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Uncertain data management

Relational databases manage data, represented here as a labeled graph
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→ Problem: we are not certain about the true state of the data
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Uncertain data model
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• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))
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Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)
• Formally: a finite disjunction of CQs
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Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%
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(
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)

× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(1− (1− 50%)× (1− 90%)))

× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(1− (1− 50%)× (1− 90%)))× (1−80%× (1− (1− 90%)× (1− 90%))),

i.e., 97.65792%

6/42



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(1− (1− 50%)× (1− 90%)))× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42



Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same
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Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P

• #P: counting class of problems expressible as the number of accepting paths
of a nondeterministic polynomial-time Turing Machine

→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., single-atom CQs
→ e.g., x y z
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PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q :

x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q
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The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)
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Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately

→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately

→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments

→ Independent conjunction over the facts
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Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

x y z w

We can use this to reduce from #SAT like before:
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The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)
Let Q be a UCQ:

• If Q is handled by a complicated algorithm PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more complicated (but still generalizes to higher arity)

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
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Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms
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Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)
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Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
( )∗

• It is not equivalent to a UCQ: infinite disjunction
( )i

for all i ∈ N
• Hence, PQE(Q) is #P-hard
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Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern
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Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•

to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D
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Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!
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Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

( )n

Case 1: some iterate violates the query:

•

• • • •

•

( )i

satisfies Q

but
•

• • • •

•

( )i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern
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Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right
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Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)
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Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q
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Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees
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Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color ) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in PTIME
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Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”
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Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� ν(T) satisfies Q
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Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬
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Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions
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d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation
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Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
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Courcelle’s theorem and extension to PQE

MSO query

Treelike data

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q
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Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014
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Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

38/42



Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

38/42



Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

38/42



Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)
38/42



Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·


X1
...

Xk


• Show invertibility of this matrix to recover the Xi from the Ni
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Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates
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