

When Can We Answer Queries Using Result-Bounded Data Interfaces?

Antoine Amarilli (LTCI, Télécom ParisTech, Université Paris-Saclay), Michael Benedikt (University of Oxford)

Problem Description

• We have several **Web services** represented as **relations**

Directory(dept, person)

DBLP(<u>author</u>, title, year)

• We can access them by giving a **binding** for the <u>input attributes</u> and we obtain the **tuples** that match the **binding**

author	title	year
Michael Benedikt Michael Benedikt Michael Benedikt Michael Benedikt	Goal-Driven Query Answering Form Filling Based on How Can Reasoners Simplify When Can We Answer Queries	2018 2018 2018 2018
• • •	• • •	

- We want to answer a **conjunctive query** on the relations

Find all papers written by people from department Dpt? Q(t): $\exists y \ a \ Directory(Dpt, a) \land DBLP(a, t, y)$

- We can relate the services with **constraints** in a logical fragment

Every researcher from the directory is in DBLP

 $\Sigma: \forall d \ a \ \mathbf{Directory}(d, a) \rightarrow \exists t \ y \ \mathbf{DBLP}(a, t, y)$

Existing Solutions and New Challenge

Existing work studied how to reformulate the query Q to a plan

Example:

Access the services by giving bindings

 $T_1 \Leftarrow \text{Directory} \Leftarrow \text{Dpt};$

Store results in temporary tables

- $T_2 \leftarrow \mathbf{DBLP} \leftarrow \pi_{\mathsf{person}}(T_1)$; Evaluate monotone relational algebra
- $T_3 \leftarrow \pi_{\text{title}}(T_2);$ Return T₃
- → Must return **exactly** the output of Q on **all databases** that satisfy Σ
- Problem: services sometimes do not return all matching tuples!

Currently the following URL query parameters are recognized:		
Parameter Description		
q	The query string to search for.	
h	Maximum number of search results (hits) to return.	
11	For bandwidth reasons, this number is capped at 1000.	

- → The service **DBLP** has a **result bound** of 1000, meaning:
 - If an access matches ≤ 1000 tuples then all are returned
 - If an access matches > 1000 tuples then only 1000 are returned
- → How can we reformulate queries with result-bounded services?

Main Results

Input: • 9 0 Service schema S • 1 Query Q • 1 Constraints Σ

Output: Does there exist a plan for Q on S under Σ?

- → What is the **complexity** of this problem for various fragments?
- → In what ways are result-bounded methods **useful** for plans?
- We give **schema simplification** results that show when result bounds can be **removed**
- We use them to derive complexity results

Fragment	Simplification	Complexity
Inclusion dependencies (IDs) Bounded-width IDs	Existence-check Existence-check	EXPTIME-complete NP-complete
Functional dependencies (FDs) FDs and UIDs	FD Choice	NP-complete NP-hard, in EXPTIME
Equality-free FO Frontier-guarded TGDs	Choice Choice	Undecidable 2EXPTIME-complete

Existence-Check Simplification

Idea: even if DBLP(author, title, year) has a result bound, we can use it to answer Q: "Has Michael Benedikt published something?"

Def: a schema S with constraints Σ is **existence-check simplifiable** if any query Q that has a plan still does on its e.-c. approximation:

- For each relation **DBLP**(<u>author</u>, title, year) with a **result bound** create a new relation **DBLP**_{check}(<u>author</u>)
- Add two new IDs in Σ to relate DBLP_{check} and DBLP:

 $\forall a \ \mathbf{DBLP}_{\mathrm{check}}(a) \leftrightarrow \exists t \ y \ \mathbf{DBLP}(a, t, y)$

• Forbid direct accesses to **DBLP** (so the result bound is irrelevant)

Thm: schemas with **ID** constraints are existence-check simplifiable

Choice Simplification

Idea: sometimes the **value** of the bounds does not matter

Def: a schema S with constraints Σ is **choice simplifiable** if any query Q that has a plan still does if all bounds are set to 1

Thm: choice simplifiability holds for **=-free FO**, and for **UID+FDs**

FD Simplification

Idea: if Dir2(name, address, phone) has a result bound but Σ has an **FD** name → address, we can answer Q: "Find the address of M.B."

Def: a schema S with constraints Σ is **FD simplifiable** if any query Q that has a plan still does on its FD approximation:

- For each relation Dir2(name, address, phone) with a result bound create Dir2_{FD}(name, address) with the FD-determined attributes
- Add two IDs between Dir2_{FD} and Dir2 and forbid accesses to Dir2

Thm: schemas with **FD** constraints are FD simplifiable

Complexity Techniques and Other Results

- Some complexity bounds shown via a linearization technique for query containment under IDs + side information
- Results for **expressive arity-two constraints** (GC₂)
- Results for **non-monotone plans** (can use **relational difference**)
- Results when assuming finiteness of the underlying database
- Example of FO constraints that are not choice simplifiable