
Combining Existential Rules and Description Logics
Antoine Amarilli1,2, Michael Benedikt2

1: Télécom ParisTech; Institut Mines-Télécom; CNRS LTCI; Paris, France
2: University of Oxford; Oxford, United Kingdom

Open-World Query Answering (QA)
or query containment, or query entailment...

Instance I: set of ground facts (or A-box)
Example: parent(Joe)
a

Constraints Σ: logical rules (or T-box)

Example: ∀p parent(p) → ∃c child(p, c)
a

Boolean conjunctive query q
Example: ∃c child(Joe, c)

 • for all completions J ⊇ I
 • such that J satisfies Σ
 • does J always satisfy q?
a

i.e.: • is there a counterexample J ⊇ I satisfying Σ but not q?
 • is q certain given I and Σ? • does I ∧ Σ entail q?

QA problem: given I, Σ, q:

!

?

Negative results

• Frontier-two FR[2] is destructive
In fact frontier-two inclusion dependencies (ID[2]) are sufficient
(only one atom in head and body, no repeated variables)
Problem: entailment of Funct() and ID[2] is undecidable

• Frontier-one FR[1] is destructive
Problem: the existence of cycles can be asserted
∀x φ(x) → ∃yzw R(x y) D(x z) R(z w) D(y w)
and Funct(R) Funct(D) yields a grid

→ Must restrict to frontier-one FR[1]

x y

z w

y'

w'→ Must impose non-looping
!

Positive results: head-non-looping FR[1]

• Non-looping FR[1] is non-destructive:
→ QA for this class + rich DLs reduces to QA for rich DLs

• Head-non-looping FR[1] is non-destructive
→ reduces to QA for non-looping + rich DLs

Idea: shred R(a, b, c) to R1(f, a) R2(f, b) R3(f, c) in I and q
Use rich DLs to impose well-formedness constraints on the signature
Lemma: can inductively rewrite non-looping FR[1] to DL constraints
Example: ∀ux U(u), T(u, x), S(x) → ∃yz T(x, y), U(y), R(x, x, z, z)
 shreds to (∃T−.U) ⊓ S ⊑ (∃T.U) ⊓ (∃(R1

− ⊓ R2
−).(∃(R3 ⊓ R4).⊤))

Idea: head-non-looping FR[1] can be treeified to non-looping
 (consider all possible variable identifications and matches to I)
Unravelling: any counterexample J ⊇ I can be made cycle-free
 → Lemma: replacing rules by their treeification is sound

Two families of decidable constraint languages for Σ

Rich description logics Frontier-guarded
existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp)
∀pwv Accept(p, w, v)
 → ∃f Trip(p, v, f)

Rich constraints
Can express disjunction, disjointness, etc.

Poor constraints
Conjunction and implication only

Arity-two only Arbitrary arity

Functionality asserts
Example: Funct(Mgr)

n/a
Not part of the language

→ QA is decidable for either of these languages...

!

Problem statement: Can QA be decidable when allowing both rich description logics and existential rules?

Terminology: A rule class C is when QA for rules in class C and for rich DLs isdestructive
non-destructive

decidable
undecidable

Positive results: functional dependencies (FDs)

FDs generalize Funct(•) to arbitrary arity relations:
∀xy R(x1 x2 x3), R(y1 y2 y3), x1=y1, x2=y2 → x3=y3
a

Example: Talk[speaker,session] determines Talk[title]

• QA with just FR[1] rules and FDs is undecidable
 but decidable with non-conflicting condition:
 • all FR[1] rules are single-head — and hence head-non-looping
 • for each ∀x φ(x) → ∃y R(x, y1, x, y2, ...), head positions with frontier variable are
 • not a strict superset of an FD determiner (= left-hand-side of an FD)
 • if equal to a determiner, all variables in y occur only once

→ What about QA for rules, FDs, and rich DLs?

• Single-head FR[1] and non-conflicting FDs
 are non-destructive
 Idea: modify unravelling to ensure FDs are respected
 (when unravelling high-arity facts, distinguish variables based on FD determiners)
 → The non-conflicting condition ensures that such changes cannot violate the rules

!

1 2

3

3'

Rule languages

• Rich description logics (rich DLs):
aaanything expressible in GC2
a

aa(two-variable guarded first-order logic with counting quantifiers)

• Existential rules (TGDs):
aa∀xy φ(x, y) → ∃z ψ(x, z)
a

aawhere x, y, z are disjoint sets of variables
aaand φ (body) and ψ (head) are conjunctions of atoms

• Frontier-one (FR[1]): x is a singleton
aai.e., only one variable shared between body and head

• Berge cycle:
aadistinct atoms and variables A1, x1, ..., An, xn

aasuch that xi occurs in Ai and Ai+1 for all i

→Bad cycle: Berge cycle
aa awhere n>2 or some Ai has arity >2
a

aa aExamples: R(x, y) S(y, z) T(z, y) or A(x, x, y) R(x, y)

• Non-looping: no bad cycle

• Head-non-looping:
aano bad cycle in head atoms

ψ(a, c)

φ (a , b)

A1

A2A3

x1x3

x2

