
Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance Circuits for Trees
and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, Pierre Senellart1,3

1Télécom ParisTech

2CNRS-LIFL
3National University of Singapore

April 8th, 2015

1/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

General idea

We consider a query and a relational instance
Often it is not sufficient to merely evaluate the query:
→ We need quantitative information
→ We need the link from the output to the input data

→ Compute query provenance!

2/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

General idea

We consider a query and a relational instance
Often it is not sufficient to merely evaluate the query:
→ We need quantitative information
→ We need the link from the output to the input data

→ Compute query provenance!

2/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b
b c
d e
e d
f f

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b
b c
d e
e d
f f

Result: true

Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b Public
b c Secret
d e Confidential
e d Confidential
f f Top secret

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available

What is the minimal security clearance required?
→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b Public
b c Secret
d e Confidential
e d Confidential
f f Top secret

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b Public
b c Secret
d e Confidential
e d Confidential
f f Top secret

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b Public
b c Secret
d e Confidential
e d Confidential
f f Top secret

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b Public
b c Secret
d e Confidential
e d Confidential
f f Top secret

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential

3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 1: security for a conjunctive query
Consider the conjunctive query: ∃xyz R(x, y) ∧ R(y, z).

R
a b Public
b c Secret
d e Confidential
e d Confidential
f f Top secret

Result: true
Add security annotations: Public, Confidential, Secret,
Top secret, Never available
What is the minimal security clearance required?

→ Result: Confidential
3/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b
b c
d e
e d
f f

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1 + 1 + 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b
b c
d e
e d
f f

Result: true

Add multiplicity annotations
How many query matches?

→ Result: 1 + 1 + 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations

How many query matches?
→ Result: 1 + 1 + 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1 + 1 + 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1

+ 1 + 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1 + 1

+ 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1 + 1 + 1

+ 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1 + 1 + 1 + 1

= 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 2: bag queries
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b 1
b c 1
d e 1
e d 1
f f 1

Result: true
Add multiplicity annotations
How many query matches?

→ Result: 1 + 1 + 1 + 1 = 4

4/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b
b c
d e
e d
f f

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b
b c
d e
e d
f f

Result: true

Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations

For which subinstances does the query hold?
→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2)

∨ (f3 ∧ f4) ∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4)

∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4)

∨ f5

5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5
5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 3: uncertain facts
Consider again: ∃xyz R(x, y) ∧ R(y, z).

R
a b f1
b c f2
d e f3
e d f4
f f f5

Result: true
Assume facts are uncertain, give them atomic annotations
For which subinstances does the query hold?

→ Result: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5
5/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result:

(f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result:

(f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)

⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)

⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)

⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)

⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)

⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)

⊕ (f5 ⊗ f5)

6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)
6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example 4: the universal semiring N[X]

Consider again: ∃xyz R(x, y) ∧ R(y, z).
Annotate input facts with atomic annotations X = f1, . . . , fn
Most general semiring: N[X] of polynomials on X

R
a b f1
b c f2
d e f3
e d f4
f f f5

→ Result: (f1 ⊗ f2)⊕ (f3 ⊗ f4)⊕ (f4 ⊗ f3)⊕ (f5 ⊗ f5)
6/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Specialization and homomorphisms

All these examples can be captured using semirings:
security semiring (K,min,max,Public,Never available)
bag semiring (N,+,×, 0, 1)
Boolean semiring (PosBool[X],∨,∧, f, t)
universal semiring (N[X],+,×, 0, 1)

N[X] is the universal semiring:
The provenance for N[X] can be specialized to any K[X]
By commutation with homomorphisms, atomic annotations
in X can be replaced by their value in K

→ Computing N[X] provenance subsumes all tasks
→ It can be done in PTIME data complexity for CQs

7/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Specialization and homomorphisms

All these examples can be captured using semirings:
security semiring (K,min,max,Public,Never available)
bag semiring (N,+,×, 0, 1)
Boolean semiring (PosBool[X],∨,∧, f, t)
universal semiring (N[X],+,×, 0, 1)

N[X] is the universal semiring:
The provenance for N[X] can be specialized to any K[X]
By commutation with homomorphisms, atomic annotations
in X can be replaced by their value in K

→ Computing N[X] provenance subsumes all tasks
→ It can be done in PTIME data complexity for CQs

7/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Specialization and homomorphisms

All these examples can be captured using semirings:
security semiring (K,min,max,Public,Never available)
bag semiring (N,+,×, 0, 1)
Boolean semiring (PosBool[X],∨,∧, f, t)
universal semiring (N[X],+,×, 0, 1)

N[X] is the universal semiring:
The provenance for N[X] can be specialized to any K[X]
By commutation with homomorphisms, atomic annotations
in X can be replaced by their value in K

→ Computing N[X] provenance subsumes all tasks
→ It can be done in PTIME data complexity for CQs

7/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance and probability

Probabilistic query evaluation:
Fixed CQ q, and input:

R
a b 0.6
b c 0.9

→ Computing the probability of the PosBool[X]-provenance
→ #P-hard

→ Use the provenance (here, PosBool[X])

8/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance and probability

Probabilistic query evaluation:
Fixed CQ q, and input:

R
a b 0.6
b c 0.9

→ Computing the probability of the PosBool[X]-provenance
→ #P-hard

→ Use the provenance (here, PosBool[X])

8/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance and probability

Probabilistic query evaluation:
Fixed CQ q, and input:

R
a b 0.6
b c 0.9

→ Computing the probability of the PosBool[X]-provenance
→ #P-hard

→ Use the provenance (here, PosBool[X])

8/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Trees and treelike instances

Idea: restrict the instances to trees and treelike instances
Tree decomposition of an instance: cover all facts
Treewidth: minimal width (bag size) of a decomposition

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and k-grids have treewidth k − 1

Treelike: the treewidth is bounded by a constant

9/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Problem statement

Many tasks have tractable data complexity
on treelike instances:

MSO query evaluation is linear [Courcelle et al., 2001]
MSO result counting is linear [Arnborg et al., 1991]
Probability evaluation is linear for trees [Cohen et al., 2009]
(MSO covers relational algebra, UCQs, monadic Datalog...)

→ Can we explain this tractability with provenance?
Idea: queries on treelike instances have treelike provenance?

→ Can we extend tractability to more quantitative tasks?
→ Can we define and compute provenance for MSO?

10/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Problem statement

Many tasks have tractable data complexity
on treelike instances:

MSO query evaluation is linear [Courcelle et al., 2001]
MSO result counting is linear [Arnborg et al., 1991]
Probability evaluation is linear for trees [Cohen et al., 2009]
(MSO covers relational algebra, UCQs, monadic Datalog...)

→ Can we explain this tractability with provenance?
Idea: queries on treelike instances have treelike provenance?

→ Can we extend tractability to more quantitative tasks?
→ Can we define and compute provenance for MSO?

10/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Table of contents

1 Introduction

2 PosBool[X]-provenance

3 N[X]-provenance

4 Conclusion

11/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

General idea

PosBool[X]-provenance on trees and treelike instances
The world of trees:

Query: MSO on trees
The world of treelike instances:

Query: MSO on the instance
→ Reduces to trees [Courcelle et al., 2001]

→ Start with PosBool[X]-provenance for queries on trees

12/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

General idea

PosBool[X]-provenance on trees and treelike instances
The world of trees:

Query: MSO on trees
The world of treelike instances:

Query: MSO on the instance
→ Reduces to trees [Courcelle et al., 2001]

→ Start with PosBool[X]-provenance for queries on trees

12/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Uncertain trees

1

5

76

2

43

Query: “Is there both a red and
green node?”
A valuation of a tree decides whether
to keep or discard node labels.
Keep: {1, 2, 3, 4, 5, 6, 7}

The query is true

13/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Uncertain trees

1

5

76

2

43

Query: “Is there both a red and
green node?”
A valuation of a tree decides whether
to keep or discard node labels.
Keep: {1, 2, 5, 6}

The query is false

13/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Uncertain trees

1

5

76

2

43

Query: “Is there both a red and
green node?”
A valuation of a tree decides whether
to keep or discard node labels.
Keep: {2, 7}

The query is true

13/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance circuits

1

5

76

2

43

X = {g1, g2, g3, g4, g5, g6, g7}
PosBool[X]-provenance of
a query q on tree T:

monotone Boolean formula ϕ
on variables X

→ ν(T) satisfies q
iff ν(ϕ) is true

Represent as a circuit
[Deutch et al., 2014]

monotone Boolean circuit C
with input gates X

→ ν(T) satisfies q
iff ν(C) is true (output gate)

14/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance circuits

1

5

76

2

43

X = {g1, g2, g3, g4, g5, g6, g7}
PosBool[X]-provenance of
a query q on tree T:

monotone Boolean formula ϕ
on variables X

→ ν(T) satisfies q
iff ν(ϕ) is true

Represent as a circuit
[Deutch et al., 2014]

monotone Boolean circuit C
with input gates X

→ ν(T) satisfies q
iff ν(C) is true (output gate)

14/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example

1

5

76

2

43

Query: is there both a red and a
green node?

PosBool[X]-provenance:
(g2 ∨ g3) ∧ g7
PosBool[X] provenance circuit:

∧

∨ g7

g2 g3

15/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example

1

5

76

2

43

Query: is there both a red and a
green node?
PosBool[X]-provenance:
(g2 ∨ g3) ∧ g7

PosBool[X] provenance circuit:

∧

∨ g7

g2 g3

15/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Example

1

5

76

2

43

Query: is there both a red and a
green node?
PosBool[X]-provenance:
(g2 ∨ g3) ∧ g7
PosBool[X] provenance circuit:

∧

∨ g7

g2 g3

15/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our results on trees

A PosBool[X] provenance circuit of a MSO query q on a tree:
→ can be computed in linear time in the tree for a fixed query
→ has treewidth only dependent on the query
→ is actually a Bool[X]-circuit (more soon)

→ Let’s extend this to treelike instances!

16/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our results on trees

A PosBool[X] provenance circuit of a MSO query q on a tree:
→ can be computed in linear time in the tree for a fixed query
→ has treewidth only dependent on the query
→ is actually a Bool[X]-circuit (more soon)

→ Let’s extend this to treelike instances!

16/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Treelike instances

Tree encodings: represent treelike instances as trees
MSO queries on the instance → MSO queries on the tree
encoding

Uncertain instance: each fact can be present or absent
→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)

17/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Treelike instances

Tree encodings: represent treelike instances as trees
MSO queries on the instance → MSO queries on the tree
encoding
Uncertain instance: each fact can be present or absent

→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)

17/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Treelike instances

Tree encodings: represent treelike instances as trees
MSO queries on the instance → MSO queries on the tree
encoding
Uncertain instance: each fact can be present or absent

→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)

17/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Treelike instances

Tree encodings: represent treelike instances as trees
MSO queries on the instance → MSO queries on the tree
encoding
Uncertain instance: each fact can be present or absent

→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)

17/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Treelike instances

Tree encodings: represent treelike instances as trees
MSO queries on the instance → MSO queries on the tree
encoding
Uncertain instance: each fact can be present or absent

→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)

17/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our result and consequences

Compute a Bool[X]-provenance circuit for a fixed MSO query
on a treelike instance in linear time in the instance

→ Linear time data complexity for MSO probabilistic query
evaluation on treelike instances
(assuming unit-cost arithmetics)

→ Covers many known probabilistic data models
We can reduce counting to probabilistic evaluation

→ Re-proves that MSO counting has linear-time data complexity

18/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our result and consequences

Compute a Bool[X]-provenance circuit for a fixed MSO query
on a treelike instance in linear time in the instance

→ Linear time data complexity for MSO probabilistic query
evaluation on treelike instances
(assuming unit-cost arithmetics)

→ Covers many known probabilistic data models

We can reduce counting to probabilistic evaluation
→ Re-proves that MSO counting has linear-time data complexity

18/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our result and consequences

Compute a Bool[X]-provenance circuit for a fixed MSO query
on a treelike instance in linear time in the instance

→ Linear time data complexity for MSO probabilistic query
evaluation on treelike instances
(assuming unit-cost arithmetics)

→ Covers many known probabilistic data models
We can reduce counting to probabilistic evaluation

→ Re-proves that MSO counting has linear-time data complexity

18/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Table of contents

1 Introduction

2 PosBool[X]-provenance

3 N[X]-provenance

4 Conclusion

19/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

First problem: non-monotone queries

We want to generalize from PosBool[X] to N[X]
Semirings have bad support for negation
[Amsterdamer et al., 2011]
Our previous construction uses negation

→ q monotone if I |= q implies I′ |= q for all I′ ⊇ I
→ Provenance circuits for monotone queries can be monotone

20/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

First problem: non-monotone queries

We want to generalize from PosBool[X] to N[X]
Semirings have bad support for negation
[Amsterdamer et al., 2011]
Our previous construction uses negation

→ q monotone if I |= q implies I′ |= q for all I′ ⊇ I

→ Provenance circuits for monotone queries can be monotone

20/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

First problem: non-monotone queries

We want to generalize from PosBool[X] to N[X]
Semirings have bad support for negation
[Amsterdamer et al., 2011]
Our previous construction uses negation

→ q monotone if I |= q implies I′ |= q for all I′ ⊇ I
→ Provenance circuits for monotone queries can be monotone

20/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Second problem: intrinsic definition

Boolean provenance has an intrinsic definition:
“Characterize which subinstances satisfy the query”
→ Independent from how the query is written
→ Independent from its encoding on trees

N[X]-provenance was defined operationally
→ Depends on how the query is written

→ We restrict to (Boolean) UCQs from now on

21/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Second problem: intrinsic definition

Boolean provenance has an intrinsic definition:
“Characterize which subinstances satisfy the query”
→ Independent from how the query is written
→ Independent from its encoding on trees

N[X]-provenance was defined operationally
→ Depends on how the query is written

→ We restrict to (Boolean) UCQs from now on

21/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)

Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:

(x1 ⊗ x1)⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)

⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)

⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)

⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)

⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)

aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3

Definition:
Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Provenance of a Boolean CQ

R
a a x1
b c x2
c b x3

Query: q : ∃xy R(x, y) ∧ R(y, x)
Provenance:
(x1 ⊗ x1)⊕ (x2 ⊗ x3)⊕ (x3 ⊗ x2)
aka x21 + 2x2x3
Definition:

Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple derivations
→ Exponents: using facts multiple times

22/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our result for N[X]-provenance circuits

We can compute in linear time data complexity a N[X] provenance
circuit (arithmetic circuit) for UCQs.

→ What fails for MSO/Datalog?
Unbounded maximal multiplicity
Logical definition of fact multiplicity?

23/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Our result for N[X]-provenance circuits

We can compute in linear time data complexity a N[X] provenance
circuit (arithmetic circuit) for UCQs.
→ What fails for MSO/Datalog?

Unbounded maximal multiplicity
Logical definition of fact multiplicity?

23/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Table of contents

1 Introduction

2 PosBool[X]-provenance

3 N[X]-provenance

4 Conclusion

24/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Summary
Result:
→ Linear time provenance circuit computation

on trees/treelike instances:
for MSO, Bool[X]
for monotone MSO, PosBool[X]
for UCQ, N[X]

→ cheaper than on arbitrary instances (linear vs PTIME)
→ not more expensive than counting or query evaluation

Techniques:
Creative provenance representations (arithmetic circuits)
Intrinsic definitions of provenance (rather than operational)
Extending provenance to MSO (PosBool[X] only for now)
Provenance-preserving encoding of queries

Applications:
→ Capture counting results

(decouple symbolic and numerical computation)
→ Extend to new applications (probabilities)

25/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Summary
Result:
→ Linear time provenance circuit computation

on trees/treelike instances:
for MSO, Bool[X]
for monotone MSO, PosBool[X]
for UCQ, N[X]

→ cheaper than on arbitrary instances (linear vs PTIME)
→ not more expensive than counting or query evaluation

Techniques:
Creative provenance representations (arithmetic circuits)
Intrinsic definitions of provenance (rather than operational)
Extending provenance to MSO (PosBool[X] only for now)
Provenance-preserving encoding of queries

Applications:
→ Capture counting results

(decouple symbolic and numerical computation)
→ Extend to new applications (probabilities)

25/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Summary
Result:
→ Linear time provenance circuit computation

on trees/treelike instances:
for MSO, Bool[X]
for monotone MSO, PosBool[X]
for UCQ, N[X]

→ cheaper than on arbitrary instances (linear vs PTIME)
→ not more expensive than counting or query evaluation

Techniques:
Creative provenance representations (arithmetic circuits)
Intrinsic definitions of provenance (rather than operational)
Extending provenance to MSO (PosBool[X] only for now)
Provenance-preserving encoding of queries

Applications:
→ Capture counting results

(decouple symbolic and numerical computation)
→ Extend to new applications (probabilities)

25/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Future work

Monadic Datalog [Gottlob et al., 2010] to avoid high
combined complexity
A neater approach for counting and probabilities
Extend N[X] beyond CQs (e.g., formal series, multiplicities)
Other applications? aggregation, enumeration?

Thanks for your attention!

26/26

Introduction PosBool[X]-provenance N[X]-provenance Conclusion

Future work

Monadic Datalog [Gottlob et al., 2010] to avoid high
combined complexity
A neater approach for counting and probabilities
Extend N[X] beyond CQs (e.g., formal series, multiplicities)
Other applications? aggregation, enumeration?

Thanks for your attention!

26/26

References I

Amsterdamer, Y., Deutch, D., and Tannen, V. (2011).
On the limitations of provenance for queries with difference.
In TaPP.
Arnborg, S., Lagergren, J., and Seese, D. (1991).
Easy problems for tree-decomposable graphs.
J. Algorithms, 12(2):308–340.

Chaudhuri, S. and Vardi, M. Y. (1992).
On the equivalence of recursive and nonrecursive Datalog
programs.
In PODS.
Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.

1/9

References II

Courcelle, B., Makowsky, J. A., and Rotics, U. (2001).
On the fixed parameter complexity of graph enumeration
problems definable in monadic second-order logic.
Discrete Applied Mathematics, 108(1-2):23–52.

Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for datalog provenance.
In ICDT.
Gottlob, G., Pichler, R., and Wei, F. (2010).
Monadic datalog over finite structures of bounded treewidth.
TOCL, 12(1):3.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.

2/9

Semiring provenance [Green et al., 2007]

Semiring (K,⊕,⊗, 0, 1)

(K,⊕) commutative monoid with identity 0
(K,⊗) commutative monoid with identity 1
⊗ distributes over ⊕
0 absorptive for ⊗

Idea: Maintain annotations on tuples while evaluating:
Union: annotation is the sum of union tuples
Select: select as usual
Project: annotation is the sum of projected tuples
Product: annotation is the product

3/9

Semiring provenance [Green et al., 2007]

Semiring (K,⊕,⊗, 0, 1)

(K,⊕) commutative monoid with identity 0
(K,⊗) commutative monoid with identity 1
⊗ distributes over ⊕
0 absorptive for ⊗

Idea: Maintain annotations on tuples while evaluating:
Union: annotation is the sum of union tuples
Select: select as usual
Project: annotation is the sum of projected tuples
Product: annotation is the product

3/9

Tree automata

Tree alphabet:

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”

States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}

Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}

Initial function:
⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:

G⊥⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:

G⊥⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:

G

G⊥

R

⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Tree automata

Tree alphabet:

⊤

G

G⊥

R

⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

4/9

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

in in
...

... ...q1 q2

in

5/9

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

q1 q2

∧ ...
in

whenever

q

q1 q2
in in

q
∨ ∨ ∨

...

...

5/9

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

q1 q2

∧ ...
in

whenever

q

q1 q2
in in

q

¬

∨ ∨ ∨

...

...

5/9

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

6/9

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

6/9

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

6/9

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

6/9

Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general
→ For a treelike instance, linear time!

7/9

Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general

→ For a treelike instance, linear time!

7/9

Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general
→ For a treelike instance, linear time!

7/9

Supporting coefficients

In the world of trees
The same valuation can be accepted multiple times

→ Number of accepting runs of the bNTA
In the world of treelike instances

The same match can be the image of multiple homomorphisms

→ Add assignment facts to represent possible assignments
→ Encode to a bNTA that guesses them

8/9

Supporting coefficients

In the world of trees
The same valuation can be accepted multiple times

→ Number of accepting runs of the bNTA
In the world of treelike instances

The same match can be the image of multiple homomorphisms

→ Add assignment facts to represent possible assignments
→ Encode to a bNTA that guesses them

8/9

Supporting exponents

In the world of trees
The same fact can be used multiple times
Annotate nodes with a multiplicity
The bNTA is monotone for that multiplicity
Use each input gate as many times as we read its fact

In the world of treelike instances
The same fact can be the image of multiple atoms
Maximal multiplicity is query-dependent but
instance-independent

→ Encodes CQs to bNTAs that read multiplicities
Consider all possible CQ self-homomorphisms
Count the multiplicities of identical atoms
Rewrite relations to add multiplicities
Usual compilation on the modified signature

9/9

Supporting exponents

In the world of trees
The same fact can be used multiple times
Annotate nodes with a multiplicity
The bNTA is monotone for that multiplicity
Use each input gate as many times as we read its fact

In the world of treelike instances
The same fact can be the image of multiple atoms
Maximal multiplicity is query-dependent but
instance-independent

→ Encodes CQs to bNTAs that read multiplicities
Consider all possible CQ self-homomorphisms
Count the multiplicities of identical atoms
Rewrite relations to add multiplicities
Usual compilation on the modified signature

9/9

	Introduction
	PosBool[X]-provenance
	N[X]-provenance
	Conclusion

