

A Circuit-Based Approach to Efficient Enumeration

Antoine Amarilli¹, Pierre Bourhis², Louis Jachiet³, **Stefan Mengel**⁴ July 10, 2017

¹Télécom ParisTech

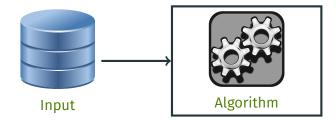
²CNRS CRIStAL

³Université Grenoble-Alpes

⁴CNRS CRIL

Problem statement

Input



• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

• Problem: The output may be too large to compute efficiently

Q computing large results	⊗	Search
----------------------------------	---	--------

Results 1 - 20 of 10,514

. . .

• Problem: The output may be too large to compute efficiently

Q computing large results	Search
---------------------------	--------

Results 1 - 20 of 10,514

...

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

• Problem: The output may be too large to compute efficiently

${f Q}$ computing large results	8	Search
---------------------------------	---	--------

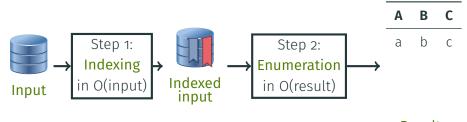
Results 1 - 20 of 10,514

••

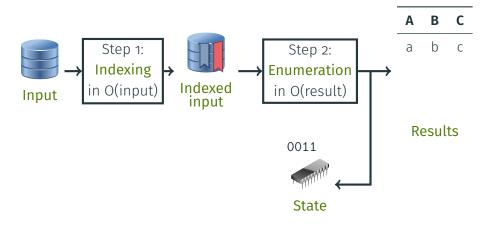
View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

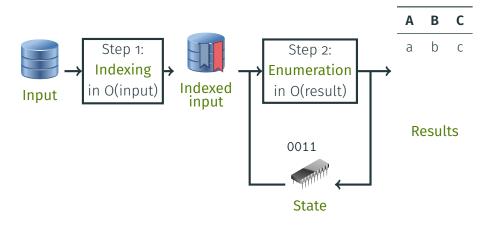
 \rightarrow Solution: Enumerate solutions one after the other

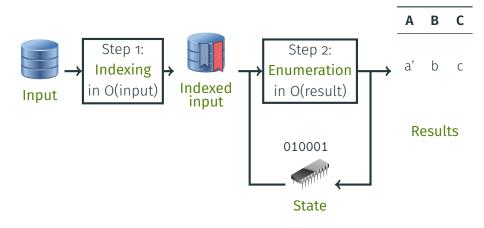
Input

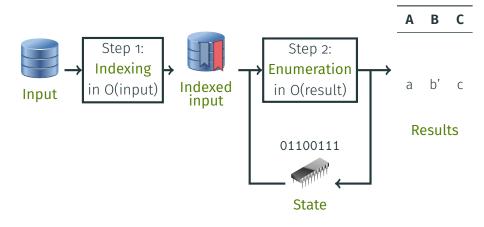


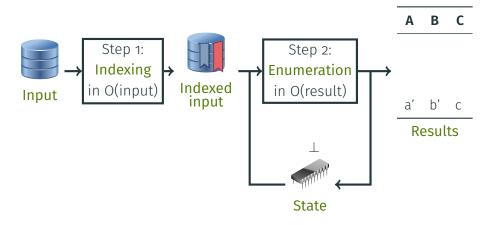
Results

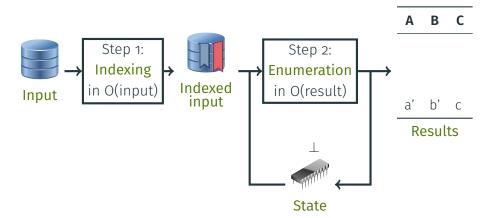












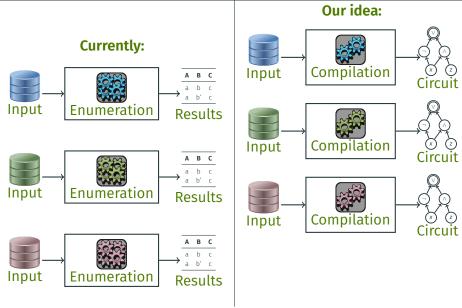
Important: every result computed exactly once

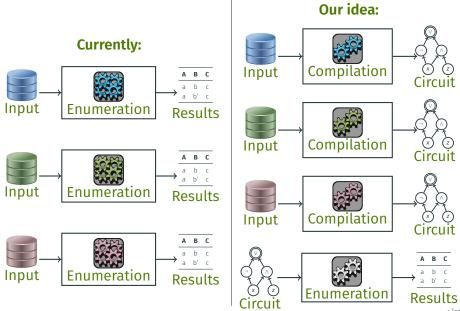
Currently:

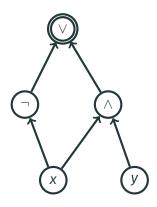
Currently:

Currently:









• Directed acyclic graph of gates

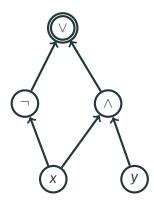


- Directed acyclic graph of gates
- Output gate:



- Directed acyclic graph of gates
- Output gate:

• Variable gates:



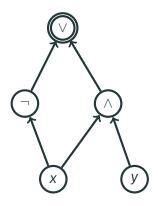
• Directed acyclic graph of gates

Х

 \bigtriangledown \land

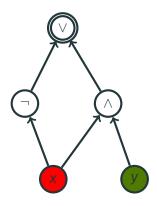
(¬)

- Output gate:
- Variable gates:
- Internal gates:



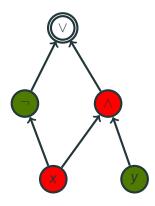
- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: √
 ∧
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

Х



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: √
 ∧
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

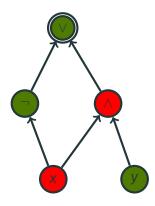
Х



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (V) (A) (¬)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

Х

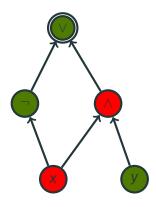
Boolean circuits



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (V) (A) (¬)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

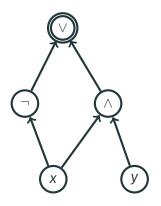
Х

Boolean circuits



- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: (V) (A) (¬)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1
- Assignment: set of variables mapped to 1 Example: S_ν = {y}; more concise than ν

Boolean circuits



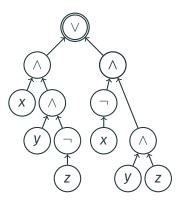
- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates: 🚫 🔿 🕤
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1
- Assignment: set of variables mapped to 1
 Example: S_ν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)



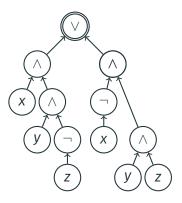
d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

• () are all **decomposable**:

The inputs are **independent** (= no variable *x* has a path to two different inputs)



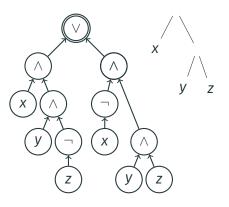
d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

• () are all **decomposable**:

The inputs are **independent** (= no variable *x* has a path to two different inputs) v-tree: ∧-gates follow a tree on the variables



Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |**C**| and delay **linear in each assignment**

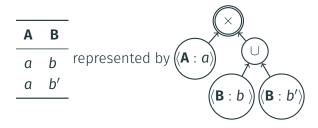
Theorem

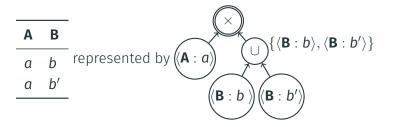
Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |**C**| and delay **linear in each assignment**

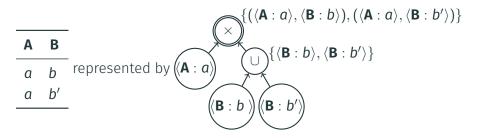
Also: restrict to assignments of constant size $k \in \mathbb{N}$ (at most k variables are set to 1):

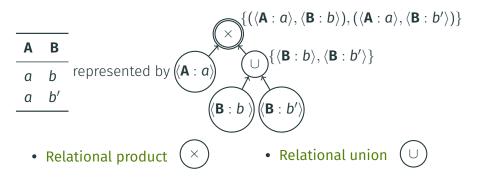
Theorem

Given a *d*-DNNF circuit C with a *v*-tree T, we can enumerate its satisfying assignments of size $\leq k$ with preprocessing linear in |C| and constant delay

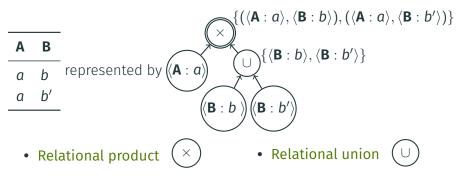






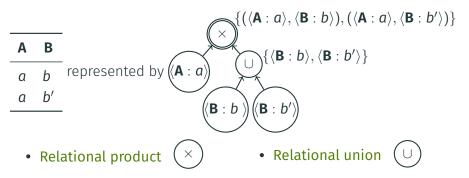


• Factorized databases: succinct representation of database tables



• Deterministic: We do not obtain the same tuple multiple times

• Factorized databases: succinct representation of database tables



• Deterministic: We do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015]) Given a deterministic factorized representation, we can enumerate its tuples with **linear preprocessing** and **constant delay**

Application 2: Query evaluation

• Compute the results (a, b, c) of a query Q(x, y, z) on a database D

Application 2: Query evaluation

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.

Application 2: Query evaluation

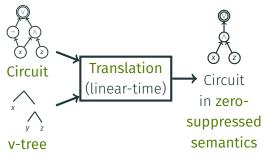
- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.
- Query given as a **deterministic tree automaton**
 - → Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures **conjunctive queries**, SQL, etc.

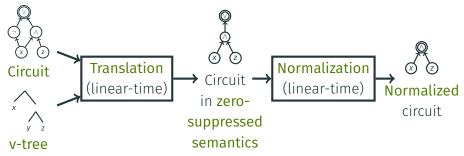
- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 → Captures trees, words, etc.
- Query given as a **deterministic tree automaton**
 - → Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.
- $\rightarrow\,$ We can construct a $d\text{-}\mathsf{DNNF}$ that describes the query results

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 → Captures trees, words, etc.
- Query given as a **deterministic tree automaton**
 - → Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.
- $\rightarrow\,$ We can construct a $d\text{-}\mathsf{DNNF}$ that describes the query results

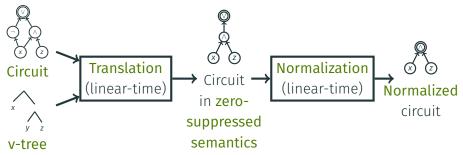
Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013]) For any constant $k \in \mathbb{N}$ and fixed MSO query Q, given a database D of treewidth $\leq k$, the results of Q on Dcan be enumerated with **linear preprocessing** in D and **linear delay** in each answer (\rightarrow **constant delay** for free first-order variables)

Proof techniques





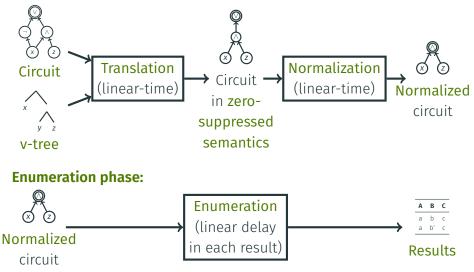
Preprocessing phase:

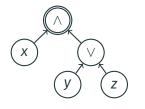


Enumeration phase:

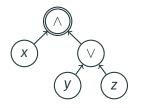
Normalized

circuit



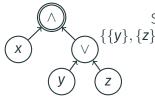


Special zero-suppressed semantics for circuits:



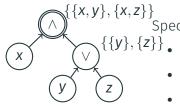
Special **zero-suppressed semantics** for circuits:

- No NOT-gate
- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup



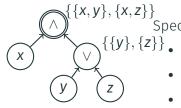
Special **zero-suppressed semantics** for circuits: {{y}, {z}} • No **NOT**-gate

- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup



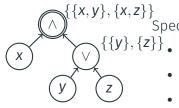
{}
Special zero-suppressed semantics for circuits:
z}
• No NOT-gate

- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup



Special zero-suppressed semantics for circuits:
Z[}] No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets



Special zero-suppressed semantics for circuits:
z} No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of factorized representations
- Generalization of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials

Task: Enumerate the elements of the set S(g) captured by a gate g \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) :

Task: Enumerate the elements of the set S(q) captured by a gate q

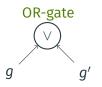
 \rightarrow E.g., for S(q) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable (x) : enumerate $\{x\}$ and stop

Task: Enumerate the elements of the set S(q) captured by a gate q

 \rightarrow E.g., for S(q) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable (x) : enumerate $\{x\}$ and stop

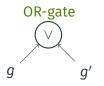


Concatenation: enumerate *S*(*q*) and then enumerate S(q')

Task: Enumerate the elements of the set S(q) captured by a gate q

 \rightarrow E.g., for S(q) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable (x) : enumerate $\{x\}$ and stop



Concatenation: enumerate *S*(*q*) and then enumerate S(q')

Determinism: no duplicates

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable

(X) : enumerate {X} and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable

(x) : enumerate {x} and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Decomposability: no inconsistencies

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable

(x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems \rightarrow normalization necessary

Conclusion

Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand

Summary and conclusion

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:

Summary and conclusion

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - $\cdot\,$ Develop linear-time compilation algorithm to circuits
 - Use **restricted** circuit classes as standard intermediate representation

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - $\cdot\,$ Develop linear-time compilation algorithm to circuits
 - Use **restricted** circuit classes as standard intermediate representation
 - **Develop** general enumeration results on circuits

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use **restricted** circuit classes as standard intermediate representation
 - **Develop** general enumeration results on circuits

Future work:

- Theory: handle updates on the input
- Practice: implement the technique with automata

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use **restricted** circuit classes as standard intermediate representation
 - Develop general enumeration results on circuits

Future work:

- Theory: handle updates on the input
- Practice: implement the technique with automata

Thanks for your attention!

] Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

- Kazana, W. and Segoufin, L. (2013).
 Enumeration of monadic second-order queries on trees.
 TOCL, 14(4).
- Olteanu, D. and Závodnỳ, J. (2015).
 Size bounds for factorised representations of query results. TODS, 40(1).