
A Dichotomy for Homomorphism-Closed Queries
on Probabilistic Graphs

Antoine Amarilli1 and İsmail İlkan Ceylan2

March 30, 2020
1Télécom Paris

2University of Oxford
1/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

2/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

2/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

2/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

2/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

2/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

2/12

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data 2/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world?

0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world?

0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

3/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z

→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime”

4/12

Queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?

→ Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G′

then G′ also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

• Do not allow for inequalities or negation

• A homomorphism-closed query can be seen as an infinite union of CQs:
→ The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

• Allows pretty wild things, e.g., “There is a path whose length is prime” 4/12

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q), depending on the query Q?

5/12

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q), depending on the query Q?

5/12

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:

• Formally:
∑

W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q), depending on the query Q?

5/12

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q), depending on the query Q?

5/12

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q), depending on the query Q?
5/12

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]

6/12

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]

6/12

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]

6/12

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]

6/12

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]

6/12

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• The CQ x y z is safe, but the CQ x y z w is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

• No work about recursive queries (but no works about RPQs, Datalog, etc.)

• Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]
6/12

Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented

7/12

Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented

7/12

Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented

7/12

Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N

• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented

7/12

Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented

7/12

Our result

We study PQE for homomorphism-closed queries and show:
Theorem
For any query Q closed under homomorphisms:

• Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

• We do not study the complexity of deciding which case applies
• Depends on how queries are represented

7/12

Proof structure

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

8/12

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

8/12

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but

•

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

8/12

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

8/12

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

8/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern! 9/12

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the unsafe CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern! 9/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

10/12

Saving the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern
10/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right 11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right 11/12

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right 11/12

Conclusion and open problems

Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?
• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense

[Amarilli and Kimelfeld, 2020]
• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!

12/12

Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?
• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense

[Amarilli and Kimelfeld, 2020]
• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!

12/12

Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?
• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense

[Amarilli and Kimelfeld, 2020]
• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!

12/12

Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?

• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense
[Amarilli and Kimelfeld, 2020]

• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!

12/12

Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?
• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense

[Amarilli and Kimelfeld, 2020]
• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!

12/12

Conclusion and open problems

• Our result: PQE(Q) is #P-hard for any query Q closed under homomorphisms
unless it is equivalent to a safe UCQ
→ Dichotomy for probabilistic query evaluation over homomorphism-closed queries
→ Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.

(unless they are equivalent to a safe UCQ)

• Open problems:
• The result only applies to graphs, not higher-arity databases

• We conjecture that the same result holds for higher-arity queries and TIDs
• But instance transformations are harder to visualize and do not seem to work as-is

• Does the result still hold for unweighted PQE, where all probabilities are 1/2?
• PQE for non-hierarchical self-join-free CQs was recently shown to be #P-hard in this sense

[Amarilli and Kimelfeld, 2020]
• Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!
12/12

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•

to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
•

to •
•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates

• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q

• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D

• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a union of stars D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:

• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

How to show #P-hardness for PQE

How to show the #P-hardness of PQE for the unsafe query Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

References i

Amarilli, A. and Kimelfeld, B. (2020).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.
Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6).
Fink, R. and Olteanu, D. (2016).
Dichotomies for queries with negation in probabilistic databases.
ACM Transactions on Database Systems, 41(1):4:1–4:47.

https://arxiv.org/abs/1908.07093
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf

References ii

Jung, J. C. and Lutz, C. (2012).
Ontology-based access to probabilistic data with OWL QL.
In Proceedings of the 11th International Conference on The Semantic Web - Volume
Part I, pages 182–197.

https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf

	Proof structure
	Conclusion and open problems
	Appendix

