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Open-world query answering (QA)

Open-world query answering: — query entailment or containment
o We are given:
g Relational instance / (ground facts) — A-Box
A Logical constraints 3 — T-Box

Q) Boolean conjunctive query g
o We ask:

o Consider all possible completions J 2 /

e Restrict to those that satisfy the constraints X
— Is g certain among them?
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Rich description logics (DLs) Frontier-guarded existential rules

Emp C CEO U (IMgr~.Emp) Vpwv Acpt(p, w, v) — 3f Trip(p, f, v)
Arity-two only 7 Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)

Functi lit t
unctionality asserts O/OA n/a

Funct(Mgr™)

— QA is decidable for either language
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@ QA is decidable for frontier-guarded existential rules
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Our problem

Can we have the best of both worlds?
o QA is decidable for rich DLs (i.e., expressible in GC?,
guarded two-variable first-order logic with counting)
@ QA is decidable for frontier-guarded existential rules

— Is QA decidable for rich DLs 4+ some classes of rules?
We show:

@ QA is undecidable for rich DLs and frontier-guarded rules
@ QA with rich DLs is decidable for some new rule classes

@ Functional dependencies can be added under some conditions

Conclusion
oo
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Undecidability of frontier-guarded plus DLs

QA is undecidable for rich DLs and frontier-guarded rules I

Problem:

@ DLs can express Funct (<> functional dependencies, FDs)
e Frontier-guarded can express inclusion dependencies (IDs)
e Implication of IDs and FDs is undecidable [Mitchell, 1983]
e Implication reduces to QA [Cali et al., 2003]
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Undecidability of frontier-guarded plus DLs

QA is undecidable for rich DLs and frontier-guarded rules l

Problem:

@ DLs can express Funct (<> functional dependencies, FDs)
e Frontier-guarded can express inclusion dependencies (IDs)
e Implication of IDs and FDs is undecidable [Mitchell, 1983]
e Implication reduces to QA [Cali et al., 2003]

— Restrict to frontier-one rules: Vxy ¢(x,y) — 3z ¢(x,z)
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@ Restrict to frontier-one rules: Vxy ¢(x,y) — 3z (x, z)
@ QA for frontier-one IDs plus FDs is decidable (separability)
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Adding FDs Conclusion

ndecidability of frontier-one plus DLs

@ Restrict to frontier-one rules: Vxy ¢(x,y) — 3z ¥(x, z)
@ QA for frontier-one IDs plus FDs is decidable (separability)

However:

QA is undecidable for rich DLs and frontier-one rules l

Problem:

@ Rule heads and bodies may contain cycles
@ We have Funct assertions

— We can build a grid and encode tiling problems
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Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

@ horizontal and vertical allowed pairs:
m @ =

T = & [ma) (] (=& (=

The tiling problem is:

@ input: initial configuration: ‘ [ ‘ = ‘ [ | ‘ = ‘
@ output: is there an infinite tiling?

HEOERODOMN
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— Undecidable for some sets of colors and configurations

Conclusion
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Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R R R
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Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R R R

Initial instance: Cg

Cm

Ca G

DL constraints for the pairs, e.g., (@M IR.CgC L
Disjunction to color tiles: TC (gl CglL Cg
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Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R R R

Initial instance: Cg

Cm

Ca G

DL constraints for the pairs, e.g., (@M IR.CgC L
Disjunction to color tiles: TC (gl CglL Cg

e Frontier-one rule: Vx T(x) = Jyzw lD lD

— There is an extension of the instance iff there is a tiling
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Decidability of non-looping frontier-one and DLs

X y z
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Idea: prohibit cycles in existential rules: Rixy) Tzx) Sy2)

® R(x,y) S(y,z) T(z,x) is a cycle

e R(z,x,y) S(x,y,w) is also a cycle Z\ /)></\ /W

R(z,xy)  S(xy,w)
Formally:

@ Berge cycle: cycle in the atom—variable incidence graph
e Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)

@ Non-looping frontier-one: non-looping body and head

QA is decidable for non-looping frontier-one rules + rich DLs l
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e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:
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o Exemple: ¢(x) = Jyz T(x,y) A R(x, x, 2) A A(z2)
— yzf T(x,y) A Ri(f, x) A Ra(f, x) A Ra(f, z) A\ A(2)
- (ay T(x, y)) A (Hle(f,x) A Rs(f,x) A (32 Rs(f,2) A A(z)))

— Reduces to QA for GC?: decidable [Pratt-Hartmann, 2009]
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Decidability

C onclusion
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DeC|dab|I|ty of head non-looping frontler—one and DLs

Head-non-looping frontier-one rules: no cycles in head

QA is decidable for head-non-looping frontier-one rules + rich DLs l

Basic idea:

o If there is a counterexample model to QA, we can unravel it

— It is still a counterexample
— It has no cycles (except in the instance part)

— Looping rule bodies can only match on the instance part
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Ax=aAX =aANy=bAy =bAhz=cAhZ=c

— Keep the resulting fully non-looping rules

— QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query
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Adding functional dependencies

We have shown:

QA is decidable for head-non-looping frontier-one rules + rich DLs I

@ We have functional dependencies Funct(R) on binary relations

@ Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session| determines Talk|[title]
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Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

QA for FDs and linear frontier-one rules is undecidable. l

Proof ideas:

@ Reduce from implication of unary FDs and frontier-2 IDs

@ Leverage variable reuse and FDs to export two variables:
to encode the ID R[1,2] C R[3,4] with the FD R[1] — R]2],
write R(x,y,z,w) = R(x,y,x,y): we must have y =y

— We need an additional restriction for decidability
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Decidability for non-conflicting FDs

We know from [Cali et al., 2012]:

QA decidable for single-head frontier-guarded + non-conflicting FDs \

We have shown:

QA is decidable for head-non-looping frontier-one rules + rich DLs \

We show:

QA is decidable for:
@ Rich DL constraints (with Funct)

e Single-head (hence, head-non-looping) frontier-one rules

e Non-conflicting FDs (on higher-arity predicates)
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Decidability for non-conflicting FDs: proof ideas

@ Non-conflicting: the FDs are not violated in the chase
@ Unraveling is a bit like chasing

— Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:
e if S C S, for § an FD determiner
— ignore this fact (it's not required by the constraints)

o if 9 = Sfor § an FD determiner

— copy only one such fact, distinguish its other elements
(no equality between them is required by the constraints)
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Summary of results
Combining Existential Rules and Description Logics

@ Open-world query answering (QA) under:

e Rich DL constraints
o Existential rules

@ For which rule classes is QA decidable with rich DLs?
— Must restrict to frontier-one rules
— Must prohibit cycles in rule heads
— QA is decidable for head-non-looping frontier-one + rich DLs
— Can add non-conflicting FDs

@ What about QA on finite models?

@ Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)
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@ Adding transitive and order relations to existential rules?

— QA for frontier-guarded is decidable with transitive relations
— Also for order relations (with atom-covered requirement)

@ QA on finite models?

— Frontier-one IDs and FDs are finitely controllable up to closure

@ Also: probabilistic databases, partial orders, crowdsourcing...

Thanks for your attention!

'With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15
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