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Problem statement



Problem: Enumerating large result sets

Input

Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other
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Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

Important: every result computed exactly once
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General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬
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∧

z

Circuit

Input Compilation
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¬
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z

Circuit

Input Compilation
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¬
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Circuit Enumeration
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Results
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Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit
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Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

zy

x
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Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C| and constant delay
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Application 1: Factorized databases

• Factorized databases: succinct representation of database tables

A B

a b
a b′

represented by

×

〈A : a〉 ∪

〈B : b 〉 〈B : b′〉

{〈B : b〉, 〈B : b′〉}

{(〈A : a〉, 〈B : b〉), (〈A : a〉, 〈B : b′〉)}

• Relational product × • Relational union ∪

• Deterministic: We do not obtain the same tuple multiple times
Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay
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Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a database D

• Assumption: the database has bounded treewidth
→ Captures trees, words, etc.

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
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Proof techniques



Proof overview
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Normalization
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Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Generalization of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials
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Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no inconsistencies

• some technical problems→normalization necessary
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Conclusion



Summary and conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand

• Proposed approach:
• Develop linear-time compilation algorithm to circuits
• Use restricted circuit classes as standard intermediate
representation

• Develop general enumeration results on circuits

Future work:

• Theory: handle updates on the input
• Practice: implement the technique with automata

Thanks for your attention!
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