Tractable Lineages on Treelike Instances: Lingto and Extensions Antoine Amarilli¹, Pierre Bourhis², Pierre Senellart^{1,3} ¹Télécom ParisTech, Université Paris-Saclay; ²CRIStAL, UMR 9189, CNRS, Université Lille 1; ³IPAL, CNRS, NUS

Query Evaluation on Probabilistic Instances

• **Tuple Independent Database (TID)** instances:

Each tuple is **present** or **absent** with given probability assuming independence across tuples

Probability distribution Example TID *I*

R		30%	10%	45%	15%	
а	b	100%	a b	a b	a b	a b
b	С	40%	bс	b c		
С	а	75%	са		са	

Restricting Instance Structure with Treewidth

Treewidth: Measures how much the data is close to a **tree**

We can decompose **trees** ...and **low treewidth data** too:

• **Boolean query:** e.g., conjunctive query (CQ) **Example:** Q: $\exists xyz \mathbf{R}(x, y) \mathbf{R}(y, z) \mathbf{R}(z, x)$

• Probabilistic query evaluation (PQE):

compute the probability that a TID *I* satisfies a query *Q* **Data complexity:** *Q* is fixed, input is the TID *I* **Example:** there is 30% probability that *I* satisfies *Q*

→ **Existing work** (Dalvi & Suciu, [DS12]): PQE is **intractable** (#P-hard) for CQs, except **safe** CQs **Courcelle's theorem:** Monadic second-order (MSO) queries can be evaluated by a tree automaton on the tree encoding: → Efficient on bounded-treewidth, **non-probabilistic** data

 \rightarrow This extends to **probabilistic query evaluation** [ABS15] \rightarrow Can we go **beyond** bounded treewidth? (e.g., cliquewidth)

Dichotomy	 PQE is linear-time (up to arithmetics) for MSO on any bounded-treewidth TID instance family [ABS15] PQE is #P-hard (under RP reductions) for FO on any unbounded-treewidth constructible graph family
Result:	→ Similar hardness results with MSO for non-probabilistic evaluation and counting, extending [GHL ⁺ 14]
Other PQE Results:	 Tractability of MSO on bounded-treewidth instances can be explained by lineages (d-DNNFs) Tractability of some safe COs (inversion-free) can be explained via instance rewritings

Lower Bounds

• **#P-hard problem:** count **matchings** of graph G \rightarrow Embed G as a **topological minor** in the family

Theorem [CC14]: There is a constant *c* such that for any **planar** graph G of size n with max **degree** 3, for any graph *H* of **treewidth** $\geq n^{c}$, we can **embed** G as topological minor of H in **RP time**

• Pick *H* from the **unbounded-treewidth** graph family **Constructibility:** we can build H in time $Poly(n^c)$ \rightarrow Set **probabilities** on *H* to give a **subdivision** of *G*

Lineages

Lineage φ of a Boolean **query** Q on **instance** I:

 φ is a **Boolean function** whose variables are the facts of *I* such that $I' \subseteq I$ satisfies Q iff φ holds for the valuation for I' \rightarrow The **probability** of Q on I is the **probability** of φ

000

 (\mathbf{n})

(in)...

000

Lemma [ABS15]: We can build in linear time a **circuit** that captures the **lineage** of a **tree automaton** on an input tree → Extends to **MSO** on **treelike data**

Further: efficient PQE using the circuit

 \rightarrow The circuit is **bounded-treewidth:** use message passing [ABS15] \rightarrow The circuit is a **d-DNNF**: exclusive OR, independent AND

Safe Queries

• Code hard problem as an **FO query** to reduce to PQE

Lower bounds also for **UCQs with inequalities**: inexistence of concise **OBDD** representations

[ABS15]: A. Amarilli, P. Bourhis, P. Senellart Provenance Circuits for Trees and Treelike Instances, ICALP'15 [CC14]: C. Chekuri, J. Chuzhoy Polynomial Bounds for the Grid-Minor Theorem, STOC'14 [DS12]: N. Dalvi, D. Suciu The Dichotomy of Probabilistic Inference for Unions of Conjunctive Queries. JACM, 2012 [GHL⁺14]: R. Ganian, P. Hliněný, A. Langer, J. Obdržálek, P. Rossmanith, S. Sikdar Lower Bounds on the Complexity of MSO1 Model-Checking. JCSS, 2014 [JS13]: A. Jha, D. Suciu Knowledge Compilation Meets Database Theory: Compiling Queries to Decision Diagrams. TCS, 2013

References

A CQ is **inversion-free** [JS13] if:

- It is **hierarchical**: under $\exists x$, each atom contains x **Example:** $\exists x \mathbf{R}(x, y) \exists y \mathbf{S}(y)$ but not $\exists xy \mathbf{R}(x) \mathbf{S}(x, y) \mathbf{T}(y)$
- Each relation **R** has an **order** on its attributes s.t. all variables of each **R**-atom were **quantified** in that order **Example:** $\exists xy \ \mathbf{R}(x, y) \ \mathbf{S}(y, x)$ but not $\exists xy \ \mathbf{R}(x, y) \ \mathbf{R}(y, x)$

Theorem [JS13]: PQE for **inversion-free** CQs is in **PTIME**

 \rightarrow We explain this using **lineage-preserving rewritings**: *I* rewrites to *I*' for *Q* if *Q* has same provenance on *I* and *I*'

Theorem: Up to ranking, for any **inversion-free** CQ Q, any instance *I* rewrites to some *I*^I of **bounded treewidth**