TELECOM
ParisTech

i il

Topological Sorting under Regular Constraints

Antoine Amarilli’, Charles Paperman?
July 12th, 2018

Téelécom ParisTech

2Université de Lille

1/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}

» Fix a language: e.g, L = (ab)*

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting:

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} e

» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting: ° 0 °

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥ Q e

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} e

» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting: ° 0 °
- Input: directed acyclic graph (DAG)
with vertices labeled with Q e
- Output: is there a topological sort
that falls in L?

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a

» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting: ° 0 °
- Input: directed acyclic graph (DAG)
with vertices labeled with ¥ Q e
- Output: is there a topological sort
that falls in L? a

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a

» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting: b 0 °

- Input: directed acyclic graph (DAG)

with vertices labeled with ¥ Q e
- Output: is there a topological sort

that falls in L? ab

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting: : a °
- Input: directed acyclic graph (DAG)
with vertices labeled with © Q e

- Output: is there a topological sort
that falls in L? aba

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L? abab

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L?

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L? ababba

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L? ababba
.. hotin L!

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} e

» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting: ° 0 °
- Input: directed acyclic graph (DAG)
with vertices labeled with Q e
- Output: is there a topological sort
that falls in L?

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a

» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting: ° 0 °
- Input: directed acyclic graph (DAG)
with vertices labeled with ¥ Q e
- Output: is there a topological sort
that falls in L? a

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting: ° 0

- Input: directed acyclic graph (DAG)

with vertices labeled with ¥ Q e
- Output: is there a topological sort

that falls in L? ab

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting: ° 0

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥ Q

- Output: is there a topological sort
that falls in L? aba

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} a
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting: : 0

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥ Q

- Output: is there a topological sort
that falls in L? abab

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L?

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L? ababab

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b}
» Fix a language: e.g, L = (ab)*
» We study constrained topological sorting:

- Input: directed acyclic graph (DAG)
with vertices labeled with ¥

- Output: is there a topological sort
that falls in L? ababab
. inL!

2/14

Constrained Topological Sorting

» Fix an alphabet: eg, ¥ = {a, b} e

» Fix a language: e.g, L = (ab)*

» We study constrained topological sorting: ° 0 °
- Input: directed acyclic graph (DAG)
with vertices labeled with Q e
- Output: is there a topological sort
that falls in L?

2/14

Constrained Topological Sorting

Fix an alphabet: eg, ¥ = {a, b} e

Fix a language: e.g, L = (ab)*

We study constrained topological sorting: ° 0 °

- Input: directed acyclic graph (DAG)

with vertices labeled with Q e
- Output: is there a topological sort

that falls in L?

« Question: when is this problem tractable?

2/14

* How we really ended up studying this problem:

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML |
| XML versioning |

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases |

| XML versioning || Top-k | [Aggregate queries |

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases |

| XML versioning || Top-k | [Aggregate queries |

Possible answers|

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |

[Possible answers| | Algebraic language theory?! |

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |

[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |

[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints! — Verification for concurrent code!

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |
[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints! — Verification for concurrent code!
— Computational biology! — Blockchain!

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |
[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints! — Verification for concurrent code!
— Computational biology! — Blockchain! (joke)

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |
[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints! — Verification for concurrent code!
— Computational biology! — Blockchain! (joke)

e But why do we actually care?

3/

* How we really ended up studying this problem:

20M 2012 2013 2014 2015 2016 2017 2018

| Probabilistic XML || Order-uncertain databases || DAGs |
| XML versioning || Top-k | [Aggregate queries |
[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints! — Verification for concurrent code!
— Computational biology! — Blockchain! (joke)

e But why do we actually care?

— Natural problem and apparently nothing was known about it! /
3/14

Formal problem statement

» Fix a regular language L on an finite alphabet ©

4/14

Formal problem statement

» Fix a regular language L on an finite alphabet ©

* Constrained topological sort problem CTS(L): (@)

- Input: a DAG G with vertices labeled by letters of & B @ ®)
- Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L ® @

4/14

Formal problem statement

 Fix a regular language L on an finite alphabet &

* Constrained topological sort problem CTS(L): (@)

- Input: a DAG G with vertices labeled by letters of & B @ ®)
- Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L ® @

* Special case: the constrained shuffle problem CSh(L):

- Input: a set of words wy, ..., w, of X*
- Output: is there a shuffle of w,, ..., w, whichisin L

4/14

Formal problem statement

 Fix a regular language L on an finite alphabet &

 Constrained topological sort problem CTS(L

- Input: a DAG G with vertices labeled by | etters of (b) @ (b)
- Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L ® @

* Special case: the constrained shuffle problem CSh(L):

- Input: a set of words wy, ..., w, of X* %

- Output: is there a shuffle of w,, ..., w, whichisin L

OO

e This is like CTS but the input DAG is an union of paths

Formal problem statement

 Fix a regular language L on an finite alphabet &

 Constrained topological sort problem CTS(L

- Input: a DAG G with vertices labeled by | etters of (b) @ (b)
- Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L ® @

* Special case: the constrained shuffle problem CSh(L):

- Input: a set of words wy, ..., w, of X* %
@

- Output: is there a shuffle of w,, ..., w, whichisin L

e This is like CTS but the input DAG is an union of paths

— Question: What is the complexity of CTS(L) and CSh(L),
depending on the fixed language L ?

Dichotomy

For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL
e L has [some nasty property] and CTS(L) is NP-hard

5/14

Dichotomy Conjecture

Conjecture

For every regular language L, exactly one of the following holds:
e L has [some nice property] and CTS(L) is in NL (V) S

« L has [some nasty property] and CTS(L) is NP-hard -

5/14

Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL (V) S
« L has [some nasty property] and CTS(L) is NP-hard -

Here's what we actually know:

» CTS and CSh are NP-hard for some languages, including (ab)*

5/14

Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL (V) S
« L has [some nasty property] and CTS(L) is NP-hard -

Here's what we actually know:

» CTS and CSh are NP-hard for some languages, including (ab)*
« They are in NL for some language families (monomials, groups)

5/14

Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL (V)
« L has [some nasty property] and CTS(L) is NP-hard -

Here's what we actually know:

» CTS and CSh are NP-hard for some languages, including (ab)*
« They are in NL for some language families (monomials, groups)

» Some languages are tractable for seemingly unrelated reasons

5/14

Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL (V)
« L has [some nasty property] and CTS(L) is NP-hard -

Here's what we actually know:

» CTS and CSh are NP-hard for some languages, including (ab)*
« They are in NL for some language families (monomials, groups)
» Some languages are tractable for seemingly unrelated reasons

— Very mysterious landscape! (to us)

5/14

Hardness Results

Existing Hardness Result

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com

n th nlexity of lterated Shuffle*®
L LN S A ALY A A BN R AV R A 1w

A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

6/14

Existing Hardness Result

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com

n th nlexity of lterated Shuffle*®
L LN S A ALY A A BN R AV R A 1w

A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

.. but the target is a word which is provided as input!

6/14

Existing Hardness Result

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com

n th nlexity of lterated Shuffle*®
L LN S A ALY A A BN R AV R A 1w

A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

.. but the target is a word which is provided as input!
— Does not directly apply for us, because we fix the target language

6/14

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*
« To determine if the shuffle of aab and bb contains ababb ...

714

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*

e To determine if the shuffle of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

714

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*
« To determine if the shuffle of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB
— CSh((aA + bB)*) is NP-hard and the same holds for CTS

714

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*

e To determine if the shuffle of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

— CSh((aA + bB)*) is NP-hard and the same holds for CTS

 Similar technique: CSh((ab)*) is NP-hard

714

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*

e To determine if the shuffle of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

— CSh((aA + bB)*) is NP-hard and the same holds for CTS
 Similar technique: CSh((ab)*) is NP-hard
e Custom reduction technique to show NP-hardness for:
- (ab + b)*

- (aa + bb)*
- u* if u contains two different letters

714

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*
« To determine if the shuffle of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB
— CSh((aA + bB)*) is NP-hard and the same holds for CTS

 Similar technique: CSh((ab)*) is NP-hard

e Custom reduction technique to show NP-hardness for:
- (ab + b)*
- (aa + bb)*
- u* if u contains two different letters

» Conjecture: if F is finite then CTS(F*) is NP-hard
unless it contains a power of each of its letters

714

Hardness for CTS

» We can reduce their problem to CSh for the language (aA + bB)*
« To determine if the shuffle of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB
— CSh((aA + bB)*) is NP-hard and the same holds for CTS

 Similar technique: CSh((ab)*) is NP-hard

e Custom reduction technique to show NP-hardness for:
- (ab + b)*
- (aa + bb)*
- u* if u contains two different letters

» Conjecture: if F is finite then CTS(F*) is NP-hard
unless it contains a power of each of its letters

(V)

714

Tractability Results

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

8/14

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages
- Example: pattern matching X* word1 ©* + ~* word2 **

8/14

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 ©* + ~* word2 **
- Logical interpretation: languages definable in X,[<]

8/14

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 ©* + ~* word2 **
- Logical interpretation: languages definable in X,[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

8/14

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 ©* + ~* word2 **
- Logical interpretation: languages definable in X,[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

Proof idea:

» Tractable languages are clearly closed under union

8/14

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 ©* + ~* word2 **
- Logical interpretation: languages definable in X,[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

Proof idea:

» Tractable languages are clearly closed under union

» We can guess the positions of the individual g;

8/14

Tractability for Monomials

* Monomial: language of the form A} a, A} a, --- A}, an A},
where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 ©* + ~* word2 **
- Logical interpretation: languages definable in X,[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

Proof idea:

» Tractable languages are clearly closed under union
» We can guess the positions of the individual g;
* Check that the other vertices can fit in the A* (uses NL = co-NL)

8/14

The Algebraic Approach

Can we just study algebraically the tractable languages?

9/14

The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

9/14

The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

e Not closed under intersection

» Not closed under complement
» Not closed under inverse morphism —\ \\/ l—
* Not closed under concatenation _()_

(not in paper, only known for CTS)

For CSh: not closed under quotient

9/14

The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

e Not closed under intersection

» Not closed under complement

» Not closed under inverse morphism —\ \\/ l—

* Not closed under concatenation _()_
(not in paper, only known for CTS)

e For CSh: not closed under quotient

Remark: For the language L = bX* + aaxX* + (ab)*

e CTS(L) is NP-hard because (ab)~'L = (ab)*
e CSh(L) isin NL: trivial if there is more than one word

9/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that
there are at most k input words ws, ..., w, for a constant k € N

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that
there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that
there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if
the input DAG G has width < k for constant k € N

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that
there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if

the input DAG G has width < k for constant k € N (@)
& @ ®
® @

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that
there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if
the input DAG G has width < k for constant k € N (@)

- Width: size of the largest antichain B @ O
(subset of pairwise incomparable vertices)
b @

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that
there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if
the input DAG G has width < k for constant k € N /C‘P\

- Width: size of the largest antichain @i @ ‘@

(subset of pairwise incomparable vertices)

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that

there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if

the input DAG G has width < k for constant k € N (@)
- Width: size of the largest antichain B @ ®
(subset of pairwise incomparable vertices)
— Partition G in k chains (Dilworth’s theorem), O @

and conclude by NL algorithm

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that

there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if

the input DAG G has width < k for constant k € N (@)
- Width: size of the largest antichain D) |@]|®
(subset of pairwise incomparable vertices)
— Partition G in k chains (Dilworth’s theorem), ®||@
and conclude by NL algorithm

10/14

Tractability Based on Width

e CSh(L) is in NL for any regular language L if we assume that

there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if

the input DAG G has width < k for constant k € N (@)
- Width: size of the largest antichain B @ ®
(subset of pairwise incomparable vertices)
— Partition G in k chains (Dilworth’s theorem), O @

and conclude by NL algorithm

— These results are making an additional assumption, but...

10/14

Tractability Based on Width (2)

* Fix ¥ = {a, b}, take any regular language L and constant kR € N,
we know that CTS is in NL for L + ¥*(ak + bF)x*

1/14

Tractability Based on Width (2)

* Fix ¥ = {a, b}, take any regular language L and constant kR € N,
we know that CTS is in NL for L + ¥*(ak + bF)x*

- If the input DAG has width < 2R, use the result for bounded width

1/

Tractability Based on Width (2)

* Fix ¥ = {a, b}, take any regular language L and constant kR € N,
we know that CTS is in NL for L + ¥*(ak + bF)x*

- If the input DAG has width < 2R, use the result for bounded width

- Otherwise we can achieve a® or bk with a large antichain

1/

Tractability Based on Width (2)

* Fix ¥ = {a, b}, take any regular language L and constant kR € N,
we know that CTS is in NL for L + ¥*(ak + bF)x*

- If the input DAG has width < 2R, use the result for bounded width

- Otherwise we can achieve a® or bk with a large antichain

* Asimilar technique shows that (ab)* + X*aaXx* is tractable

— Does it suffice to bound the width of all letters but one?

1/

Tractability Based on Width (2)

* Fix ¥ = {a, b}, take any regular language L and constant kR € N,
we know that CTS is in NL for L + ¥*(ak + bF)x*

- If the input DAG has width < 2R, use the result for bounded width

- Otherwise we can achieve a® or bk with a large antichain
* Asimilar technique shows that (ab)* + X*aaXx* is tractable

— Does it suffice to bound the width of all letters but one?

— Unknown for L + X*a*T* with arbitrary Land k> 20 “_(*V)_["

1/14

Tractability Based on the Structure of Groups

e Group language: the underlying monoid is a finite group
— Automata where each letter acts bijectively

12/14

Tractability Based on the Structure of Groups

e Group language: the underlying monoid is a finite group
— Automata where each letter acts bijectively

* District group monomial: language G; @, --- G an Gpiy

where a,,...,a, € ¥ and Ga, ..., Gy are group languages
on subsets of the alphabet &

12/14

Tractability Based on the Structure of Groups

e Group language: the underlying monoid is a finite group
— Automata where each letter acts bijectively

* District group monomial: language G; @, --- G an Gpiy

where a,,...,a, € ¥ and Ga, ..., Gy are group languages
on subsets of the alphabet X

Theorem
For any union L of district group monomials, CSh(L) is in NL

12/14

Tractability Based on the Structure of Groups

e Group language: the underlying monoid is a finite group
— Automata where each letter acts bijectively

* District group monomial: language G; @, --- G an Gpiy

where a,,...,a, € ¥ and Ga, ..., Gy are group languages
on subsets of the alphabet X

Theorem
For any union L of district group monomials, CSh(L) is in NL

— Only for CSh; complexity for CTS is unknown! (V) [

12/14

Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:

13/14

Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume chain with most odd a blocks

13/14

Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume chain with most odd a blocks
- Complexity open for CTS! _(¥)_I"

13/14

Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume chain with most odd a blocks
- Complexity open for CTS! _(V)_I~
- Complexity open for (af + b)* for k > 2! _(V)_I"

13/14

Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume chain with most odd a blocks
- Complexity open for CTS! _(V)_I~
- Complexity open for (a® + b)* for k > 2! "\ _(V)_"
- What about similar languages like (aa + bb 4 ab)*? _(Y)_I~

13/14

Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume chain with most odd a blocks
- Complexity open for CTS! _(V)_I~
- Complexity open for (a® + b)* for k > 2! "\ _(V)_"
- What about similar languages like (aa + bb 4 ab)*? _(Y)_I~

* (caa)*d(cbb)*dx* + X*ccx* is in NL for CSh but NP-hard for CTS

- Tractability argument: another ad hoc greedy algorithm
- Hardness argument: from k-clique encoded to a bipartite graph

13/14

Conclusion

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard

/14

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard
Monomials Aay - - - ApanA; in NL in NL

Groups, district group monomials in NL (V)

/14

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard
Monomials Aay - - - ApanA; in NL in NL
Groups, district group monomials in NL \ (V)
b¥* + aaXx* + (ab)* in NL NP-hard

/14

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard
Monomials Aay - - - ApanA; in NL in NL
Groups, district group monomials in NL (V)
b¥* + aaXx* + (ab)* in NL NP-hard
L+ X*(af + bF)z* in NL in NL
(ab)* + ¥*a’x* in NL in NL

L+ y*aky* () ()

/14

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard
Monomials Aay - - - ApanA; in NL in NL
Groups, district group monomials in NL (V)
b¥* + aaXx* + (ab)* in NL NP-hard
L+ X*(af + bF)z* in NL in NL
(ab)* + ¥*a’x* in NL in NL

L+ X*aky* ())
(aa + bb)*, (ab + a)* NP-hard NP-hard
(aa + b)* in NL (V)

(a® + b)* RYC, VAN e

/14

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard
Monomials Aay - - - ApanA; in NL in NL
Groups, district group monomials in NL (V)
b¥* + aaXx* + (ab)* in NL NP-hard
L+ X*(af + bF)z* in NL in NL
(ab)* + ¥*a’x* in NL in NL
L+ X*aky* ())
(aa + bb)*, (ab + a)* NP-hard NP-hard
(aa + b)* in NL (V)
(a® + b)* ANC WA) W

Essentially all other languages... (V) ()

/14

Summary and Future Work

Language
(ab)*

Monomialg
Groups, di

bX* + aaX

L+ x*(ak ==

(ab)* + X
L+ X*akx
(aa + bb)*
(aa + b)*
(ak + b)*

Informations

Recherches

Enseignement

Production logicielle

CSh (shuffle) CTS (top. sort)

Topological Sorting under Regular
Constraints

By Antoine Amarili and Charles Paperman.

“This page presents the consrained & i p , an
some of our resul d P Itis a complement to our
paper, which wil be presented at ICALP' m

Problem definitions

Fuxan sphaber . An A-DAG i et ayclc graph G whereesch vt i bcled by
aletter of A. A topological sort of G s a linear ordering of the vertices that respects the
edges of the DAG, Le., for every) o1 &, e vrcx i enameted etone . The
topological sort achicves the word of A* formed by concatenating the labels of the vertices in
the order where they are enumerated.

Fix a language L C A", The constrained topological sort problem for L, written CTS[L]
asks, given an A-DAG G, whether there is a topological sort of G' that achieves a word of L.

One rolem vaant i e et sting e he nput DAG i an 4*-DAG, where
ihe vericsar Labeed by a word f A, a opological or acieves the word bined
by concatenating the labels o et ool ling cach vertex cannot be
inerlsvedwith anying le. However i age e sty focus on the sigleleer
setings, e, 4D

Our current main results on the CTS-problem are presented in our paper. We show that
CTS[L] s in NL for some regular languages L, and is NP-hard for some other regular
languages.

Main dichotomy conjecture: For every regular language L, either CTS|L] is in NL or
CTS[L) is NP-hard.

Restrictions on the input DAG

‘When the input DAG G is an union of paths, the problem is called constrained shuffle
problem (CSh), because topological sort of G corresponds to an interleaving of the srings
represented by the paths.

We can consider the problem where the input DAG has bounded heigh, where the height of
DAG is defined as the length of the longest directed path.

‘We can consider the problem where the input DAG has bounded width, where the width of a
DAG is the size of is largest antichain,i.c., subset of pairwise incomparable vertices. In the
case of the CSh problem, the wikth is the number of paths

IP-hard

in NL
(V)

IP-hard

in NL
in NL
(V)

IP-hard
(V)
(V)

Essentially all other languages...

(V)

(W)

/4

Summary and Future Work

Language > TS (top. sort)
(ab)*, u* with - NP-hard
Monomials Aj - in NL
Groups, distrid - ()
bT* +aaxr* + W‘ 3 NP-hard
L+ x*(ak + bf \ > . in NL
* * W \i“w; .
(ab)* + *a?% \\}Q\\\\\ a _inNL
L+ ¥raty: ~ X \ ()]
SO

(aa + bb)*, (a /| NP-hard
w0 ||| OUE NXDE XOU || o0
(a® + b)* JUA ANAA M ‘ (V)
Essentially all other languages... (V) ()

/4

Summary and Future Work

Language CSh (shuffle) CTS (top. sort)
(ab)*, u* with different letters NP-hard NP-hard
Monomials Aay - - - ApanA; in NL in NL
Groups, district group monomials in NL (V)
b¥* + aaXx* + (ab)* in NL NP-hard
L+ X*(af + bF)z* in NL in NL
(ab)* + ¥*a’x* in NL in NL
L+ T*akx* () ()
(aa + bb)*, (ab + a)* NP-hard NP-hard
(aa + b)* in NL (W)
(ak + b)* (W) ()
Essentially all other languages... (V) ()

Thanks for your attention! /4

References

@ Amarilli, A. and Paperman, C. (2018).
Topological Sorting under Regular Constraints.
In ICALP.

[1 Warmuth, M. K. and Haussler, D. (1984).
On the complexity of iterated shuffle.
JCSS, 28(3).

https://arxiv.org/abs/1707.04310
https://iuuk.mff.cuni.cz/~icalp2018/

Image Credits

Super-Dupont (slide 14) : Oui nide iou, Superdupont, Lob & Gotlib,
drawn by Neal Adams, Alexis, Al Coutelis, Daniel Goossens, Solé,
Gotlib. Fair use.

	Hardness Results
	Tractability Results
	Conclusion
	Appendix

