
A Circuit-Based Approach to E�cient Enumeration

Antoine Amarilli1, Pierre Bourhis2, Louis Jachiet3, Stefan Mengel4

July 10, 2017
1Télécom ParisTech

2CNRS CRIStAL

3Université Grenoble-Alpes

4CNRS CRIL

1/13

Problem statement

Problem: Enumerating large result sets

Input

Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/13

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other
2/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input)

Indexed
input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

Important: every result computed exactly once

3/13

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

Important: every result computed exactly once

3/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/13

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results
4/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/13

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

zy

x

6/13

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

zy

x

6/13

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

zy

x

6/13

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C| and constant delay

7/13

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C| and constant delay

7/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/13

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a database D

• Assumption: the database has bounded treewidth
→ Captures trees, words, etc.

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/13

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a database D
• Assumption: the database has bounded treewidth
→ Captures trees, words, etc.

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/13

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a database D
• Assumption: the database has bounded treewidth
→ Captures trees, words, etc.

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/13

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a database D
• Assumption: the database has bounded treewidth
→ Captures trees, words, etc.

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/13

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a database D
• Assumption: the database has bounded treewidth
→ Captures trees, words, etc.

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/13

Proof techniques

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

10/13

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

10/13

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

10/13

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

10/13

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

10/13

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

11/13

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

11/13

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

11/13

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

11/13

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets

Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

11/13

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

11/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x :

enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary

12/13

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary 12/13

Conclusion

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand

• Proposed approach:
• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand
• Proposed approach:

• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand
• Proposed approach:

• Develop linear-time compilation algorithm to circuits

• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand
• Proposed approach:

• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand
• Proposed approach:

• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand
• Proposed approach:

• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand
• Proposed approach:

• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!

13/13

References

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Olteanu, D. and Závodnỳ, J. (2015).
Size bounds for factorised representations of query results.
TODS, 40(1).

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf

	Problem statement
	Proof techniques
	Conclusion
	Appendix

