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Fix an alphabet: eg, ¥ = {a, b} e

Fix a language: e.g, L = (ab)*

We study constrained topological sorting: ° 0 °

- Input: directed acyclic graph (DAG)

with vertices labeled with Q e
- Output: is there a topological sort

that falls in L?

« Question: when is this problem tractable?
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» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints!  — Verification for concurrent code!
— Computational biology! — Blockchain! (joke)

e But why do we actually care?

— Natural problem and apparently nothing was known about it! /
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Formal problem statement

 Fix a regular language L on an finite alphabet &

 Constrained topological sort problem CTS(L

- Input: a DAG G with vertices labeled by | etters of (b) @ (b)
- Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L ® @

* Special case: the constrained shuffle problem CSh(L):

- Input: a set of words wy, ..., w, of X* %
@

- Output: is there a shuffle of w,, ..., w, whichisin L

e This is like CTS but the input DAG is an union of paths

— Question: What is the complexity of CTS(L) and CSh(L),
depending on the fixed language L ?
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Conjecture
For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL (V)
« L has [some nasty property] and CTS(L) is NP-hard -

Here's what we actually know:

» CTS and CSh are NP-hard for some languages, including (ab)*
« They are in NL for some language families (monomials, groups)
» Some languages are tractable for seemingly unrelated reasons

— Very mysterious landscape! (to us)
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JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com
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A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309
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(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

6/14



Existing Hardness Result

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com

n th nlexity of lterated Shuffle*®
L LN S A ALY A A BN R AV R A 1w

A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

.. but the target is a word which is provided as input!

6/14



Existing Hardness Result

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com

n th nlexity of lterated Shuffle*®
L LN S A ALY A A BN R AV R A 1w

A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

.. but the target is a word which is provided as input!
— Does not directly apply for us, because we fix the target language
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where a,,...,ap € Zand A, ..., Ap 1 C X
e Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 ©* + ~* word2 **
- Logical interpretation: languages definable in X,[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

Proof idea:

» Tractable languages are clearly closed under union
» We can guess the positions of the individual g;
* Check that the other vertices can fit in the A* (uses NL = co-NL)
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The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

e Not closed under intersection

» Not closed under complement

» Not closed under inverse morphism —\ \\/ l—

* Not closed under concatenation _( )_
(not in paper, only known for CTS)

e For CSh: not closed under quotient

Remark: For the language L = bX* + aaxX* + (ab)*

e CTS(L) is NP-hard because (ab)~'L = (ab)*
e CSh(L) isin NL: trivial if there is more than one word
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the input DAG G has width < k for constant k € N (@)
- Width: size of the largest antichain B @ ®
(subset of pairwise incomparable vertices)
— Partition G in k chains (Dilworth’s theorem), O @

and conclude by NL algorithm

— These results are making an additional assumption, but...
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— Does it suffice to bound the width of all letters but one?
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- Otherwise we can achieve a® or bk with a large antichain
* Asimilar technique shows that (ab)* + X*aaXx* is tractable

— Does it suffice to bound the width of all letters but one?

— Unknown for L + X*a*T* with arbitrary Land k> 20 “\_(*V)_["
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— Automata where each letter acts bijectively

* District group monomial: language G; @, --- G an Gpiy

where a,,...,a, € ¥ and Ga, ..., Gy are group languages
on subsets of the alphabet X

Theorem
For any union L of district group monomials, CSh(L) is in NL

— Only for CSh; complexity for CTS is unknown! (V) [
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* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume chain with most odd a blocks
- Complexity open for CTS! \_(V)_I~
- Complexity open for (a® + b)* for k > 2! "\ _(V)_"
- What about similar languages like (aa + bb 4 ab)*? \_(Y)_I~

* (caa)*d(cbb)*dx* + X*ccx* is in NL for CSh but NP-hard for CTS

- Tractability argument: another ad hoc greedy algorithm
- Hardness argument: from k-clique encoded to a bipartite graph
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Summary and Future Work

Language
(ab)*

Monomialg
Groups, di

bX* + aaX

L+ x*(ak ==

(ab)* + X
L+ X*akx
(aa + bb)*
(aa + b)*
(ak + b)*

Informations

Recherches

Enseignement

Production logicielle

CSh (shuffle) CTS (top. sort)

Topological Sorting under Regular
Constraints

By Antoine Amarili and Charles Paperman.

“This page presents the consrained & i p , an
some of our resul d P Itis a complement to our
paper, which wil be presented at ICALP' m

Problem definitions

Fuxan sphaber . An A-DAG i et ayclc graph G whereesch vt i bcled by
aletter of A. A topological sort of G s a linear ordering of the vertices that respects the
edges of the DAG, Le., for every ) o1 &, e vrcx i enameted etone . The
topological sort achicves the word of A* formed by concatenating the labels of the vertices in
the order where they are enumerated.

Fix a language L C A", The constrained topological sort problem for L, written CTS[L]
asks, given an A-DAG G, whether there is a topological sort of G' that achieves a word of L.

One rolem vaant i e et sting e he nput DAG i an 4*-DAG, where
ihe vericsar Labeed by a word f A, a opological or acieves the word bined
by concatenating the labels o et ool ling cach vertex cannot be
inerlsvedwith anying le. However i age e sty focus on the sigleleer
setings, e, 4D

Our current main results on the CTS-problem are presented in our paper. We show that
CTS[L] s in NL for some regular languages L, and is NP-hard for some other regular
languages.

Main dichotomy conjecture: For every regular language L, either CTS|L] is in NL or
CTS[L) is NP-hard.

Restrictions on the input DAG

‘When the input DAG G is an union of paths, the problem is called constrained shuffle
problem (CSh), because  topological sort of G corresponds to an interleaving of the srings
represented by the paths.

We can consider the problem where the input DAG has bounded heigh, where the height of
DAG is defined as the length of the longest directed path.

‘We can consider the problem where the input DAG has bounded width, where the width of a
DAG is the size of is largest antichain,i.c., subset of pairwise incomparable vertices. In the
case of the CSh problem, the wikth is the number of paths

IP-hard

in NL
(V)

IP-hard

in NL
in NL
(V)

IP-hard
(V)
(V)

Essentially all other languages...

(V)

(W)
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b¥* + aaXx* + (ab)* in NL NP-hard
L+ X*(af + bF)z* in NL in NL
(ab)* + ¥*a’x* in NL in NL
L+ T*akx* () ()
(aa + bb)*, (ab + a)* NP-hard NP-hard
(aa + b)* in NL (W)
(ak + b)* (W) ()
Essentially all other languages... (V) ()

Thanks for your attention! /4
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