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Provenance management

• Common task on databases: query evaluation

• What if we want more than the result?
• Where does the result come from?
• Why was this result obtained?
• How was the result produced?
• What is the probability of the result?
• How many times was the result obtained?
• How would the result change if some data was missing?
• What is the minimal security clearance I need to see the result?
• How can a result be explained to the user?

• Provenance management: extend query evaluation with
provenance information to answer these questions

• Provenance information often representable as a circuit
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Goal of this talk

• Refresher on relational databases, and provenance for them
(standard in database theory)

• Primer on query evaluation (MSO/automata) on words and trees
(standard in database theory and logics)

• Present a notion of provenance for queries on trees
(less standard, but nice connections to knowledge compilation)

• Present applications to probabilities and enumeration
for relational data and trees

My co-authors for results in this talk (and some of the slides):
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Outline

Query Evaluation on Relational Databases

Boolean Provenance on Relational Databases

Semiring Provenance on Relational Databases

Query Evaluation on Trees and Words

Boolean Provenance on Trees and Words

Applications to Probability Computation

Applications to Enumeration

Conclusion
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Relational DBMSs

• Relational model: express data as relations (i.e., tables)
• A standard query language: SQL
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Example

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1
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Relations and databases

Formally:

• A relation schema R is a finite sequence of attribute names
• A database schema D maps each relation name to a relation

schema
• A tuple over relation schema R maps each attribute name of R

to a data value
• A relation instance over R is a finite set of tuples over R
• A database over database schema D maps each relation name R

of D to a relation instance over the relation schema of R in D
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The positive relational algebra

• Algebraic language to express queries
• Each operator applies to 0, 1, or 2 subexpressions and produces

a relation instance
• Main operators:

• R: relation name
• ρa→b: rename attribute a to b
• Πa1,...,an : project on attributes a1, . . . ,an
• σϕ: select all tuples satisfying condition ϕ
• ∪: union of two relations (with same relation schema)
• ×: cross product of two relations
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Relation name

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Expression: Guest

Result:
id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr
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Renaming

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Expression: ρid→guest(Guest)

Result:
guest name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr
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Projection

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Expression: Πemail,id(Guest)

Result:
email id

john.smith@gmail.com 1
alice@black.name 2
john.smith@ens.fr 3
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Selection

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Expression: σarrival>2019-01-12∧guest=2(Reservation)

Result:
id guest room arrival nights

4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

The formula used in the selection can be any Boolean combination of
comparisons of attributes to attributes or constants
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Cross product

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Expression: Πid(Guest)× Πname(Guest)

Result:
id name

1 Alice Black
2 Alice Black
3 Alice Black
1 John Smith
2 John Smith
3 John Smith
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Natural join

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Not a basic operator, but a useful shorthand!

Expression: Reservation ./ ρid→guest(Guest)

Result:

id guest room arrival nights name email

1 1 504 2019-01-01 5 John Smith john.smith@gmail.com
2 2 107 2019-01-10 3 Alice Black alice@black.name
3 3 302 2019-01-15 6 John Smith john.smith@ens.fr
4 2 504 2019-01-15 2 Alice Black alice@black.name
5 2 107 2019-01-30 1 Alice Black alice@black.name

Equivalent to:
Πid,guest,room,arrival,nights,name,email(σtemp=guest(ρid→temp(Guest) × Reservation)). 13/71



Union

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2019-01-01 5
2 2 107 2019-01-10 3
3 3 302 2019-01-15 6
4 2 504 2019-01-15 2
5 2 107 2019-01-30 1

Expression: Πroom(σguest=2(Reservation)) ∪
Πroom(σarrival=2019-01-15(Reservation))

Result:
room

107
302
504
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Relational algebra vs relational calculus

Sometimes we write tuples as ground facts rather than tables
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Guest(1, John Smith, john.smith@gmail.com),
Guest(2, Alice Black, alice@black.name),
Guest(3, John Smith, john.smith@ens.fr)

Sometimes we write queries in relational calculus rather than algebra

Πid(Guest)× Πname(Guest)

Q(x, y′) : ∃y z x′ z′ Guest(x, y, z) ∧ Guest(x′, y′, z′)

→ Relational algebra and calculus have the same expressive power!
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Data model

• Relational data model: data decomposed into relations, with
labeled attributes. . .

• . . . with an extra provenance annotation for each tuple (think of
it as a Boolean variable)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret
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Boolean valuations

• Database D with n tuples
• X = {x1, x2, . . . , xn} the Boolean variables annotating the tuples
• Valuation over X : function ν : X → {⊥,>}
• Possible world ν(D): the subset of D where we keep precisely the

tuples whose annotation evaluates to >
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Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

ν : x1 x2 x3 x4 x5 x6 x7

> > > > > > >
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Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

ν : x1 x2 x3 x4 x5 x6 x7

> ⊥ > ⊥ > ⊥ >
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Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D...

whose tuples are annotated with X = x1, . . . , xn
• The result is a relation instance R... where each tuple is

annotated with a Boolean function on X
• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!

20/71



Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D... whose tuples are annotated with X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν
of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!

20/71



Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D... whose tuples are annotated with X = x1, . . . , xn

• The result is a relation instance R...

where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν
of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!

20/71



Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D... whose tuples are annotated with X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν
of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!

20/71



Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D... whose tuples are annotated with X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν
of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!

20/71



Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D... whose tuples are annotated with X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν
of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!

20/71



Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query Q
on a database D... whose tuples are annotated with X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν
of X , the annotation of t evaluates to true on ν i� t ∈ Q(ν(D))

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this provenance while evaluating the query!
20/71



Selection, renaming

Provenance annotations of selected tuples are unchanged

Example (ρname→n(σcity=“New York”(R)))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

n position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2
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Projection

Take the OR of provenance annotations of identical, merged tuples

Example (πcity(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7
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Union

Take the OR of provenance annotations of identical, merged tuples

Example
πcity(σends-with(position,“agent”)(R)) ∪ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ∨ x5

Berlin x4 ∨ x7
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Cross product

Take the AND of provenance annotations of combined tuples

Example
πcity(σends-with(position,“agent”)(R)) on πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ∧ x5

Berlin x4 ∧ x7
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How is provenance actually represented?

Provenance annotations are Boolean functions

• The simplest representation is Boolean formulas
• Formalism used in most of the provenance literature

Example
Is there a city with two di�erent agents?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

Theorem (PTIME overhead)
For any fixed positive relational algebra expression, given an input
database, we can compute in PTIME the provenance annotation of
every tuple in the result
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Other representation: Provenance circuits
[Deutch, Milo, Roy, and Tannen 2014]

• Use Boolean circuits to represent provenance
• Every time an operation reuses a previously computed result, link

to the previously created circuit gate
• Never larger than provenance formulas
• Sometimes more concise: provenance circuits can be...

• More concise by a log log factor than provenance formulas for
positive relational algebra [Amarilli, Bourhis, and Senellart 2016]

• More concise by a log factor than monotone provenance formulas
for positive relational algebra

• Super-polynomially more concise for more expressive query
languages [Deutch, Milo, Roy, and Tannen 2014]
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Example provenance circuit
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What can we do with Boolean provenance?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

• The provenance describes, for each result tuple, the subsets of
the input database for which it appears in the query result

• SAT: test if the tuple can be an answer when we delete some
input tuples (trivial here)

• #SAT: number of sub-databases where the tuple is a result
→ Useful for probabilistic reasoning (see later)

• Enumerating models: enumerating sub-databases where the
tuple is a result
→ Useful to enumerate query results (see later)
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Commutative semiring (K, 0, 1,⊕,⊗)

• Set K with distinguished elements 0, 1

• ⊕ associative, commutative operator, with identity 0K :
• a⊕ (b⊕ c) = (a⊕ b)⊕ c
• a⊕ b = b⊕ a
• a⊕ 0 = 0⊕ a = a

• ⊗ associative, commutative operator, with identity 1K :
• a⊗ (b⊗ c) = (a⊗ b)⊗ c
• a⊗ b = b⊗ a
• a⊗ 1 = 1⊗ a = a

• ⊗ distributes over ⊕:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

• 0 is annihilating for ⊗:

a⊗ 0 = 0⊗ a = 0
30/71



Example semirings

• (N,0, 1,+,×): counting semiring
• ({⊥,>},⊥,>,∨,∧): Boolean semiring
• ({unclassified, restricted, confidential, secret, top secret},

top secret,unclassified,min,max): security semiring
• (N ∪ {∞},∞,0,min,+): tropical semiring
• ({Boolean functions over X},⊥,>,∨,∧): semiring of Boolean

functions over X
• (N[X ],0, 1,+,×): semiring of integer-valued polynomials with

variables in X (also called How-semiring or universal semiring)
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Semiring provenance [Green, Karvounarakis, and Tannen 2007]

• We fix a semiring (K,0,1,⊕,⊗)

• We assume provenance annotations are in K
• We consider a query Q from the positive relational algebra

(selection, projection, renaming, product, union)
• We define a semantics for the provenance of a tuple t ∈ Q(D)

inductively on the structure of Q just like before
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Selection, renaming

Provenance annotations of selected tuples are unchanged

Example (ρname→n(σcity=“New York”(R)))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

n position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2
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Projection

Provenance annotations of identical, merged, tuples are ⊕-ed

Example (πcity(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ⊕ x2

Paris x3 ⊕ x5 ⊕ x6

Berlin x4 ⊕ x7
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Union

Provenance annotations of identical, merged, tuples are ⊕-ed

Example
πcity(σends-with(position,“agent”)(R)) ∪ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ⊕ x5

Berlin x4 ⊕ x7
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Cross product

Provenance annotations of combined tuples are ⊗-ed

Example
πcity(σends-with(position,“agent”)(R)) on πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ⊗ x5

Berlin x4 ⊗ x7
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What can we do with semiring provenance?

counting semiring: count the number of times a tuple can be
derived, multiset semantics

Boolean semiring: determines if a tuple exists when a subdatabase
is selected

security semiring: determines the minimum clearance level required
to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple (think
shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined
integer polynomials: N[X], universal provenance, see further
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Example of security provenance

πcity(σname<name2(πname,city(R) on ρname→name2(πname,city(R))))

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

New York restricted
Paris confidential
Berlin secret

38/71



Properties [Green, Karvounarakis, and Tannen 2007]

• Semiring provenance still has PTIME data overhead

• Semiring homomorphisms commute with provenance
computation: if K hom−−→ K′, then one can compute the provenance
in K, apply the homomorphism, and obtain the same result as
when computing provenance in K′

• The integer polynomial semiring N[X] is universal: there is a
unique homomorphism to any other commutative semiring that
respects a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two di�erent provenance
annotations on the same database, in some semirings
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Extensions

• Beyond positive relational algebra...
• Allow relational di�erence: need a semiring with monus, but

complicated semantics [Amer 1984; Geerts and Poggi 2010;
Amsterdamer, Deutch, and Tannen 2011a; Amarilli and Monet 2016]

• Allow aggregate queries: extend semirings to semimodules
[Amsterdamer, Deutch, and Tannen 2011b; Fink, Han, and Olteanu
2012]

• Allow recursive queries: representation as formal power series or
cycluits [Amarilli, Bourhis, Monet, and Senellart 2017]

• Beyond semiring provenance...
• Where-provenance: capture which output value comes from which

input value [Buneman, Khanna, and Tan 2001]
• Why-not provenance: capture why an output tuple was not

produced, usually as a function of the query [Chapman and
Jagadish 2009]
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Motivation and definition

• We now move to a di�erent setting for query evaluation
• We will later define provenance for this setting

Assume our data is a sequence of events:

• Formal model: a word where each node has a color
• We could represent this in the relational setting:

• One 2-ary table for the successor relation
• One 1-ary table to list the nodes for each color

• Some natural queries cannot be expressed in relational algebra!
→ “Is there a blue node after each pink node?”
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Query evaluation on words

Database: a word w where nodes have a
color from an alphabet

Query Q: a sentence (YES/NO question)
in monadic second-order logic (MSO)
(to be defined)

“Is there a blue node
after each pink node?”

i Result: YES/NO indicating if the word w satisfies the query Q

→ Note that we have restricted to Boolean queries for simplicity
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Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y

means “There is a blue node after each pink node”

44/71



Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y

means “There is a blue node after each pink node”

44/71



Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y

means “There is a blue node after each pink node”

44/71



Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y

means “There is a blue node after each pink node”
44/71



Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:

⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata and regular expressions have the same
expressive power on words
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Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

46/71



Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

46/71



Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

46/71



Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright 1968])
MSO and tree automata have the same expressive power on trees
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Summary: Queries on Trees and Words

• We study data that has the shape of a word or tree
→ e.g., sequences of events, XML documents, etc.

• Some queries cannot be expressed in relational algebra
→ e.g., “is there a blue node after each pink node?”

• We restrict to Boolean queries (YES/NO question)
• The queries can be specified:

• In a logical language (MSO)
• On words, as a regular expression
→ As an automaton
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Motivation and definition

• Goal: notion of provenance for queries on trees/words
expressed as automata

• We show how to define Boolean provenance in this context
and how to compute it

Remarks:

→ We work with Boolean queries (YES/NO) so the provenance will
just describe when we get the answer YES

→ We restrict to Boolean provenance – but generalizations possible
[Amarilli, Bourhis, and Senellart 2015a]
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Defining provenance: Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”
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Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Boolean query Q, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) i� ν(T) satisfies Q
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Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧

∧
¬

53/71



Provenance circuits on trees [Amarilli, Bourhis, and Senellart 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both

a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

53/71



Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is deterministic
• Of width bounded by the number of states of the automaton

[Capelli and Mengel 2019]

→ Remark: for words, we obtain diagrams (OBDDs, etc.)
→ Ongoing work: investigating these connections in more detail
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Probabilistic databases [Green and Tannen 2006; Suciu, Olteanu, Ré,
and Koch 2011]

• Tuple-independent database D: each tuple t in D is annotated
with independent probability Pr(t) of existing

name position city classification prob

John Director New York unclassified 0.5
Paul Janitor New York restricted 0.7
Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
Nancy HR director Paris restricted 0.8
Susan Analyst Berlin secret 0.2

→ Probability of a possible world D′ ⊆ D:

Pr(D′) =
∏
t∈D′ Pr(t)×

∏
t∈D′\D(1− Pr(t′))
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Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
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Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database?

• Probability of a tuple for a query Q over D:

Pr(t ∈ Q(D)) =
∑

D′⊆D
t∈Q(D′)

Pr(D′)

• Intuitively: the probability of answer tuple t is the probability of
drawing a possible world D′ ⊆ D where t is an answer

Probabilistic query evaluation (PQE) problem for a query Q: given a
tuple-independent database, compute the probability of each answer

→ Idea: we can do this using Boolean provenance:
the probability of t is the probability of its annotation
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Example of PQE

name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7
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name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov prob

New York x1 ∨ x2 1− (1− 0.5)× (1− 0.7) = 0.85
Paris x3 ∨ x5 ∨ x6 1.00
Berlin x4 ∨ x7 1− (1− 0.2)× (1− 0.2) = 0.36

58/71



Complexity of PQE

• In general, PQE is intractable (#P-hard)

• For select-project-join queries without self-joins:
• Either the query is hierarchical and the Boolean provenance is

always a read-once formula
• Or the query is unsafe (#P-hard) [Dalvi and Suciu 2007; Olteanu

and Huang 2008]
• For positive relational algebra:

• Dichotomy between tractable (safe) and unsafe queries
[Dalvi and Suciu 2012]

• Open problem: are queries safe because of their provenance?
→ Intensional vs extensional conjecture
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More about the intensional vs extensional conjecture

Open question: do all safe relational algebra queries admit
provenance representations in a tractable circuit formalism?

• For OBDDs: there is a characterization of the queries with
polynomial-sized OBDDs [Jha and Suciu 2013]

• For DLDDs (e.g., dec-DNNFs), some safe queries have no tractable
provenance representation in this class [Beame, Li, Roy, and Suciu
2017]

• For d-SDNNF, some safe queries have no tractable provenance
representation in this class [Bova and Szeider 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed di�erent :)

• Crux of the problem: capture arithmetic operations on
probabilities with a d-D circuit, specifically inclusion-exclusion

• Latest results: [Monet 2020] or chat with me at the co�ee break :)
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representation in this class [Bova and Szeider 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed di�erent :)

• Crux of the problem: capture arithmetic operations on
probabilities with a d-D circuit, specifically inclusion-exclusion

• Latest results: [Monet 2020] or chat with me at the co�ee break :)
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Probabilistic query evaluation on trees

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

• Consider a query Q on a probabilistic tree (each node has an
independent probability of keeping its color)

• For queries given as unambiguous tree automata, we can
construct a d-SDNNF provenance circuit
→ PQE is tractable for tree automata on trees

→ Extends to bounded treewidth databases – and essentially only
to them [Amarilli, Bourhis, and Senellart 2016]

→ Relates to probability computation on bounded-treewidth
graphical models [Amarilli, Capelli, Monet, and Senellart 2019]
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Outline

Query Evaluation on Relational Databases

Boolean Provenance on Relational Databases

Semiring Provenance on Relational Databases

Query Evaluation on Trees and Words

Boolean Provenance on Trees and Words

Applications to Probability Computation

Applications to Enumeration

Conclusion
62/71



Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory
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Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c
a’ b’ c

Results

State
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Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c

a’ b’ c

Results
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Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
D : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to D
for each element v (linear)

X(a), X(a′), X(b), X(c)

Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute the provenance C′ of Q′

on D plus assignment facts
(X(a)∧R(a,b)∨X(a′)∧R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)
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Enumeration via provenance and knowledge compilation

• We have a provenance circuit representing the query answers
∧

∨

X(a) X(a′)

Y(b)

• So to enumerate query answers we can:
• Compute this provenance circuit
• Enumerate its satisfying assignments

→ We want linear preprocessing and constant delay
so we had to do our own enumeration algorithm for circuits:

Theorem ([Amarilli, Bourhis, Jachiet, and Mengel 2017])
Given a d-SDNNF circuit, we can preprocess it in linear time
and then enumerate its satisfying assignments with constant delay
(if the assignments have constant size)
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Enumeration via knowledge compilation
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Results and extensions

• Remember that, for tree automata on trees, we can build
d-SDNNF provenance representations in linear time

• With our enumeration result, this shows that we can enumerate
query results with linear preprocessing and constant-delay
→ Was already known in database theory [Bagan 2006; Kazana and

Segoufin 2013]
• When the data changes, we can update the provenance circuit

e�ciently [Amarilli, Bourhis, Mengel, and Niewerth 2019]
→ Refines existing database theory results

• We can make the enumeration tractable in the input query
→ Will be presented by Matthias tomorrow (on words)

Ongoing work: provenance-based enumeration for relational algebra
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Provenance in practice

• How can we compute provenance in practice?
• ProvSQL module for PostgreSQL, by Pierre Senellart et al.
• Keeps track of provenance as a circuit
• https://github.com/PierreSenellart/provsql

• How can we do probabilistic query evaluation via provenance?
• ProvSQL is interfaced with c2d, d4, and dsharp

• How can we do enumeration via provenance?
• See Matthias’s talk tomorrow
• Prototype: https://github.com/PoDMR/enum-spanner-rs

• Remark: missing studies of provenance notions used in the real
world, e.g., “data lineage” used by Pachyderm
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Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?

• Using provenance for computational tasks
• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations
• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!
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(2019). “Connecting Knowledge Compilation Classes and Width
Parameters”. In: ToCS 2019.
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