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Uncertain data management

In this talk, we manage data represented as a labeled graph
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→ Problem: we are not certain about the true state of the data
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Uncertain data model
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• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))
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Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”
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Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q), depending on the query Q?
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Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]
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Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
( )∗

• It is not equivalent to a UCQ: infinite disjunction
( )i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented
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Proof structure



Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern
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Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!
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Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

( )n

Case 1: some iterate violates the query:

•

• • • •

•

( )i
satisfies Q

but
•

• • • •

•

( )i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

( )n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern
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Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

( )n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

11/12
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Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?
• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense

[Amarilli and Kimelfeld, 2020]
• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!
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Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:
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• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D
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How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)
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b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q
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