Uncertainty over Intensional Data

Antoine Amarilli

Télécom ParisTech, Paris, France

January 27, 2014

Background

- Lots of raw information on the Web.
- Extract structure from it.
- Integrate various sources.
- Leverage them for complex queries.

- ⇒ Is there a pizza place open near ENS now?
- \Rightarrow Find an affordable place to rent near ENS with $> 20 \ m^2$?
- ⇒ Find a fountain with drinking water near me?

Intensionality

- We cannot collect all information:
 - \Rightarrow Storage space
 - \Rightarrow Bandwidth
 - ⇒ Access restrictions
- Need to access remote data sparingly.
- Data management becomes much harder.

→ Crowdsourcing

Crowdsourcing

⇒ Expensive processing

→ Web APIs

→ Deep Web

⇒ Rule consequences

Structure

- Need to leverage existing structure.
- Structure can be heterogeneous.

⇒ XML/JSON

→ Web graph

→ Views

⇒ RDF triples

- → Relational DBs
- → Parse trees

Uncertainty

- Data is imprecise.
- Data is wrong.
- Represent priors on remote data.
- Processing induces uncertainty.
- ⇒ Fuzzy rules
- ⇒ Crowdsourcing

 \Rightarrow NLP

- ⇒ Annotations

- ⇒ Data integration
- ⇒ Information extraction

Goals

- ⇒ To support the heretogeneous structure of information.
- ⇒ To manage intensional sources efficiently.
- ⇒ To maintain uncertainty along all steps.
- ⇒ To scale to large quantities of data.
- ⇒ To decide relevance of accesses.
- ⇒ To answer expressive queries through this framework.
- ⇒ To choose execution plans for queries.

Ontology alignment

- Find links between semantic Web sources.
- Iterative alignment (like PageRank)
- Challenges:
 - Support approximate string matching.
 - Align more complex patterns.
 - Improve scalability, parallelize.
 - Better theoretical understanding.

- ⇒ Marilena Oita (Télécom, IMR), A.A., Pierre Senellart (advisor) Cross-Fertilizing Deep Web Analysis and Ontology Enrichment Very Large Data Search, 2012, Istanbul.
- ⇒ Coll. Pierre Senellart and Fabian Suchanek (MPI, Télécom).

Probabilistic models

- Uncertain representations for relational databases.
- Uncertain representations for XML trees.
- ⇒ Are there connections between both models?

John John	ENS Centrale	<i>X</i> ¬ <i>X</i>
Jane	ENS	$\neg x \land y$
Jane	Centrale	$x \land y$

⇒ Antoine Amarilli, Pierre Senellart

Connections btw. Relational and XML Probabilistic Data Models

British National Conference on Databases, 2013, Oxford.

Possibility problem for probabilistic XML

- Tree with probabilistic nodes:
 - Local choices.
 - Global events.
- Compute probability of a tree.
- ⇒ Complexity of this problem?

⇒ Antoine Amarilli

The Possibility Problem for Probabilistic XML Subm. Alberto Mendelzon Intl. Workshop, 2014, Colombia.

Query pricing

- Define a price for a data collection.
- Sell partial subsets with discount.
- ⇒ How to price user queries?
- ⇒ Does the price leak information?
- ⇒ How to avoid arbitrage?
- ⇒ How to sample a priced subset?

⇒ Coll. Pierre Senellart, Ruiming Tang (Nat. Univ. of Singapore)

Crowd data mining

- Data mining: find patterns in databases.
- Frequent itemsets: common item sets.
- Mine patterns from the crowd.
- Taxonomy over the items.
- Find the next question to ask.
- ⇒ What is the complexity of this problem?

⇒ A.A., Yael Amsterdamer, Tova Milo (Tel Aviv University)

Complexity of Mining Itemsets from the Crowd Using Taxonomies

International Conference on Database Theory, 2014, Athens.

Open-world query answering

- Database of facts.
- Deduction rules.
- Is a query certain?
- ⇒ When is this decidable?
- ⇒ Finite or infinite completions?

 $\{Killer(John, Jack)\}$

Killed(p, q) $\Rightarrow \exists r, Killed(q, r)$

 $Killed(p, x) \wedge Killed(q, x)$ $\Rightarrow p = q$

 $q: \exists x, \text{ Killed}(x, \text{John})$

⇒ Antoine Amarilli (supervised by Michael Benedikt, Oxford) Open-World Query Answering Under Number Restrictions Subm. Principles of Database Systems, 2014, Snowbird, Utah.

Query answering under uncertain rules

```
    Database of facts.
```

- Uncertain deduction rules.
- Reasoning using facts and rules.
- Answer queries with probabilities.
- ⇒ Learn general tendencies.
- ⇒ Extrapolate from them.

$${Norm(John)}$$

Norm(p)

 $\Rightarrow^{40\%} PhD(p, ENS)$

 $\operatorname{Norm}(p) \Rightarrow^{20\%} \operatorname{PhD}(p, X)$

 $PhD(p, x) \wedge PhD(p, y)$

 \Rightarrow ^{80%} x = y

q(x): PhD(x, ENS)

⇒ Coll. Pierre Bourhis (Oxford, Lille), Pierre Senellart

Provenance for order-aware queries

- Keep link between original database and query results.
- Used for access control, view updates, etc.
- Nice algebraic framework (semirings).
- ⇒ What about databases with order?

John	ENS	t_1	ENS	Paris	s ₁
John	Mines	t_2	Mines	Paris	s ₂
John	Χ	t_3	Χ	Saclay	s 3

q: "Is John in Paris?" $t_1 \cdot s_1 \oplus t_2 \cdot s_2$

⇒ A.A., Lamine Ba (Télécom), Daniel Deutch (Tel Aviv), P.S. Provenance for Nondeterministic Order-Aware Queries Subm. Principles of Database Systems, 2014, Snowbird, Utah.

- Funding: Allocation spécifique and various grants.
- DBWeb team, Télécom ParisTech, 46 rue Barrault.
- Supervised by Prof. Pierre Senellart.
- Graduate school EDITE.
- Teaching duties:
 - Technologies du Web, COMASIC master.
 - Théorie des langages, Télécom first year.
 - Entraînement aux concours de programmation.
- Collaborations: Lille, Tel Aviv, Oxford, Singapore.

Conclusion

- Funding: Allocation spécifique and various grants.
- DBWeb team, Télécom ParisTech, 46 rue Barrault.
- Supervised by Prof. Pierre Senellart.
- Graduate school EDITE.
- Teaching duties:
 - Technologies du Web, COMASIC master.
 - Théorie des langages, Télécom first year.
 - Entraînement aux concours de programmation.
- Collaborations: Lille, Tel Aviv, Oxford, Singapore.

Thanks for your attention!