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Data mining

Data mining — discovering interesting patterns in large databases
Database — a (multi)set of transactions

Transaction — a set of items (aka. an itemset)
A simple kind of pattern to identify are frequent itemsets.

D :{ @ An itemset is frequent if it
occurs in at least © = 50%

{beer, diapers}, _
of transactions.

{beer,bread, butter},
{beer,bread,diapers},
{salad, tomato}

o {salad} is not frequent.
o {beer,diapers} is

frequent. Thus, {beer} is
} also frequent.
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Human knowledge mining

@ What if the database doesn't really exist?

Things to do in Athens: Traditional medicine:

D={ D={
{icdt,monday, laptop}, {hangover, coffee},
{acropolis, sunglasses}, {cough, honey},

} }

This data only exists in the minds of people!
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Harvesting this data

@ We cannot collect such data in a centralized database:
@ It's impractical to ask all users to surrender their data.

“Everyone please tell us all that you did the last three months.”
@ People do not remember the information.
“What were you doing on August 23th, 20137"
@ However, people remember summaries that we could access.
“Do you often play tennis on weekends?"

@ We can just ask people if an itemset is frequent.
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Crowdsourcing

@ Crowdsourcing — solving hard problems through elementary
queries to a crowd of users.
@ Find out if an itemset is frequent with the crowd:
© Draw a sample of users from the crowd. (black box)
@ Ask: is this itemset frequent?  (“Do you often play tennis?")
© Corroborate the answers to eliminate bad answers. (black box)
@ Reward the users. (e.g., monetary incentive)
= An oracle that takes an itemset and finds out if it is frequent
or not by asking crowd queries.
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Taxonomies

Having a taxonomy over the items can save us work!

item
sickness sport
cough fever back_pain tennis running biking

o If {sickness, sport} is infrequent then all itemsets such as
{cough, biking} are also infrequent.

@ Without the taxonomy, we need to test all combinations!

e Also avoids redundant itemsets like {sport,tennis}.
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Cost

How to evaluate the performance of a strategy to identify the
frequent itemsets?

Crowd complexity: The number of itemsets we ask about
(monetary cost, latency...)

Computational complexity: The complexity of computing the next
question to ask

There is a tradeoff between the two:

@ Asking random questions is computationally inexpensive but
the crowd complexity is bad.

@ Asking clever questions to obtain optimal crowd complexity is
computationally expensive.
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The problem

We can now describe the problem:
o We have:

e A known item domain Z (set of items).
o A known taxonomy W on Z (is-a relation, partial order).
e A crowd oracle freq to decide if an itemset is frequent or not.

@ Choose interactively questions based on past answers.
@ Balance crowd complexity and computational complexity.
= Find out the status of all itemsets (learn freq exactly).
What is a good algorithm to solve this problem?
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ltemset taxonomy

[temsets I(W) — the sets of pairwise incomparable items.
(e.g. {coffee,tennis} but not {coffee,drink})

If an itemset is frequent then its subsets are also frequent.

If an itemset is frequent then itemsets with more general
items are also frequent.

We define an order relation < on itemsets: A < B for “Ais
more general than B".

Formally, Vi € A, 3j € B s.t. i is more general than j.

freq is monotone: if A < B and B is frequent then A also is.
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ltemset taxonomy example

Taxonomy W Itemset taxonomy (V)
nil
ith
item cheég \;}1nk

/N RN

drink chess Chess coffee tea

/N S X

coffee tea chess chess coffee
coffee tea tea
chess
coffee
tea
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Maximal frequent itemsets

e Maximal frequent itemset (MFI): a
frequent itemset with no frequent
descendants.

e Minimal infrequent itemset (MII).

@ The MFIs (or Mlls) concisely
represent freq.

= We can study complexity as a
function of the size of the output.

Computational complexity Conclusion

nil
|
item

/N

chess drink

AN

g?izi coffee tea

> X

chess chess coffee

coffee tea tea
N S
chess
coffee
tea
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Solution taxonomy

@ Conversely, (we can show) any set of pairwise incomparable
itemsets is a possible MFI representation.

@ Hence, the set of all possible solutions has a similar structure
to the “itemsets” over the itemset taxonomy (V).

= We call this the solution taxonomy S(W¥) = I(I(V)).

Identifying the freq predicate amounts to finding the correct node
in S(V) through itemset frequency queries.
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Solution taxonomy example

Taxonomy W Itemset taxonomy I(V)  Solution taxonomy S(WV)

nil "
{nil}
\
item {item}

{chess}  {drink}

/ \ (‘"e‘ss)/{caf\fee)\{tea}
>

{drink}

item chess drink M Ve
/ {chess, drink} {chess} {chess} {coffee}
' {coffee}  {tea} {tea}
l \ A AN
drink chess chess coffee tea {chess, drid)  (chess, drink) %F?>(mnw,ma
ea
//// \\\\ /// \\\\\\j7¢i\\\j::Eéss, érink)\\\\\
{chess, coffee} {chess, tea} {coffee} (cogggsszea)
coffee tea chess chess coffee L — o
coffee  tea tea “Hs™ W el
\ ‘ / {chess, /coffeg}/Tc\hess, coffegﬁchessl, tea}
{chess, tea} {coffee, tea} {coffee, tea}
chess iass, <ottt
coffee R
tea

{chess, coffee, tea}
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Lower bound

@ Each query yields one bit of information.

@ Information-theoretic lower bound: we need at least
Q(log |S(W)]) queries.

@ This is bad in general, because |S(V)| can be doubly
exponential in W,

@ As a function of the original taxonomy W, we can write:

Q <2widt}'{\ll] / \/VW) .
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Upper bound

@ We can achieve the information-theoretic
bound if is there always an unknown itemset
that is frequent in about half of the possible
solutions.

@ A result from order theory shows that there
is a constant dp ~ 1/5 such that some

element always achieves a split of at least dp.

@ Hence, the previous bound is tight: we need
O(log|S(WV)|) queries.
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Lower bound, MFI/MII

@ To describe the solution, we need the MFIs or the Mlls.

@ However, we need to query both the MFls and the Mlls to
identify the result uniquely: Q(|MFI| + |MII|) queries.

e We can have |MFI| = Q(2|M”|) and vice-versa.
@ This bound is not tight (e.g., chain).
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Upper bound, MFI/MII

@ There is an explicit algorithm to
find a new MFI or MIl in < |Z]
queries.

@ Intuition: starting with any
frequent itemset, add items until
you cannot add any more without
becoming infrequent.

@ The number of queries is thus
O(|Z] - (|MFI| + |MII])).

nitl

|

item

/N

chess drink

I RN

chess
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N o
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Hardness for standard (input) complexity

We want an unknown itemset of |(V) that is frequent for
about half of the possible solutions of S(W).

We can count over S(W) but it may be exponential in | (V) |.
Counting the antichains of (W) is FP#P-complete.
Finding the best-split element in I(W) is FP#F-hard in | I(W) |?

Problem: 1(W) is not a general DAG, so we only show
hardness in || for restricted (fixed-size) itemsets.

Intuition: count antichains by comparing to a known poset;
use a best-split oracle to compare; perform a binary search.
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Conclusion
°

Summary and further work

We have studied the crowd and computational complexity of crowd
mining under a taxonomy. What now?

@ Improve the bounds and close gaps.
Benchmark heuristics (chain partitioning, random, etc.).
Integrate prior knowledge.

Manage uncertainty (black box for now).

Work with numerical values for support.

°
°
°
o Guide exploration with a query (under review).
°
@ Mine more expressive patterns.

°

Focus on top-k itemsets (work in progress).
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Summary and further work

We have studied the crowd and computational complexity of crowd
mining under a taxonomy. What now?

@ Improve the bounds and close gaps.
Benchmark heuristics (chain partitioning, random, etc.).
Integrate prior knowledge.

Manage uncertainty (black box for now).

Work with numerical values for support.

°
°
°
o Guide exploration with a query (under review).
°
@ Mine more expressive patterns.

°

Focus on top-k itemsets (work in progress).

Thanks for your attention!
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Additional material
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Greedy algorithms

@ Querying an element of the chain may remove
< 1/2 possible solutions.

@ Querying the isolated element b will remove
exactly 1/2 solution.

@ However, querying b classifies far less itemsets.

= Classifying many itemsets isn't the same as
eliminating many solutions.

Finding the greedy-best-split item is FP#P-hard.

nil

ab
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Additional material
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Restricted itemsets

@ Asking about large itemsets is irrelevant.

“Do you often go cycling and running while drinking coffee
and having lunch with orange juice on alternate Wednesdays?”

o If the itemset size is bounded by a constant, I(W) is tractable.

= The crowd complexity O(log [S(V)|) is tractable too.
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Chain partitioning

@ Optimal strategy for chain taxonomies: binary search.

@ We can determine a chain decomposition of the itemset
taxonomy and perform binary searches on the chains.

@ Optimal crowd complexity for a chain, performance in
general is unclear.

e Computational complexity is polynomial in the size of (V)
(which is still exponential in V).
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