in the
slides! ...

Mon 14:32

Mon 14:33

Mon 14:32

Mon 14:34

Mon 14:34

Mon 14:36

Send secure SMS

time from to message
14:32 John A. Hi there! :)
14:32 John A. Just wanted...
14:33 John A. How is it...
14:34 A. John Dunno yet
14:34 A. John Just started
14:36 John A. OK. Good...
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In reality...

CREATE TABLE sms (_id INTEGER, thread_id INTEGER,
address TEXT, address_device_id INTEGER, person INTEGER,
date INTEGER, date_sent INTEGER, protocol INTEGER,
read INTEGER, status INTEGER, type INTEGER,
reply_path_present INTEGER,
delivery_receipt_count INTEGER, subject TEXT, body TEXT,
mismatched_identities TEXT, service_center TEXT,
date_delivery_received INTEGER);

INSERT INTO sms VALUES(
14041,224,'+33611210549',1,NULL,1451921855098,
1451921849000,0,1,-1,-2147483628,0,0,NULL,
'Hi there!',NULL,'+33609002960',0);

INSERT INTO sms VALUES(
14042,224,'+33611210549',1,NULL,1451921945081,
1451921945081,NULL,1,-1,-2147483561,NULL,0,NULL,
'Just wanted...',NULL,NULL,0);

...
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Database example: Wikipedia

title time size user
Naza 14:48 -59 92.115.58.241
HK Olimpija Ljubljana (2004) 14:48 +4 86.58.36.235
Monster High 14:48 +18 66.244.123.117
List of songs recorded by Celine Dion 14:48 +25 79.94.26.185
Biodegradable waste 14:48 +5 59.90.26.215
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In reality...
CREATE TABLE mw_recentchanges (rc_id INT(8),

rc_timestamp VARCHAR(14), rc_cur_time VARCHAR(14),
rc_user INT(10), rc_user_text VARCHAR(255),
rc_namespace INT(11), rc_title VARCHAR(255),
rc_comment VARCHAR(255), rc_minor TINYINT(3),
rc_bot TINYINT(3), rc_new TINYINT(3),
rc_cur_id INT(10), rc_this_oldid INT(10),
rc_last_oldid INT(10), rc_type TINYINT(3),
rc_moved_to_ns TINYINT(3), rc_moved_to_title VARCHAR(255),
rc_patrolled TINYINT(3), rc_ip CHAR(15),
rc_old_len INT(10), rc_new_len INT(10),
rc_deleted TINYINT(1), rc_logid INT(10),
rc_log_type VARCHAR(255), rc_log_action VARCHAR(255),
rc_params BLOB,

);

INSERT INTO mw_recentchanges VALUES
(1, '20160314144837', '20160314144827', 1, '92.115.58.241', 0,
'Naza', '', 0, 0, 0, 1, 2, 1, 0, 0, '', 1, '92.115.58.241',
559, 500, 0, 0, NULL, NULL, ''),

INSERT INTO mw_recentchanges VALUES
(2, '20160314144842', '20160314144842', 1, '66.244.123.117', 2,
'Monster High', '', 0, 0, 1, 2, 3, 0, 1, 0, '', 1, '66.244.123.117',
102, 120, 0, 0, NULL, NULL, '');
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Uncertainty

Databases usually assume that data is
→ complete
→ crisp
→ certain
→ correct

In many situations, this is not the case...
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Example: Never-Ending Language Learning
Web
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Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many uncertain data applications

Information extraction
Machine learning
Speech recognition
Data integration
Crowdsourcing
...

PhD defense scheduling

(a)

(b)

(c)
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Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 87
Number of definite yes answers 46
Number of definite no answers 14
Number of uncertain answers 27
Number of additional people showing up ??
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Why is uncertainty challenging?

Data is uncertain if we don’t know its exact state
A possible world is an actual outcome

Simplest method: write out all possible worlds

List of the people
who may show up:

Dave
Guy
Tat
...
more?

→ 27 uncertain people
→ 134 217 728 possibilities
→ If the list of people is incomplete,

infinitely many possible completions
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Uncertainty representation and semantics

Uncertain databases represent implicitly the possible worlds

→ Probabilities

Dave 0.4
Guy 0.3
Tat 0.2

...

→ Correlations
Only one of Isa and
Pal can come
Mat and Val either
come together or not
Nell will probably
come if Mike does

→ Logical constraints
If someone comes to
the defense
then they will also come
to the drinks
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Summary of uncertainty goals

→ End goal: A database system with first-class uncertainty
Feed uncertain data to the system
Get uncertain query results

Representing our knowledge about the data
Computing numerical probabilities
Reasoning with logical constraints
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Why are uncertainty and probabilities challenging?

Uncertain attendees

Dave 0.4
Guy 0.3
Tat 0.2
Ell 0.1

...

People who should meet

Dave Guy
Ell Tat
Ell Guy

What is the probability that one of the pairs can meet?
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Computing probabilities

Ell
0.1

Tat
0.2

Guy
0.3

Dave
0.4

Yo
0.5

Ted
0.6

Lou
0.7

Mike
0.8

Dad
0.9

0.1× 0.2 = 0.02
0.3× 0.4 = 0.12
1− (1− 0.02)× (1− 0.12) = 0.1376
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If Ell is here:
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My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)

= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088

17/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Table of contents

1 Databases

2 Uncertainty

3 Overview of my PhD Research

4 Probabilities and Provenance on Trees and Treelike Instances

5 Conclusion

18/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Roadmap

I investigated various kinds of uncertain data:

Partially ordered data. Representation and querying
Possibility and certainty on ordered relations
Preprint: A., Ba, Deutch, Senellart 2016
Completing uncertain ordered numerical values
Preprint: A., Amsterdamer, Milo, Senellart 2016

Incomplete data. Open-world reasoning under constraints
Combining several decidable constraint languages
A., Benedikt 2015a, IJCAI’15
Addressing the finiteness hypothesis
A., Benedikt 2015b, LICS’15; Thesis Part II

Probabilistic data. Query evaluation assuming treelikeness
A., Bourhis, Senellart 2015, 2016, ICALP’15, PODS’16; Thesis Part I

Other work: (A. 2014, 2015a,b; A., Allauzen, Mohri 2015; A., Amsterdamer, Milo
2014a,b; A., Maniu, Senellart 2015; A., Galárraga, Preda, Suchanek 2014; Talaika,
Biega, A., Suchanek 2015; Tang, A., Senellart, Bressan 2014a,b)
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Uncertain ordered relations

Food
tiramisu kougelhopf

bretzel

munster

Drinks
champagne

riesling

I partially know guest preferences
What should my parents bring?

→ What are the top two Alsatian products?

Possible:
riesling

kougelhopf

Not possible:
kougelhopf

munster

→ I extended relational algebra (bag semantics,
including aggregation) to uncertain ordered data

→ I showed complexity results for possible and
certain answers depending on the query and data
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Uncertain numerical values

small
sweet

medium
sweet

large
sweet

small
salty

medium
salty

large
salty

tiny
both

small
both

medium
both

large
both

How much food do people eat?

Let’s ask friends who defended recently
How to estimate for my own defense?
Some order relations are implied

→ I extended interpolation to posets
based on integration on polytopes

→ I showed hardness of the problem
and identified tractable cases
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Open-world query answering

Incomplete data:
Fabian advises Luis
Fabian is at the defense
Fabian is in DBWeb

Fabian comes to the drinks
Luis is a DBWeb student
Luis comes to the drinks

! Logical constraints:
People at the defense will have drinks
All DBWeb students will have drinks
If your advisor is in DBWeb
then you are a DBWeb student

? Is the following query certain?
→ Will a DBWeb student meet their

advisor at the drinks?

→ Yes!

→ For which constraint languages is this task decidable?
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Expressive open-world query answering

Different communities use different kinds of constraints:

Constraints with facts of arity > 2

Fabian supervises Luis: arity 2
Antoine’s defense is in B312 on Monday: arity 3

Constraints with number restrictions
Everyone can invite at most one person
Students have at most two advisors

→ I proposed a language that combines these features
(with some restrictions on the higher-arity rules)

→ I showed that query answering for the language is decidable
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Query answering assuming finiteness

Consider the guests to the defense, −→ shows who invites whom
Data:

Antoine

John

Rules:

Each guest invites someone
Nobody is invited by two people

→ Is this sensible?
→ Can we do reasoning assuming finiteness?
→ What difference does it make?
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Query answering assuming finiteness

Consider the guests to the defense, −→ shows who invites whom
Data:

Antoine

John

?

?

. . .

Rules:
Each guest invites someone
Nobody is invited by two people
There are finitely many guests!

→ Can we do reasoning assuming finiteness?
→ What difference does it make?
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Finite open-world query answering

I study the following constraints on arbitrary arity:
Inclusion dependencies with one exported element

→ If x invites y then y invites some z
Functional dependencies
→ If x and y invite z then x = y

I showed the following results (difficult proof):
We can compute new constraints implied by finiteness
using (Cosmadakis, Kanellakis, Vardi 1990)
With the new constraints, we can forget finiteness

→ First techniques for open-world query answering
with arbitrary arity signatures and functional dependencies
where assuming finiteness makes a difference
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Tuple-independent databases (TID)

S
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Query evaluation on probabilistic instances

We want to evaluate the probability of a query on a TID instance

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b 0.4
c 0.6

S
a a 1
b v 0.5
b w 0.2

T
v 0.3
w 0.7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability:
0.4×

(
1− (1− 0.5× 0.3)× (1− 0.2× 0.7)

)
= 0.1076
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Complexity of probabilistic query evaluation (PQE)

What is the data complexity of probabilistic query evaluation on TID
depending on the class Q of queries and class I of instances?

Existing dichotomy result: (Dalvi, Suciu 2012)
Q are (unions of) conjunctive queries, I is all TID instances
There is a class S ⊆ Q of safe queries
PQE is PTIME for any q ∈ S on all instances
PQE is #P-hard for any q ∈ Q\S on all instances
q : ∃x y R(x) ∧ S(x, y) ∧ T(y) is unsafe!

Is there a smaller class I such that PQE is tractable for a larger Q?
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Trees and treelike instances

Idea: let I be treelike instances (constant bound on treewidth)

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ Known results (Courcelle 1990):
I: treelike instances; Q: monadic second-order queries

→ non-probabilistic QE is in linear time
→ Does this extend to probabilistic QE?
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Our main result

An instance-based dichotomy result:
Upper bound.

For I the treelike instances and Q the MSO queries
→ PQE is in linear time modulo arithmetic costs

Also for expressive provenance representations
Also with bounded-treewidth correlations

Lower bound.
For any unbounded-tw family I and Q the FO queries
→ PQE is #P-hard under RP reductions assuming:

Signature arity is 2 (graphs)
High-tw instances in I are easily constructible
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Technical tool: lineages
The lineage of a query q on an instance I:

Boolean function ϕ whose variables are the facts of I
A subinstance of I satisfies q iff ϕ is true for that valuation

Example: q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a f1
b f2
c f3

S
a a g1
b v g2
b w g3

T
v h1
w h2
b h3

→ Lineage: f2 ∧
(
(g2 ∧ h1) ∨ (g3 ∧ h2)

)
→ For all ν : I → {0, 1} we have ν(ϕ) = 1 iff {F ∈ I | ν(F) = 1} |= q
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Using lineages

Use lineage for PQE:

Compute a lineage representation efficiently
→ Probability of the lineage = probability of the query

Compute the lineage probability efficiently
(show it is not #P-hard as in the general case)
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Uncertain trees

1

5

76

2

43

First compute lineages on uncertain trees
then use (Courcelle 1990)

Uncertain trees: node labels may be discarded
A valuation indicates which labels are kept
Example query:
“Is there both a red and a green node?”

Valuation: {2, 3, 7}

The query is true
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Lineage circuits on trees

1

5
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2

43

q: Is there both a red and a green node?
Which valuations satisfy q? (⇔ lineage)

Lineage circuit of a query q
on an uncertain tree T

Boolean circuit C
with input gates g2, g3, g7

→ ν(T) satisfies q iff ν(C) is true

∧

∨ g7

g2 g3
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Our main results

Theorem
For any query q given as a bottom-up tree automaton A,
for any input tree T, we can build a lineage circuit of A on T
in linear time in |A| · |T|.

MSO on treelike instances ⇒ MSO on trees (Courcelle 1990).
Theorem
For any fixed MSO query q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time in I a lineage circuit of q on I.

The lineage circuits are themselves treelike, hence:
Corollary
Probabilistic query evaluation of MSO queries on treelike instances
is in linear time up to arithmetic costs.
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Extension 1: general semirings

Positive Boolean functions are a semiring (PosBool[X],∨,∧, f, t)

Provenance semirings: (Green, Karvounarakis, Tannen 2007)
Provenance for arbitrary (commutative) semirings
For queries in the positive relational algebra and Datalog

Our construction can be extended to N[X]-provenance
for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem
For any fixed UCQ q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time a N[X]-provenance circuit of q on I.

→ We have a linear-size (and treelike) arithmetic circuit
instead of a polynomial-size N[X]-formula
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Extension 2: correlations

Our probabilistic instances assume independence on all facts

More expressive: Block-Independent Disjoint instances:

name favorite p
john kougelhopf 0.8
john bretzel 0.2
jane kougelhopf 0.1
jane bretzel 0.9

Theorem
Probabilistic query evaluation of MSO queries on treelike BID
is in linear time up to arithmetic operations.

Generalises to pc-tables with treelike correlations
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Lower bound

Class I of unbounded-treewidth instances, query q in class Q
Show that probabilistic query evaluation of q on I is hard

→ Restrict to arity-2 (= labeled graphs) for technical reasons
→ Impose that I is tw-constructible:

Given k ∈ N, we can construct in time Poly(k)
an instance of I of treewidth ≥ k

Theorem
There is a first-order query q such that
for any unbounded-tw, tw-constructible, arity-2 instance family I,
probabilistic query eval for q on I is #P-hard under RP reductions.

Proven by extracting arbitrary graphs as minors of high-treewidth
families using (Chekuri, Chuzhoy 2014)
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Conclusion

Main contributions to the study of uncertain data management:

I proved that reasoning is decidable for new constraint
languages on incomplete data, in particular assuming finiteness
I proposed new representations of uncertain ordered data
and proved complexity results including tractable cases
I showed an instance-based dichotomy for probabilistic data
including extensions to semiring provenance and correlations
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Ongoing and future work

Probabilistic query answering
Tractability in combined complexity for some queries
Hybrid tractability criteria based on instance and query
Practical implementation with partial decompositions

Open-world query answering
Find a uniform decidable language capturing our results
Managing order relations and transitive relations
Simplify and generalize our results on finiteness

Longer term: Extend provenance to open-world reasoning

Thanks for your attention!
Main publications:

(A., Amsterdamer, Milo 2014a) ICDT’14 (A. 2014) AMW’14
(A., Benedikt 2015a) IJCAI’15 (A., Bourhis, Senellart 2015) ICALP’15
(A., Benedikt 2015b) LICS’15 (A., Bourhis, Senellart 2016) PODS’16
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Our main result on trees

Theorem
For any bottom-up (nondet) tree automaton A and input tree T,
we can build a provenance circuit of A on T
in linear time in A and T.

Construct the Boolean provenance circuit bottom-up
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Treelike instances

Treelike instance I
Tree encoding: tree E on fixed alphabet, represents I
MSO query on I translates to
→ MSO query on E by Courcelle 1990
→ tree automaton on E by Thatcher, Wright 1968

Uncertain instance: each fact can be present or absent
→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)
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Our main result on treelike instances

Theorem
For any fixed MSO query q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time in I a provenance circuit of q on I.
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Probability evaluation
Two alternate ways to see why probability evaluation
is tractable on our provenance circuits:

They have bounded treewidth themselves
Follows the structure of the tree encoding
Width only depends on number of automaton states

→ Apply message passing (Lauritzen, Spiegelhalter 1988)

If the tree automaton is deterministic
All conjunctions depend on disjoint sets of input gates
All disjunctions are on mutually exclusive outcomes

→ Circuit is a d-DNNF (Darwiche 2001)

Corollary
Probabilistic query evaluation of MSO queries on treelike instances
is in linear time up to arithmetic operations.
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Encoding treelike instances (Chaudhuri, Vardi 1992)

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)
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Provenance semirings

Semiring of positive Boolean functions (PosBool[X],∨,∧, f, t)

Provenance semirings: (Green, Karvounarakis, Tannen 2007)
Provenance generalized to arbitrary (commutative)
semirings
For queries in the positive relational algebra and Datalog

→ Our circuits capture PosBool[X]-provenance in this sense
The definitions match: all subinstances that satisfy the
query
For monotone queries, we can construct positive circuits
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Universal provenance

Universal semiring of polynomials (N[X],+,×, 0, 1)

→ The provenance for N[X] can be specialized to any K[X]

Captures many useful semirings:
counting the number of matches of a query
computing the security level of a query result
computing the cost of a query result
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N[X]-provenance example

R
a b x1
b c x2
d e x3
e d x4
f f x5

∃x y z R(x, y) ∧ R(y, z)

→ PosBool[X]-provenance:

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ x5

→ N[X]-provenance:

(x1 × x2) + (x3 × x4) + (x4 × x3) + (x5 × x5)
= x1x2 + 2x3x4 + x25

Definition of provenance for conjunctive queries:
Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple matches
→ Exponents: using facts multiple times
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Capturing N[X]-provenance

Our construction can be extended to N[X]-provenance
for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem
For any fixed UCQ q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time a N[X]-provenance circuit of q on I.

→ What fails for MSO and Datalog?
Unbounded maximal multiplicity of fact uses
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Correlations

Our probabilistic instances assume independence on all facts
→ Not very expressive!

More expressive formalism: Block-Independent Disjoint instances:

name city iso p
pods san francisco us 0.8
pods los angeles us 0.2
icalp rome it 0.1
icalp florence it 0.9
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pc-tables
More generally, pc-tables to represent arbitrary correlations

date teacher room
04 John C42 ¬x1
04 Jane C42 x1
11 John C017 x2 ∧ ¬x1
11 Jane C017 x2 ∧ x1
11 John C47 ¬x2 ∧ ¬x1
11 Jane C47 ¬x2 ∧ x1

x1 John gets sick

→ Probability 0.1

x2 Room C017 is available

→ Probability 0.2
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Our results
Probabilistic query evaluation on instances with correlations
is tractable if the instance and correlations are bounded-tw:

Theorem
Probabilistic query evaluation of MSO queries on treelike BID
is in linear time up to arithmetic operations.

“Tree-like” just means the underlying instance (easy correlations)

Theorem
Probabilistic query evaluation of MSO queries on treelike pc-tables
is in linear time up to arithmetic operations.

“Tree-like” refers to the underlying instance, adding facts
to represent variable occurrences and co-occurrences
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Idea: extracting topological minors

Let G be a planar graph of degree ≤ 3

G is a topological minor of H if:

G H

⇒

Map vertices to vertices
Map edges to vertex-disjoint paths
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Topological minor extraction results

Theorem ((Robertson, Seymour 1986))
For any planar graph G of degree ≤ 3,
for any graph H of sufficiently high treewidth,
G is a topological minor of H.

More recently:

Theorem ((Chekuri, Chuzhoy 2014))
There is a certain constant c ∈ N such that
for any planar graph G of degree ≤ 3,
for any graph H of treewidth ≥ |G|c,
G is a topological minor of H and
we can embed G in H (with high probability) in PTIME in |H|.
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Intuition for our result: reduction

Choose a problem from which to reduce:
Must be #P-hard on planar degree-3 graphs
Must be encodable to an FO query q (more later)

→ We use the problem of counting matchings

Given an input graph G, compute k ··= |G|c

Compute in PTIME an instance I of I of treewidth ≥ k
Compute in randomized PTIME an embedding of G in I
Construct a probability valuation π of I such that:

Unneccessary edges of I are removed
Probability eval for q gives the answer to the hard
problem
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Technical issue
G I

1 2 ⇒ 1 2

In the embedding, edges of G can become long paths in I
q must answer the hard problem on G despite subdivisions

→ Our q restricts to a subset of the worlds of known weight
and gives the right answer up to renormalization

→ For non-probabilistic evaluation, using FO does not work
(Frick, Grohe 2001)

→ Lower bounds for non-probabilistic evaluation are for MSO
(Ganian et al. 2014)
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Can we do better?

We can use a non-monotone FO or a monotone MSO query
Can we use a weaker query language? (e.g., monotone FO)

→ We cannot use a connected CQ even with inequalities
→ We cannot use a query closed under homomorphisms

A good candidate query:

q : (E(x, y) ∨ E(y, x)) ∧ (E(y, z) ∧ E(z, y)) ∧ x ̸= z

→ This UCQ with inequalities is hard in a weaker sense
(no polynomial-size OBDD representations of provenance)

→ We don’t know whether it’s #P-hard (because of subdivisions)
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