ninaries d complexity Computational complexity Conclusion

On the Complexity of Mining ltemsets
from the Crowd Using Taxonomies

Antoine Amarillil’2 Yael Amsterdamer! Tova Milo!

1Tel Aviv University, Tel Aviv, Israel

2Ecole normale supérieure, Paris, France

1/24

Background
©000000

Data mining

Data mining — discovering interesting patterns in large databases
Database — a (multi)set of transactions

Transaction — a set of items (aka. an itemset)
A simple kind of pattern to identify are frequent itemsets.

D :{ @ An itemset is frequent if it
occurs in at least © = 50%

{beer, diapers}, _
of transactions.

{beer,bread, butter},
{beer,bread,diapers},
{salad, tomato}

o {salad} is not frequent.
o {beer,diapers} is

frequent. Thus, {beer} is
} also frequent.

2/24

Background
0@00000

Human knowledge mining

@ What if the database doesn't really exist?

Things to do in Athens: Traditional medicine:

D={ D={
{icdt,monday, laptop}, {hangover, coffee},
{acropolis, sunglasses}, {cough, honey},

} }

This data only exists in the minds of people!

3/24

Background
00®0000

Harvesting this data

@ We cannot collect such data in a centralized database:
@ It's impractical to ask all users to surrender their data.

“Everyone please tell us all that you did the last three months.”
@ People do not remember the information.
“What were you doing on August 23th, 20137"
@ However, people remember summaries that we could access.
“Do you often play tennis on weekends?"

@ We can just ask people if an itemset is frequent.

4/24

Background
000®000

Crowdsourcing

@ Crowdsourcing — solving hard problems through elementary
queries to a crowd of users.
@ Find out if an itemset is frequent with the crowd:
© Draw a sample of users from the crowd. (black box)
@ Ask: is this itemset frequent? (“Do you often play tennis?")
© Corroborate the answers to eliminate bad answers. (black box)
@ Reward the users. (e.g., monetary incentive)
= An oracle that takes an itemset and finds out if it is frequent
or not by asking crowd queries.

5/24

Background
0000®00

Taxonomies

Having a taxonomy over the items can save us work!

item
sickness sport
cough fever back_pain tennis running biking

o If {sickness, sport} is infrequent then all itemsets such as
{cough, biking} are also infrequent.

@ Without the taxonomy, we need to test all combinations!

e Also avoids redundant itemsets like {sport,tennis}.

6/24

Background
00000®0

Cost

How to evaluate the performance of a strategy to identify the
frequent itemsets?

Crowd complexity: The number of itemsets we ask about
(monetary cost, latency...)

Computational complexity: The complexity of computing the next
question to ask

There is a tradeoff between the two:

@ Asking random questions is computationally inexpensive but
the crowd complexity is bad.

@ Asking clever questions to obtain optimal crowd complexity is
computationally expensive.

7/24

Background
000000e

The problem

We can now describe the problem:
o We have:

e A known item domain Z (set of items).
o A known taxonomy W on Z (is-a relation, partial order).
e A crowd oracle freq to decide if an itemset is frequent or not.

@ Choose interactively questions based on past answers.
@ Balance crowd complexity and computational complexity.
= Find out the status of all itemsets (learn freq exactly).
What is a good algorithm to solve this problem?

8/24

Background Preliminaries Crowd complexity Computational complexity Conclusion
0000000 00000 0000 oo o

Table of contents

© Preliminaries

9/24

Preliminaries
©0000

ltemset taxonomy

[temsets I(W) — the sets of pairwise incomparable items.
(e.g. {coffee,tennis} but not {coffee,drink})

If an itemset is frequent then its subsets are also frequent.

If an itemset is frequent then itemsets with more general
items are also frequent.

We define an order relation < on itemsets: A < B for “Ais
more general than B".

Formally, Vi € A, 3j € B s.t. i is more general than j.

freq is monotone: if A < B and B is frequent then A also is.

10/24

Preliminaries
0®000

ltemset taxonomy example

Taxonomy W Itemset taxonomy (V)
nil
ith
item cheég \;}1nk

/N RN

drink chess Chess coffee tea

/N S X

coffee tea chess chess coffee
coffee tea tea
chess
coffee
tea

11/24

Preliminaries Crowd complexity
00®00 0000

Maximal frequent itemsets

e Maximal frequent itemset (MFI): a
frequent itemset with no frequent
descendants.

e Minimal infrequent itemset (MII).

@ The MFIs (or Mlls) concisely
represent freq.

= We can study complexity as a
function of the size of the output.

Computational complexity Conclusion

nil
|
item

/N

chess drink

AN

g?izi coffee tea

> X

chess chess coffee

coffee tea tea
N S
chess
coffee
tea

12/24

Preliminaries
000®0

Solution taxonomy

@ Conversely, (we can show) any set of pairwise incomparable
itemsets is a possible MFI representation.

@ Hence, the set of all possible solutions has a similar structure
to the “itemsets” over the itemset taxonomy (V).

= We call this the solution taxonomy S(W¥) = I(I(V)).

Identifying the freq predicate amounts to finding the correct node
in S(V) through itemset frequency queries.

13/24

Computational complexity Conclusion

Background Preliminaries Crowd complexity
o

0000000 O000e 0000 oo

Solution taxonomy example

Taxonomy W Itemset taxonomy I(V) Solution taxonomy S(WV)

nil "
{nil}
\
item {item}

{chess} {drink}

/ \ (‘"e‘ss)/{caf\fee)\{tea}
>

{drink}

item chess drink M Ve
/ {chess, drink} {chess} {chess} {coffee}
' {coffee} {tea} {tea}
l \ A AN
drink chess chess coffee tea {chess, drid) (chess, drink) %F?>(mnw,ma
ea
//// \\\\ /// \\\\\\j7¢i\\\j::Eéss, érink)\\\\\
{chess, coffee} {chess, tea} {coffee} (cogggsszea)
coffee tea chess chess coffee L — o
coffee tea tea “Hs™ W el
\ ‘ / {chess, /coffeg}/Tc\hess, coffegﬁchessl, tea}
{chess, tea} {coffee, tea} {coffee, tea}
chess iass, <ottt
coffee R
tea

{chess, coffee, tea}

14/24

Background Preliminaries Crowd complexity Computational complexity Conclusion
0000000 00000 0000 oo o

Table of contents

© Crowd complexity

15/24

Crowd complexity
®000

Lower bound

@ Each query yields one bit of information.

@ Information-theoretic lower bound: we need at least
Q(log |S(W)]) queries.

@ This is bad in general, because |S(V)| can be doubly
exponential in W,

@ As a function of the original taxonomy W, we can write:

Q <2widt}'{\ll] / \/VW) .

16/24

Crowd complexity
o] Yote)

Upper bound

@ We can achieve the information-theoretic
bound if is there always an unknown itemset
that is frequent in about half of the possible
solutions.

@ A result from order theory shows that there
is a constant dp ~ 1/5 such that some

element always achieves a split of at least dp.

@ Hence, the previous bound is tight: we need
O(log|S(WV)|) queries.

nil

ab

6/7
5/7
4/7
3/7
2/7

1/7

17/24

Crowd complexity
ocoeo

Lower bound, MFI/MII

@ To describe the solution, we need the MFIs or the Mlls.

@ However, we need to query both the MFls and the Mlls to
identify the result uniquely: Q(|MFI| + |MII|) queries.

e We can have |MFI| = Q(2|M”|) and vice-versa.
@ This bound is not tight (e.g., chain).

nil

a3

a4

ab

18/24

Crowd complexity
ocooe

Upper bound, MFI/MII

@ There is an explicit algorithm to
find a new MFI or MIl in < |Z]
queries.

@ Intuition: starting with any
frequent itemset, add items until
you cannot add any more without
becoming infrequent.

@ The number of queries is thus
O(|Z] - (|MFI| + |MII])).

nitl

|

item

/N

chess drink

I RN

chess
drink coffee tea

> X

chess chess coffee
coffee tea tea

N o

chess
coffee
tea

19/24

d complexity Computational complexity Conclusion
oo o

Table of contents

e Computational complexity

20/24

Computational complexity
[1]

Hardness for standard (input) complexity

We want an unknown itemset of |(V) that is frequent for
about half of the possible solutions of S(W).

We can count over S(W) but it may be exponential in | (V) |.
Counting the antichains of (W) is FP#P-complete.
Finding the best-split element in I(W) is FP#F-hard in | I(W) |?

Problem: 1(W) is not a general DAG, so we only show
hardness in || for restricted (fixed-size) itemsets.

Intuition: count antichains by comparing to a known poset;
use a best-split oracle to compare; perform a binary search.

21/24

Computational complexity Conclusion

Crowd complexity
o

nil

|

item

/N

@ In the incremental algorithm, materializin .
g ' & chess drink

[(W) is expensive. Do we need to?
RN

o Actually, how to decide if we can stop with (¢
our MFIs and Mlls? drink coffee tea
@ Proved EQ-hardness for problem EQ I >(>< \

(exact complexity open). chess chess coffee

coffee tea tea
N S
chess
coffee
tea

22/24

Background Preliminaries Crowd complexity Computational complexity Conclusion
0000000 00000 0000 oo o

Table of contents

© Conclusion

23/24

Conclusion
°

Summary and further work

We have studied the crowd and computational complexity of crowd
mining under a taxonomy. What now?

@ Improve the bounds and close gaps.
Benchmark heuristics (chain partitioning, random, etc.).
Integrate prior knowledge.

Manage uncertainty (black box for now).

Work with numerical values for support.

°
°
°
o Guide exploration with a query (under review).
°
@ Mine more expressive patterns.

°

Focus on top-k itemsets (work in progress).

24/24

Conclusion
°

Summary and further work

We have studied the crowd and computational complexity of crowd
mining under a taxonomy. What now?

@ Improve the bounds and close gaps.
Benchmark heuristics (chain partitioning, random, etc.).
Integrate prior knowledge.

Manage uncertainty (black box for now).

Work with numerical values for support.

°
°
°
o Guide exploration with a query (under review).
°
@ Mine more expressive patterns.

°

Focus on top-k itemsets (work in progress).

Thanks for your attention!

24/24

Additional material
®00

Greedy algorithms

@ Querying an element of the chain may remove
< 1/2 possible solutions.

@ Querying the isolated element b will remove
exactly 1/2 solution.

@ However, querying b classifies far less itemsets.

= Classifying many itemsets isn't the same as
eliminating many solutions.

Finding the greedy-best-split item is FP#P-hard.

nil

ab

1/3

Additional material
oeo

Restricted itemsets

@ Asking about large itemsets is irrelevant.

“Do you often go cycling and running while drinking coffee
and having lunch with orange juice on alternate Wednesdays?”

o If the itemset size is bounded by a constant, I(W) is tractable.

= The crowd complexity O(log [S(V)|) is tractable too.

2/3

Additional material
ooe

Chain partitioning

@ Optimal strategy for chain taxonomies: binary search.

@ We can determine a chain decomposition of the itemset
taxonomy and perform binary searches on the chains.

@ Optimal crowd complexity for a chain, performance in
general is unclear.

e Computational complexity is polynomial in the size of (V)
(which is still exponential in V).

nil

ab

3/3

	Background
	Preliminaries
	Crowd complexity
	Computational complexity
	Conclusion

