Combining Existential Rules and Description Logics

Antoine Amarilli2, Michael Benedikt?

1Télécom ParisTech, Paris, France

2University of Oxford, Oxford, United Kingdom

October 29, 2015

TELECOM

ParisTech

1/24

Problem statement
®00

Open-world query answering (QA)

Open-world query answering:
o We are given:
g Relational instance / (ground facts)
A Logical constraints X
Q) Boolean conjunctive query g

2/24

Problem statement
®00

Open-world query answering (QA)

Open-world query answering:
o We are given:
g Relational instance / (ground facts)
A Logical constraints X
Q) Boolean conjunctive query g
o We ask:

o Consider all possible completions J 2 /

e Restrict to those that satisfy the constraints X
— Is g certain among them?

2/24

Problem statement
®00

Open-world query answering (QA)

Open-world query answering: — query entailment or containment
o We are given:
g Relational instance / (ground facts) — A-Box
A Logical constraints 3 — T-Box

Q) Boolean conjunctive query g
o We ask:

o Consider all possible completions J 2 /

e Restrict to those that satisfy the constraints X
— Is g certain among them?

2/24

Problem statement Undecidability Decidability Adding FDs Conclusion

oeo ccoo 0O0OOOO 00000 [e]e]

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion
00000 00000 0o

oeo ccoo OOOOO 00000

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp C CEO U (IMgr~.Emp) Vpwv Acpt(p, w, v) — 3f Trip(p, f, v)

3/24

Problem statement Undecidability Decidability Adding FDs
ceo 0000 00000 00000

Conclusion
00000 00000 oo

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp C CEO U (IMgr~.Emp) Vpwv Acpt(p, w, v) — 3f Trip(p, f, v)

Arity-two only 7 Arbitrary arity

3/24

Problem statement
oeo

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp C CEO U (3Mgr™.Emp)

Arity-two only 7
Rich (disjunction, etc.)

Vpwv Acpt(p, w, v) — 3f Trip(p, f, v)

Arbitrary arity

Poor (conjunction and implication)

3/24

Problem statement
oeo

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp C CEO U (IMgr~.Emp) Vpwv Acpt(p, w, v) — 3f Trip(p, f, v)
Arity-two only 7 Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)

Functi lit t
unctionality asserts O/OA n/a

Funct(Mgr™)

3/24

Problem statement
oeo

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp C CEO U (IMgr~.Emp) Vpwv Acpt(p, w, v) — 3f Trip(p, f, v)
Arity-two only 7 Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)

Functi lit t
unctionality asserts O/OA n/a

Funct(Mgr™)

— QA is decidable for either language

3/24

Problem statement
ocoe

Our problem

Can we have the best of both worlds?

o QA is decidable for rich DLs (i.e., expressible in GC?,
guarded two-variable first-order logic with counting)

@ QA is decidable for frontier-guarded existential rules

4/24

Problem statement
ocoe

Our problem

Can we have the best of both worlds?
o QA is decidable for rich DLs (i.e., expressible in GC?,
guarded two-variable first-order logic with counting)
@ QA is decidable for frontier-guarded existential rules

— Is QA decidable for rich DLs 4+ some classes of rules?

4/24

Problem statement
ocoe

Our problem

Can we have the best of both worlds?
o QA is decidable for rich DLs (i.e., expressible in GC?,
guarded two-variable first-order logic with counting)
@ QA is decidable for frontier-guarded existential rules

— Is QA decidable for rich DLs 4+ some classes of rules?

We show:

4/24

Problem statement
ocoe

Our problem

Can we have the best of both worlds?
o QA is decidable for rich DLs (i.e., expressible in GC?,
guarded two-variable first-order logic with counting)
@ QA is decidable for frontier-guarded existential rules

— Is QA decidable for rich DLs 4+ some classes of rules?
We show:

@ QA is undecidable for rich DLs and frontier-guarded rules
@ QA with rich DLs is decidable for some new rule classes

@ Functional dependencies can be added under some conditions

Conclusion
oo

4/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 00000 oo

Table of contents

© Undecidability

5/24

I—’mb\em statement Undecidability Decidability Adding FDs Conclusion
@000 00000 00000 [o]e]

UndeC|dab|I|ty of frontier-guarded plus DLs

QA is undecidable for rich DLs and frontier-guarded rules I

6/24

Pri

oblem statement Undecidability Decidability Adding FDs Conclusion
00 00000 00000 oo

@000 ooooo 000O0C

Undecidability of frontier-guarded plus DLs

QA is undecidable for rich DLs and frontier-guarded rules I

Problem:

@ DLs can express Funct (<> functional dependencies, FDs)
e Frontier-guarded can express inclusion dependencies (IDs)
e Implication of IDs and FDs is undecidable [Mitchell, 1983]
e Implication reduces to QA [Cali et al., 2003]

6/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 00000 00000 0o

@000 ooooo 000O0C

Undecidability of frontier-guarded plus DLs

QA is undecidable for rich DLs and frontier-guarded rules l

Problem:

@ DLs can express Funct (<> functional dependencies, FDs)
e Frontier-guarded can express inclusion dependencies (IDs)
e Implication of IDs and FDs is undecidable [Mitchell, 1983]
e Implication reduces to QA [Cali et al., 2003]

— Restrict to frontier-one rules: Vxy ¢(x,y) — 3z ¢(x,z)

6/24

Undecidability
0®00

Undecidability of frontier-one plus DLs

@ Restrict to frontier-one rules: Vxy ¢(x,y) — 3z (x, z)
@ QA for frontier-one IDs plus FDs is decidable (separability)

7/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 00000 0o

Undecidability of frontier-one plus DLs

@ Restrict to frontier-one rules: Vxy ¢(x,y) — 3z ¥(x, z)
@ QA for frontier-one IDs plus FDs is decidable (separability)

However:

QA is undecidable for rich DLs and frontier-one rules l

7/24

Problem statement Undecidability
0®00

Adding FDs Conclusion

ndecidability of frontier-one plus DLs

@ Restrict to frontier-one rules: Vxy ¢(x,y) — 3z ¥(x, z)
@ QA for frontier-one IDs plus FDs is decidable (separability)

However:

QA is undecidable for rich DLs and frontier-one rules l

Problem:

@ Rule heads and bodies may contain cycles
@ We have Funct assertions

— We can build a grid and encode tiling problems

7/24

Problem statement Undecidability
coeo

Conclusion
oo

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

000 lele] lo} 00000 00000 [e]e]

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

@ horizontal and vertical allowed pairs:

[:ii:: :ii::‘ B O Om B O O m
a o ("8 [s(s] [m[a] [&[s

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

000 lele] lo} 00000 00000 [e]e]

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

@ horizontal and vertical allowed pairs:
m @ =

T = & [ma) (] (=& (=

The tiling problem is:

@ input: initial configuration: ‘ [‘ = ‘ [‘ = ‘

8/24

Problem statement Undecidability Decidability Adding FDs
000 feleY 1) 00000 00000

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

@ horizontal and vertical allowed pairs:
m @ =

T = & [ma) (] (=& (=

The tiling problem is:

@ input: initial configuration: ‘ [‘ = ‘ [| ‘ = ‘
@ output: is there an infinite tiling?
HEOmER3

Conclusion

[e]e]

8/24

Problem statement Undecidability Decidability Adding FDs
000 feleY 1) 00000 00000

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

@ horizontal and vertical allowed pairs:
m @ =

T = & [ma) (] (=& (=

The tiling problem is:

@ input: initial configuration: ‘ [‘ = ‘ [| ‘ = ‘
@ output: is there an infinite tiling?

HEOERODOMN
(RN RESEE N
EOEREODOM®N

Conclusion
oo

8/24

Problem statement Undecidability Decidability Adding FDs
000 feleY 1) 00000 00000

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:
o finite set of colors: W, @, W

@ horizontal and vertical allowed pairs:
m @ =

T = & [ma) (] (=& (=

The tiling problem is:

@ input: initial configuration: ‘ [‘ = ‘ [| ‘ = ‘
@ output: is there an infinite tiling?

HEOERODOMN
(RN RESEE N
EOEREODOM®N

— Undecidable for some sets of colors and configurations

Conclusion

[e]e]

8/24

Undecidability
oooe

Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

9/24

Undecidability
oooe

Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R

@ Initial instance: Cg

9/24

Undecidability
oooe

Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R R R

Initial instance: Cg Cm Cm Cm

DL constraints for the pairs, e.g., (@M IR.CgC L
Disjunction to color tiles: TC (gl CglL Cg

9/24

Undecidability
oooe

Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R R R

Initial instance: Cg

Cm

Ca G

DL constraints for the pairs, e.g., (@M IR.CgC L
Disjunction to color tiles: TC (gl CglL Cg

e Frontier-one rule: Vx T(x) = Jyzw lD lD

9/24

Undecidability
oooe

Undecidability of frontier-one plus DLs: proof, cont'd

@ Functional relations D for down and R for right
@ Unary predicate T for tiles and (7 for each color

R R R

Initial instance: Cg

Cm

Ca G

DL constraints for the pairs, e.g., (@M IR.CgC L
Disjunction to color tiles: TC (gl CglL Cg

e Frontier-one rule: Vx T(x) = Jyzw lD lD

— There is an extension of the instance iff there is a tiling

9/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 00000 oo

Table of contents

© Decidability

10/24

Decidability
©0000

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
e R(x,y) S(y,z) T(z x) is a cycle
® R(z,x,y) S(x,y,w) is also a cycle

11/24

Decidability
©0000

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
e R(x,y) S(y,z) T(z x) is a cycle
® R(z,x,y) S(x,y,w) is also a cycle

Formally:

@ Berge cycle: cycle in the atom—variable incidence graph

11/24

Decidability
©0000

Decidability of non-looping frontier-one and DLs

X y z

\ T >

Idea: prohibit cycles in existential rules: Rixy) Tzx) Sy2)

e R(x,y) S(y,z) T(z x) is a cycle
® R(z,x,y) S(x,y,w) is also a cycle

Formally:

@ Berge cycle: cycle in the atom—variable incidence graph

11/24

Decidability
©0000

Decidability of non-looping frontier-one and DLs

X y z

\ T >

Idea: prohibit cycles in existential rules: Rixy) Tzx) Sy2)

e R(x,y) S(y,z) T(z x) is a cycle

e R(z,x,y) S(x,y,w) is also a cycle Z\ /)></\ /W

R(z,xy) S(xy,w)
Formally:

@ Berge cycle: cycle in the atom—variable incidence graph

11/24

Decidability
©0000

Decidability of non-looping frontier-one and DLs

X y z

\ T >

Idea: prohibit cycles in existential rules: Rixy) Tzx) Sy2)

e R(x,y) S(y,z) T(z x) is a cycle

e R(z,x,y) S(x,y,w) is also a cycle Z\ /)></\ /W

R(z,xy) S(xy,w)
Formally:

@ Berge cycle: cycle in the atom—variable incidence graph
e Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)

@ Non-looping frontier-one: non-looping body and head

11/24

Decidability
©0000

Decidability of non-looping frontier-one and DLs

X y z

\ T >

Idea: prohibit cycles in existential rules: Rixy) Tzx) Sy2)

® R(x,y) S(y,z) T(z,x) is a cycle

e R(z,x,y) S(x,y,w) is also a cycle Z\ /)></\ /W

R(z,xy) S(xy,w)
Formally:

@ Berge cycle: cycle in the atom—variable incidence graph
e Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)

@ Non-looping frontier-one: non-looping body and head

QA is decidable for non-looping frontier-one rules + rich DLs l

11/24

Problem statement Undecidability Decidability Adding FDs Conclusion

000 0000 ceococo = 00000 [e]e]

Decidability of non-looping frontier-one and DLs (proof

e Shred R(a, b, ¢) to Ry (f,a), Ra(f, b), Rs(f, ¢)
6o~

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof

e Shred R(a, b, ¢) to Ry (f,a), Ra(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & —>

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:

o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:

o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:

o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)

o Exemple: ¢(x) = Jyz T(x,y) A R(x, x,2) A A(2)

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:
o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)
o Exemple: ¢(x) = Jyz T(x,y) A R(x, x, 2) A A(z2)
— yzf T(x,y) A Ri(f, x) A Ra(f, x) A Ra(f, z) A\ A(2)

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:
o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)
o Exemple: ¢(x) = Jyz T(x,y) A R(x, x, 2) A A(z2)
— yzf T(x,y) A Ri(f, x) A Ra(f, x) A Ra(f, z) A\ A(2)
- (ﬂy T(XJ))

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:
o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)
o Exemple: ¢(x) = Jyz T(x,y) A R(x, x, 2) A A(z2)
— yzf T(x,y) A Ri(f, x) A Ra(f, x) A Ra(f, z) A\ A(2)
= (I Ten) A (BFRIER) A R(f%)

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:
o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)
o Exemple: ¢(x) = Jyz T(x,y) A R(x, x, 2) A A(z2)
— yzf T(x,y) A Ri(f, x) A Ra(f, x) A Ra(f, z) A\ A(2)
- (ay T(x, y)) A (Hle(f,x) A Rs(f,x) A (32 Rs(f,2) A A(z)))

12/24

Decidability
0®000

Decidability of non-looping frontier-one and DLs (proof)

e Shred R(a, b, c) to Ry(f,a), Ro(f, b), Rs(f, ¢)
o Axiomatize the R;, e.g., Vf 3= 1x Ry (f,x) & 3
— QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

@ Rewrite shredded non-looping frontier-one rules to GC?:
o Rewrite Vxy ¢(x,y) = 3z ¥(x,2) to Vx ¢'(x) = ¢'(x),
with ¢'(x) and ¢’(x) the shredding of Yy ¢(x,y) and 3z ¢ (x,y)
o Exemple: ¢(x) = Jyz T(x,y) A R(x, x, 2) A A(z2)
— yzf T(x,y) A Ri(f, x) A Ra(f, x) A Ra(f, z) A\ A(2)
- (ay T(x, y)) A (Hle(f,x) A Rs(f,x) A (32 Rs(f,2) A A(z)))

— Reduces to QA for GC?: decidable [Pratt-Hartmann, 2009]

12/24

Decidability
00®00

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

13/24

Pr b\Pm statement Umdarwhl)\lwt Decidability Adding FDs C onclusion
OO« [ele] lele] 00000 [o]e]

DeC|dab|I|ty of head non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

QA is decidable for head-non-looping frontier-one rules + rich DLs I

13/24

Pr b_m statement

Decidability

C onclusion
[ele] lele] DO

DeC|dab|I|ty of head non-looping frontler—one and DLs

Head-non-looping frontier-one rules: no cycles in head

QA is decidable for head-non-looping frontier-one rules + rich DLs l

Basic idea:

o If there is a counterexample model to QA, we can unravel it

— It is still a counterexample
— It has no cycles (except in the instance part)

— Looping rule bodies can only match on the instance part

13/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

/\

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

/\

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

/\

_ /\

b C

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

AN /\
AN -

€1 dy

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

AN /\
N NN

€1 dy €9

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

AN /\
N NN

€1 dy €9

/\

1 dsy

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

AN /\
N NN

€1 dy €9

/\

1 do €3

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

AN /\
Ay NN,

/\ /\

C1 dsy €3 by ds

14/24

Decidability
000®0

Head-non-looping frontier-one and DLs: unraveling

/\

A\
NN

€1 dy €9

14/24

Decidability
[elelelel]

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:

15/24

Decidability
[elelelel]

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
o Consider all possible self-homomorphisms of the body
— Ex.:: R(x,¥) AS(y,z) A T(z,x) gives R(x,y) A S(y, x) A T(x, x)

15/24

Decidability
[elelelel]

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
o Consider all possible self-homomorphisms of the body
— Ex: R(x,y) AS(y,z) A T(z,x) gives R(x,y) A S(y,x) A T(x,x)
@ Consider all possible mappings to the instance

— Ex.: R(x,¥) AS(y,2) A T(z,x) gives R(x,y) AS(Y,z) A T(Z,X)
Ax=aAX =aANy=bAy =bAhz=cAhZ=c

15/24

Decidability
[elelelel]

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
o Consider all possible self-homomorphisms of the body
— Ex.:: R(x,¥) AS(y,z) A T(z,x) gives R(x,y) A S(y, x) A T(x, x)
@ Consider all possible mappings to the instance
— Ex.: R(x,¥) AS(y,2) A T(z,x) gives R(x,y) AS(Y,z) A T(Z,X)
Ax=aAX =aANy=bAy =bAhz=cAhZ=c

— Keep the resulting fully non-looping rules

15/24

Decidability
[elelelel]

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
o Consider all possible self-homomorphisms of the body
— Ex.:: R(x,¥) AS(y,z) A T(z,x) gives R(x,y) A S(y, x) A T(x, x)
@ Consider all possible mappings to the instance
— Ex.: R(x,¥) AS(y,2) A T(z,x) gives R(x,y) AS(Y,z) A T(Z,X)
Ax=aAX =aANy=bAy =bAhz=cAhZ=c

— Keep the resulting fully non-looping rules

— QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query

15/24

Problem statement Undecidability Decidability Adding FDs Conclusion
ooo oooo 00000 00000 oo

Table of contents

@ Adding FDs

16/24

Problem statement
000

Adding FDs Conclusion
@®0000 [e]e]

Adding functional dependencies

We have shown:

QA is decidable for head-non-looping frontier-one rules + rich DLs I

17/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 ©0000 oo

Adding functional dependencies

We have shown:

QA is decidable for head-non-looping frontier-one rules + rich DLs I

@ We have functional dependencies Funct(R) on binary relations

@ Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session| determines Talk|[title]

17/24

Adding FDs
0®000

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

18/24

Problem statement Undecidability

Adding FDs Conclusion
O®000 [e]e]

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

QA for FDs and linear frontier-one rules is undecidable. I

18/24

Problem statement Undecidability Decidabilit Adding FDs Conclusion
00 0000 00000 0®000 oo

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

QA for FDs and linear frontier-one rules is undecidable. l

Proof ideas:

@ Reduce from implication of unary FDs and frontier-2 IDs

@ Leverage variable reuse and FDs to export two variables:
to encode the ID R[1,2] C R[3,4] with the FD R[1] — R]2],
write R(x,y,z,w) = R(x,y,x,y): we must have y =y

— We need an additional restriction for decidability

18/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable

o For each FD R[S'| — R][i] of ®:

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail
— if § = S and some variable occurs twice in S, fail

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:

o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail
— if § = S and some variable occurs twice in S, fail

Examples: for the FD R[1] — R[3]:

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail
— if § = S and some variable occurs twice in S, fail

Examples: for the FD R[1] — R[3]:
e T(x) = R(y,y,x) is...

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail
— if § = S and some variable occurs twice in S, fail

Examples: for the FD R[1] — R[3]:
e T(x) = R(y,y, x) is... non-conflicting

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail
— if § = S and some variable occurs twice in S, fail

Examples: for the FD R[1] — R[3]:
e T(x) = R(y,y, x) is... non-conflicting
o T(xy) = R(xy,2)is..

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable
e S:= positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail
— if § = S and some variable occurs twice in S, fail

Examples: for the FD R[1] — R[3]:
e T(x) = R(y,y, x) is... non-conflicting
o T(x,y) = R(x,y, z) is... conflicting (superset)

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if & ¢ S, fail B
— if § = S and some variable occurs twice in S, fail
Examples: for the FD R[1] — R[3]:

e T(x) = R(y,y, x) is... non-conflicting
e T(x,¥) = R(x,y,z) is... conflicting (superset)
e T(x) = R(x,y,2) is...

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
— if S ¢S, fail -
— if § = S and some variable occurs twice in S, fail
Examples: for the FD R[1] — R[3]:

e T(x) = R(y,y, x) is... non-conflicting
o T(x,y) = R(x,y, z) is... conflicting (superset)
e T(x) = R(x,y,z) is... non-conflicting

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
—~ if S CS, fail -
— if § = S and some variable occurs twice in S, fail
Examples: for the FD R[1] — R[3]:

e T(x) = R(y,y, x) is... non-conflicting
o T(x,y) = R(x,y, z) is... conflicting (superset)
e T(x) = R(x,y,z) is... non-conflicting
e T(x) = R(x,y,y) is...

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
—~ if S CS, fail -
— if § = S and some variable occurs twice in S, fail
Examples: for the FD R[1] — R[3]:

e T(x) = R(y,y, x) is... non-conflicting
o T(x,y) = R(x,y, z) is... conflicting (superset)
e T(x) = R(x,y,z) is... non-conflicting
e T(x) = R(x,y,y) is... conflicting (variable reuse)

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:

—~ if S CS, fail -

— if § = S and some variable occurs twice in S, fail
Examples: for the FD R[1] — R[3]:
T(x) = R(y,y,x) is... non-conflicting

T(x,y) = R(x,y,z) . conflicting (superset)

T(x) = R(x,y, 2) is non—conflicting
T(x) = R(x,y,y) is... conflicting (variable reuse)
T(y) = R(x,y,z)U(z) is...

19/24

Adding FDs
00®00

Non-conflicting rules and FDs [Cali et al., 2012]

Consider QA under single-head rules ¥ and FDs ®
e ¥ and @ are separable if QA(X, @) < QA(X) when /= @

@ Separability guaranteed under the non-conflicting condition:
o For every rule head H= R(x1,...,x,):
@ S := positions of H with a frontier variable

e S := positions with an existentially quantified variable
o For each FD R[S'| — R][i] of ®:
—~ if S CS, fail -
— if § = S and some variable occurs twice in S, fail
Examples: for the FD R[1] — R[3]:
T(x) = R(y,y,x) is... non-conflicting
T(x,y) = R(x,y,z) . conflicting (superset)
T(x) = R(x,y, 2) is non—conflicting
T(x) = R(x,y,y) is... conflicting (variable reuse)
T(y) = R(x,y,z)U(z) is... not allowed (not single-head)

19/24

I—’mb\em statement Umdﬁr\(hh\lwt Decidability Adding FDs Conclusion
0000 00000 [elele] o] [o]e]

DeC|dab|I|ty for non- confllctlng FDs

We know from [Cali et al., 2012]:

QA decidable for single-head frontier-guarded + non-conflicting FDs I

20/24

Pr b\ em statement Umd \(\ bility

Adding FDs Conclusion
[elele] lo] [e]e]

DeC|dab|I|ty for non- confllctlng FDs

We know from [Cali et al., 2012]:

QA decidable for single-head frontier-guarded + non-conflicting FDs l

We have shown:

QA is decidable for head-non-looping frontier-one rules + rich DLs l

20/24

Adding FDs
000®0

Decidability for non-conflicting FDs

We know from [Cali et al., 2012]:

QA decidable for single-head frontier-guarded + non-conflicting FDs \

We have shown:

QA is decidable for head-non-looping frontier-one rules + rich DLs \

We show:

QA is decidable for:
@ Rich DL constraints (with Funct)

e Single-head (hence, head-non-looping) frontier-one rules

e Non-conflicting FDs (on higher-arity predicates)

20/24

Problem statement Un(?r\rhb\l\n

Adding FDs Conclusion
O000e [e]e]

000 0000

Decidability for non- confllctlng FDs proof ideas

@ Non-conflicting: the FDs are not violated in the chase

@ Unraveling is a bit like chasing

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 0o0o0e oo

Decidability for non-conflicting FDs: proof ideas

@ Non-conflicting: the FDs are not violated in the chase
@ Unraveling is a bit like chasing

— Tweak the unraveling to also respect FDs

21/24

Adding FDs
[elelelol)

Decidability for non-conflicting FDs: proof ideas

@ Non-conflicting: the FDs are not violated in the chase
@ Unraveling is a bit like chasing

— Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

21/24

Adding FDs
[elelelol)

Decidability for non-conflicting FDs: proof ideas

@ Non-conflicting: the FDs are not violated in the chase
@ Unraveling is a bit like chasing

— Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

e if S C S, for § an FD determiner
— ignore this fact (it's not required by the constraints)

21/24

Adding FDs
[elelelol)

Decidability for non-conflicting FDs: proof ideas

@ Non-conflicting: the FDs are not violated in the chase
@ Unraveling is a bit like chasing

— Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:
e if S C S, for § an FD determiner
— ignore this fact (it's not required by the constraints)

o if 9 = Sfor § an FD determiner

— copy only one such fact, distinguish its other elements
(no equality between them is required by the constraints)

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 00000 oo

Table of contents

© Conclusion

22/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 0000 00000 00000 [1}

Summary of results
Combining Existential Rules and Description Logics

23/24

Problem statement Unde
000 O

cidability Decidability Adding FDs
o o0000 ocoooo

coo = O0OOOO = 00000

Summary of results
Combining Existential Rules and Description Logics

e Open-world query answering (QA) under:

e Rich DL constraints
o Existential rules

@ For which rule classes is QA decidable with rich DLs?

Conclusion

L Je]

23/24

Conclusion
®0

Problem statement cidability

Summary of results
Combining Existential Rules and Description Logics

@ Open-world query answering (QA) under:

e Rich DL constraints
o Existential rules

@ For which rule classes is QA decidable with rich DLs?
— Moust restrict to frontier-one rules

— Must prohibit cycles in rule heads

23/24

Problem statement Undecidability Decidability Adding FDs Conclusion
000 000 00000 00000 PYe)

e
o seee . oveeres

Summary of results
Combining Existential Rules and Description Logics

@ Open-world query answering (QA) under:

e Rich DL constraints
o Existential rules

@ For which rule classes is QA decidable with rich DLs?
— Must restrict to frontier-one rules
— Must prohibit cycles in rule heads
— QA is decidable for head-non-looping frontier-one + rich DLs
— Can add non-conflicting FDs

23/24

Conclusion
®0

Summary of results
Combining Existential Rules and Description Logics

@ Open-world query answering (QA) under:

e Rich DL constraints
o Existential rules

@ For which rule classes is QA decidable with rich DLs?
— Must restrict to frontier-one rules
— Must prohibit cycles in rule heads
— QA is decidable for head-non-looping frontier-one + rich DLs
— Can add non-conflicting FDs

@ What about QA on finite models?

@ Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24

Conclusion
oce

Related things | work on

@ Adding transitive and order relations to existential rules?

— QA for frontier-guarded is decidable with transitive relations
— Also for order relations (with atom-covered requirement)

'With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

24/24

Conclusion
oce

Related things | work on

@ Adding transitive and order relations to existential rules?

— QA for frontier-guarded is decidable with transitive relations
— Also for order relations (with atom-covered requirement)

@ QA on finite models?
— Frontier-one IDs and FDs are finitely controllable up to closure

'With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

24/24

Conclusion
oce

Related things | work on

@ Adding transitive and order relations to existential rules?

— QA for frontier-guarded is decidable with transitive relations
— Also for order relations (with atom-covered requirement)

@ QA on finite models?

— Frontier-one IDs and FDs are finitely controllable up to closure

@ Also: probabilistic databases, partial orders, crowdsourcing...

'With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

24/24

Conclusion
oce

Related things | work on

@ Adding transitive and order relations to existential rules?

— QA for frontier-guarded is decidable with transitive relations
— Also for order relations (with atom-covered requirement)

@ QA on finite models?

— Frontier-one IDs and FDs are finitely controllable up to closure

@ Also: probabilistic databases, partial orders, crowdsourcing...

Thanks for your attention!

'With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

24/24

References |

B

B

Amarilli, A. and Benedikt, M. (2015).

Finite open-world query answering with number restrictions.
In Proc. LICS.

Cali, A., Gottlob, G., and Pieris, A. (2012).
Towards more expressive ontology languages: The query

answering problem.
Artif. Intel., 193.

Cali, A., Lembo, D., and Rosati, R. (2003).

Query rewriting and answering under constraints in data
integration systems.

In 1JCAI.

1/2

References |l

@ Mitchell, J. C. (1983).
The implication problem for functional and inclusion
dependencies.
Information and Control, 56(3).

@ Pratt-Hartmann, I. (2009).
Data-complexity of the two-variable fragment with counting

quantifiers.
Inf. Comput., 207(8).

2/2

	Problem statement
	Undecidability
	Decidability
	Adding FDs
	Conclusion

