Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	000000	000000000000	00

Leveraging the Structure of Uncertain Data Tirer parti de la structure des données incertaines

Antoine Amarilli

Télécom ParisTech, DBWeb

March 14th, 2016

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000	Conclusion
Databases	5			

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	00
Database	S			

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	00
Database	S			

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	00
Database	S			

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	000000	0000000	000000000000	00

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	000000	0000000	000000000000	00

Computers often use databases to store data and query it

 \rightarrow Let's see a few examples...

DatabasesUncertaintyOve0000000000000

Overview of my PhD Research

Treelike Data

Conclusion

Database example: SMS on Android

		*	0.	42%	13:37
÷	John Doe			ê	و
				Hi ther Mon 14:3	re!:-) ² √⁄ ≜
	Just wanted at your defe	to let : ense!	you k	Now tha	at I'm 2 ✔ 🗎
			How	is it goi Mon 14:3	ing? 3 🖋 🛍
	Dunno yet				
	Just started				
	OK. Good lu tired of self- slides!	ck! I h referei	ope th ntial je	Ney won Okes in 1 Mon 14:34	i't get the 6 √ ∎
🙂 s					Ø

Uncertainty 0000000

Databases

Overview of my PhD Research

Treelike Data

Conclusion

Database example: SMS on Android

		*	0.	🗋 42% 💼	13:37
÷	John Doe			ê	r.
				Hi there Mon 14:32	!:-) \// 🛍
	Just wanted at your defe	to let : ense!	you k	Now that Mon 14:32	l'm √″ ≜
			How	is it goin Mon 14:33	g? √∕/ ≜
	Dunno yet				
រដូន	Just started				
	OK. Good lu tired of self- slides!	ck! l hi referei	ope th ntial jo	ney won't okes in th _{Mon 14:36}	iget le √∕/ ■
د ت	end secure	SMS			Ø

time	from	to	message
14:32	John	Α.	Hi there! :)
14:32	John	Α.	Just wanted
14:33	John	Α.	How is it
14:34	Α.	John	Dunno yet
14:34	Α.	John	Just started
14:36	John	Α.	OK. Good

Databases ●00	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
In reality.				

CREATE TABLE sms (_id INTEGER, thread_id INTEGER, address TEXT, address_device_id INTEGER, person INTEGER, date INTEGER, date_sent INTEGER, protocol INTEGER, read INTEGER, status INTEGER, type INTEGER, reply_path_present INTEGER, delivery_receipt_count INTEGER, subject TEXT, body TEXT, mismatched_identities TEXT, service_center TEXT, date_delivery_received INTEGER);

Databases ●00	Uncertainty 0000000	Overview of my PhD Research	Treelike Data	Conclusion 00
In reality.				

CREATE TABLE sms (_id INTEGER, thread_id INTEGER, address TEXT, address_device_id INTEGER, person INTEGER, date INTEGER, date_sent INTEGER, protocol INTEGER, read INTEGER, status INTEGER, type INTEGER, reply_path_present INTEGER, delivery_receipt_count INTEGER, subject TEXT, body TEXT, mismatched_identities TEXT, service_center TEXT, date_delivery_received INTEGER);

INSERT INTO sms VALUES(

14041,224, '+33611210549',1,NULL,1451921855098, 1451921849000,0,1,-1,-2147483628,0,0,NULL,

'Hi there!',NULL, '+33609002960',0);

INSERT INTO sms VALUES(

14042,224, **'+33611210549'**, 1, NULL, 1451921945081,

1451921945081, NULL, 1, -1, -2147483561, NULL, 0, NULL,

'Just wanted...',NULL,NULL,0);

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Database example: Wikipedia

Recent changes

- Naza; 14:48 . . (-59) . . 98.115.58.241
- HK Olimpija Ljubljana (2004); 14:48 . . (+4) . . 86.58.36.235
- Monster High; 14:48 . . (+18) . . 66.244.123.117
- List of songs recorded by Celine Dion; 14:48 . . (+25) . . 79.94.26.185
- Biodegradable waste; 14:48 . . (+5) . . 59.90.26.215

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Database example: Wikipedia

Recent changes

- Naza; 14:48 . . (-59) . . 98.115.58.241
- HK Olimpija Ljubljana (2004); 14:48 . . (+4) . . 86.58.36.235
- Monster High; 14:48 . . (+18) . . 66.244.123.117
- List of songs recorded by Celine Dion; 14:48 . . (+25) . . 79.94.26.185
- Biodegradable waste; 14:48 . . (+5) . . 59.90.26.215

title	time	size	user
Naza	14:48	-59	92.115.58.241
HK Olimpija Ljubljana (2004)	14:48	+4	86.58.36.235
Monster High	14:48	+18	66.244.123.117
List of songs recorded by Celine Dion	14:48	+25	79.94.26.185
Biodegradable waste	14:48	+5	59.90.26.215

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data	Conclusion 00
In reality				

```
CREATE TABLE mw recentchanges (rc id INT(8).
 rc timestamp VARCHAR(14), rc cur time VARCHAR(14),
 rc_user INT(10), rc_user_text VARCHAR(255),
 rc_namespace INT(11), rc_title VARCHAR(255),
 rc comment VARCHAR(255), rc minor TINYINT(3),
 rc bot TINYINT(3), rc new TINYINT(3),
 rc cur id INT(10), rc this oldid INT(10),
 rc_last_oldid INT(10), rc_type TINYINT(3),
 rc_moved_to_ns TINYINT(3), rc_moved_to_title VARCHAR(255),
 rc patrolled TINYINT(3), rc ip CHAR(15),
 rc_old_len INT(10), rc_new_len INT(10),
 rc_deleted TINYINT(1), rc_logid INT(10),
 rc log type VARCHAR(255), rc log action VARCHAR(255),
 rc params BLOB.
);
```

Databases 00●	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
In reality.				
CREATE T rc_tim rc_use	ABLE mw_recenterstamp VARCHA	htchanges (rc_id INT(8), AR(14), rc_cur_time VARCHAR c_user_text VARCHAR(255),	(14),	

```
rc_namespace INT(11), rc_title VARCHAR(255),
 rc_comment VARCHAR(255), rc_minor TINYINT(3),
 rc bot TINYINT(3), rc new TINYINT(3),
 rc cur id INT(10), rc this oldid INT(10),
 rc_last_oldid INT(10), rc_type TINYINT(3),
 rc_moved_to_ns TINYINT(3), rc_moved_to_title VARCHAR(255),
 rc patrolled TINYINT(3), rc ip CHAR(15),
 rc_old_len INT(10), rc_new_len INT(10),
 rc_deleted TINYINT(1), rc_logid INT(10),
 rc log type VARCHAR(255), rc log action VARCHAR(255),
 rc_params BLOB,
);
INSERT INTO mw recentchanges VALUES
  (1. '20160314144837'. '20160314144827'. 1. '92.115.58.241'. 0.
  'Naza', '', 0, 0, 0, 1, 2, 1, 0, 0, '', 1, '92.115.58.241',
 559, 500, 0, 0, NULL, NULL, ''),
INSERT INTO mw_recentchanges VALUES
  (2, '20160314144842', '20160314144842', 1, '66.244.123.117', 2,
  'Monster High', '', 0, 0, 1, 2, 3, 0, 1, 0, '', 1, '66.244.123.117',
 102, 120, 0, 0, NULL, NULL, '');
```

Uncertainty

Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty

- Databases usually assume that data is
 - $\rightarrow \text{ complete}$
 - $\rightarrow \, {\rm crisp}$
 - \rightarrow certain
 - \rightarrow correct
- In many situations, this is not the case...

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Ti O	reelike Data 0000000000000	Conclusion
Example:	Never-End	ing Language L	earniı	ng	
We	b		NELI	L	
				\searrow	
D					Refresh
Recently-Learn	ed Facts				Refresh
Recently-Learn	ied Facts		iteration	date learned cont	Refresh fidence
Recently-Learn instance kampioenschap van z	ed Facts	<u>e</u>	iteration 955	date learned cont 20-oct-2015 20-oct-2015	Refresh fidence 95.0 구요 특구 96.9 구요 특구
Recently-Learn instance kampioenschap van z cochran mill nature c kozy shack chocolati	red Facts <u>evitserland</u> is a <u>sports rac</u> enter is an <u>aquarium</u> e pudding is a kind of car	e dv	iteration 955 955 956	date learned cont 20-oct-2015 20-oct-2015 23-oct-2015	Refresh fidence 95.0 2 3 96.9 2 3 90.3 2 5
Recently-Learn instance kampioenschap van z cochran mill nature o kozy shack chocolate red delicious apple tr	red Facts <u>evitserland</u> is a <u>sports rac</u> enter is an <u>aquarium</u> <u>e pudding</u> is a kind of <u>car</u> ee is a <u>plant</u>	<u>e</u> d <u>v</u>	iteration 955 955 956 955	date learned cont 20-oct-2015 20-oct-2015 23-oct-2015 20-oct-2015	Refresh 95.0 2 5 96.9 2 5 90.3 2 5 90.3 2 5 92.8 2 5
Recently-Learn instance kampioenschap van z cochran mill nature o kozy shack chocolatur red delicious apple tr sale miami dade cou	red Facts <u>zwitserland</u> is a <u>sports rac</u> <u>senter</u> is an <u>aquarlum</u> <u>e pudding</u> is a kind of <u>car</u> <u>see</u> is a <u>plant</u> <u>nty</u> is a <u>sport</u>	<u>e</u> dy	iteration 955 955 956 955 955	date learned con 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015	Refresh 95.0 \$\$ 96.9 \$\$ 90.3 \$\$ 92.8 \$\$ 99.1 \$\$
Recently-Learn instance kampioenschap van z cochran mill nature o kozy shack chocolate red delicious apple tr sale miami dade cou chicken001 eat black.	red Facts <u>zwitserland</u> is a <u>sports rac</u> <u>senter</u> is an <u>aquarium</u> <u>a pudding</u> is a kind of <u>car</u> <u>ree</u> is a <u>plant</u> <u>inty</u> is a <u>sport</u> <u>beans</u>	e dy	iteration 955 955 956 955 955 955	date learned com 20-oct-2015 20-oct-2015 23-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015	Refresh 95.0 2 5 96.9 2 5 90.3 2 5 90.3 2 5 92.8 2 5 99.1 2 5 100.0 2 5
Recently-Learn instance kamploenschap van z cochran mill nature of kozy shack chocolate red delicious apple tr sale miami dade cou chicken001 eat black wrigtey field is the hor	red Facts <u>evitserland</u> is a <u>sports rac</u> <u>evitserland</u> is a <u>sports rac</u> <u>evitserland</u> is a <u>sport</u> <u>ree</u> is a <u>plant</u> <u>nty</u> is a <u>sport</u> <u>beans</u> <u>me venue for</u> the sports te	e dy am <u>chicago_cubs</u>	iteration 955 955 955 955 955 955 955	date learned com 20-oct-2015 20-oct-2015 23-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 07-nov-2015	Refresh 95.0 2 7 96.9 2 7 90.3 2 7 92.8 2 7 99.1 2 7 100.0 2 7 100.0 2 7
Recently-Learn instance kampioenschap van z cochran mill nature of kozy shack chocolate red delicious apple tr sale miami dade cou chicken001 eat black wrigley field is the hor lorena ochoa is a pers	and Facts <u>exvitserland</u> is a <u>sports rac</u> <u>enter</u> is an <u>aquarlum</u> <u>a pudding</u> is a kind of <u>car</u> <u>ree</u> is a <u>plant</u> <u>inty</u> is a <u>sport</u> <u>beans</u> <u>me venue for</u> the sports te son who <u>has residence in</u>	e dy nam <u>chicago cubs</u> the geopolitical location <u>mexico</u>	iteration 955 955 955 955 955 955 955 959 958	date learned con 20-oct-2015 20-oct-2015 23-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 07-nov-2015 03-nov-2015 03-nov-2015	Refresh 95.0 2 C 96.9 2 C 90.3 2 C 92.8 2 C 92.8 2 C 99.1 2 C 100.0 2 C 100.0 2 C 100.0 2 C
Recently-Learn instance kamploenschap van zi cochran mill nature of kozy shack chocolate red delicious apple tr sale miami dade cou chicken001 eat black wrigley field is the hor lorena ochoa is a pers umass lowell river ha	ed Facts <u>ewitserland</u> is a <u>sports rac</u> <u>eenter</u> is an <u>aquarium</u> <u>e pudding</u> is a kind of <u>car</u> <u>ree</u> is a <u>plant</u> <u>inty</u> is a <u>sport</u> <u>beans</u> <u>me venue for</u> the sports te son who <u>has residence in</u> <u>twks hired john calipari</u>	e dy am <u>chicago cubs</u> the geopolitical location <u>mexico</u>	iteration 955 955 955 955 955 955 959 958 955	date learned con 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 20-oct-2015 07-nov-2015 03-nov-2015 20-oct-2015	Refresh 95.0 20 5 96.9 20 5 90.3 20 5 90.3 20 5 92.8 20 5 99.1 20 5 100.0 20 5 100.0 20 5 100.0 20 5 98.4 20 5

 tabases
 Uncertainty
 Overview of my PhD Research

 0
 0000000
 0000000

Treelike Data

Conclusion

Many sources of uncertainty

• Errors in sources:

This article's **factual accuracy is disputed**. Please help to ensure that disputed statements are reliably sourced. See the relevant discussion on the talk page. (*November 2015*)

bases Uncertainty Overview of my PhD Research

Treelike Data

Conclusion

Many sources of uncertainty

• Errors in sources:

This article's **factual accuracy is disputed**. Please help to ensure that disputed statements are reliably sourced. See the relevant discussion on the talk page. (*November 2015*)

• Entity disambiguation:

"The place and function of Venus in Ovid..."

"Computed backscattering function of Venus and the moon ... "

ases Uncertainty Overview of my PhD Research

Treelike Data

Conclusion

Many sources of uncertainty

• Errors in sources:

This article's **factual accuracy is disputed**. Please help to ensure that disputed statements are reliably sourced. See the relevant discussion on the talk page. (*November 2015*)

• Entity disambiguation:

"The place and function of Venus in Ovid ... "

"Computed backscattering function of Venus and the moon ... "

• Anaphora resolution:

"Obama told Hollande that he was not a spying target"

Uncertainty

Overview of my PhD Research

Many sources of uncertainty

Errors in sources:

This article's factual accuracy is disputed. Please help to ensure that disputed statements are reliably sourced. See the relevant discussion on the talk page, (November 2015)

Entity disambiguation:

"The place and function of Venus in Ovid..."

"Computed backscattering function of Venus and the moon ... "

Anaphora resolution:

"Obama told Hollande that he was not a spying target"

Incompleteness

Uncertainty

Overview of my PhD Research

Treelike Data

Conclusion

Many uncertain data applications

- Information extraction
- Machine learning
- Speech recognition
- Data integration
- Crowdsourcing

• ...

Uncertainty

Overview of my PhD Research

Treelike Data

Conclusion

Many uncertain data applications

- Information extraction
- Machine learning
- Speech recognition
- Data integration
- Crowdsourcing
- ...
- PhD defense scheduling

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited

79

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited

79

Number of definite yes answers

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37

Number of definite no answers

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37
Number of definite no answers	13

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37
Number of definite no answers	13

Number of uncertain answers

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37
Number of definite no answers	13
Number of uncertain answers	29

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37
Number of definite no answers	13
Number of uncertain answers	29

Number of additional people showing up

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79
Number of definite yes answers	37
Number of definite no answers	13
Number of uncertain answers	29
Number of additional people showing up	??

Uncertainty •000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics

Number of people invited	79	
Number of definite yes answers	37	
Number of definite no answers	13	
Number of uncertain answers	29	
Number of additional people showing up	??	
atabases	Uncertainty	Overview of
----------	-------------	-------------
00	000000	0000000

Treelike Data

Conclusion

Why is uncertainty challenging?

• Data is uncertain if we don't know its exact state

my PhD Research

• A possible world is an actual outcome

ases	Uncertainty	Overview of
	000000	0000000

Databa

Overview of my PhD Research

Treelike Data

Conclusion

Why is uncertainty challenging?

- Data is uncertain if we don't know its exact state
- A possible world is an actual outcome
- Simplest method: write out all possible worlds

es Uncertainty Overview

Overview of my PhD Research

Treelike Data

Conclusion

Why is uncertainty challenging?

- Data is uncertain if we don't know its exact state
- A possible world is an actual outcome
- Simplest method: write out all possible worlds

List of the people who may show up:

- Flo
- Guy
- Tat
- ...

• more?

ses Uncertainty Overview

Treelike Data

Conclusion

Why is uncertainty challenging?

- Data is uncertain if we don't know its exact state
- A possible world is an actual outcome
- Simplest method: write out all possible worlds

List of the people who may show up:

- Flo \rightarrow 29 uncertain people
- Guy
- Tat
- ...

• more?

es Uncertainty Overview

Treelike Data

Conclusion

Why is uncertainty challenging?

- Data is uncertain if we don't know its exact state
- A possible world is an actual outcome
- Simplest method: write out all possible worlds

List of the people who may show up:

- Flo \rightarrow 29 uncertain people
- Guy \rightarrow 536 870 912 possibilities
- Tat
- ...

more?

Uncertainty 000000

Why is uncertainty challenging?

- Data is uncertain if we don't know its exact state
- A possible world is an actual outcome
- Simplest method: write out all possible worlds

List of the people who may show up:

- \rightarrow 29 uncertain people Flo
- Tat

Guy

• ...

o more?

- \rightarrow 536 870 912 possibilities
 - \rightarrow If the list of people is incomplete, infinitely many possible completions

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	000000	000000	000000000000	00

Uncertain databases represent implicitly the possible worlds

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	000000	0000000	000000000000	00

Uncertain databases represent implicitly the possible worlds

\rightarrow	Pro	hahi	lities
	110	Dabi	incico

Flo	0.4
Guy	0.3
Tat	0.2
÷	

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	000000	0000000	000000000000	00

Uncertain databases represent implicitly the possible worlds

 $\rightarrow \ \mathsf{Probabilities}$

Flo	0.4
Guy	0.3
Tat	0.2
÷	

 $\rightarrow \ \text{Correlations}$

- Only one of Isa and Pal can come
- Mat and Val either come together or not
- Nell will probably come if Mike does

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	000000	000000	00000000000	00

Uncertain databases represent implicitly the possible worlds

 $\rightarrow \ \mathsf{Probabilities}$

Flo	0.4
Guy	0.3
Tat	0.2
÷	

 \rightarrow Correlations

- Only one of Isa and Pal can come
- Mat and Val either come together or not
- Nell will probably come if Mike does

 \rightarrow Logical rules

If someone comes to the defense then they will also come to the drinks

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

- Representing our knowledge about the data
- Computing numerical probabilities
- Reasoning with logical constraints

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

- Representing our knowledge about the data
- Computing numerical probabilities
- Reasoning with logical constraints
- \rightarrow End goal: A database system with first-class uncertainty
 - Feed uncertain data to the system
 - Get uncertain query results

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

- Representing our knowledge about the data
- Computing numerical probabilities
- Reasoning with logical constraints
- \rightarrow End goal: A database system with first-class uncertainty
 - Feed uncertain data to the system
 - Get uncertain query results

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

- Representing our knowledge about the data
- Computing numerical probabilities
- Reasoning with logical constraints
- \rightarrow End goal: A database system with first-class uncertainty
 - Feed uncertain data to the system
 - Get uncertain query results

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

- Representing our knowledge about the data
- Computing numerical probabilities
- Reasoning with logical constraints
- \rightarrow End goal: A database system with first-class uncertainty
 - Feed uncertain data to the system
 - Get uncertain query results

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

- Representing our knowledge about the data
- Computing numerical probabilities
- Reasoning with logical constraints
- \rightarrow End goal: A database system with first-class uncertainty
 - Feed uncertain data to the system
 - Get uncertain query results

Databases 000	Uncertainty 0000●00	Overview of my PhD	Research	Treelike Data 000000000000	Conclu: 00
Why are	uncertainty	and proba	bilities c	challenging?	

Uncertain attendees

Flo	0.4
Guy	0.3
Tat	0.2
Ell	0.1
÷	

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000	Conclu 00
1 4 /1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Why are uncertainty and probabilities challenging?

Uncertain attendees

Flo	0.4
Guy	0.3
Tat	0.2
Ell	0.1
:	

.

People who should meet

Flo	Guy
Ell	Tat
Ell	Guy

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclus
000	0000000		000000000000	00
Why are	uncertainty	and probabilities	challenging?	

Uncertain attendees	People who should meet
Flo 0.4 Guy 0.3 Tat 0.2 Ell 0.1	Flo Guy Ell Tat Ell Guy

What is the probability that one of the pairs can meet?

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

Ell _____ Tat 0.1 0.2 Guy Flo 0.3 0.4

16/42

Overview of my PhD Research

Treelike Data

Conclusion

Guy	Flo
0.3	0.4

Databases Uncertainty Ove

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

Guy Flo 0.3 0.4

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

Ell _____ Tat 0.2

Guy _____ Flo 0.3 0.4

Overview of my PhD Research

Treelike Data

Conclusion

Guy	Flo
0.3	0.4

Databases Uncertainty Ov 000 000000 00

Overview of my PhD Research

Treelike Data

Conclusion

0.3

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

0.4

0.3

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

0.4

Overview of my PhD Research

Treelike Data

Conclusion

 Databases
 Uncertainty
 Overview of my PhD Research

 000
 0000000
 0000000

Treelike Data

Conclusion

Overview of my PhD Research

Treelike Data

Conclusion

Overview of my PhD Research

Treelike Data

Conclusion

Treelike Data

Conclusion 00

Computing probabilities

If EII is missing: 0.3×0.4

Treelike Data

Conclusion 00

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

Treelike Data

Conclusion

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$ If EII is here:

Treelike Data

Conclusion

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

If Ell is here: If Guy is missing:

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

If Ell is here: If Guy is missing: We need Tat: 0.2
Databases Uncertainty 000 000000 Overview of my PhD Research

Treelike Data

Conclusion 00

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

If Ell is here: If Guy is missing: We need Tat: 0.2 If Guy is here: Databases Uncertainty 000 0000000 Overview of my PhD Research

Treelike Data

Conclusion 00

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

If Ell is here: If Guy is missing: We need Tat: 0.2 If Guy is here: success!

Databases	Uncertainty
000	0000000

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

If Ell is here: If Guy is missing: We need Tat: 0.2 If Guy is here: success! Total:

Databases	Uncertainty
000	0000000

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

If Ell is missing: $0.3 \times 0.4 = 0.12$ If Ell is here: If Guy is missing: We need Tat: 0.2

If Guy is here: success!

Total: $(1-0.1) \times 0.12$

Databases Uncert

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

If EII is missing: $0.3 \times 0.4 = 0.12$

If Ell is here: If Guy is missing: We need Tat: 0.2 If Guy is here: success!

Total: $(1 - 0.1) \times 0.12 + 0.1 \times$

Databases	Uncertainty
000	0000000

Overview of my PhD Research

Treelike Data

Computing probabilities

If Ell is missing: $0.3 \times 0.4 = 0.12$ If Ell is here: If Guy is missing: We need Tat: 0.2If Guy is here: success! Total: $(1 - 0.1) \times 0.12$ $+0.1 \times (0.3 + (1 - 0.3) \times 0.2)$ Databases Uncert

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion 00

Computing probabilities

If Ell is missing: $0.3 \times 0.4 = 0.12$ If Ell is here: If Guy is missing: We need Tat: 0.2 If Guy is here: success! Total: $(1 - 0.1) \times 0.12$ $+ 0.1 \times (0.3 + (1 - 0.3) \times 0.2)$ = 0.152

Databases	Uncertainty
000	0000000

Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

Databases 000

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

Databases U 000 O

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Computing probabilities

- This task is intractable (#P-hard)
- Many other tasks on uncertain data are intractable or even undecidable

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
My PhD	topic			

 \rightarrow Make it easier to use uncertain data by making assumptions on the structure of data

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Mv PhD	topic			

 \rightarrow Make it easier to use uncertain data by making assumptions on the structure of data

0.1 ----- 0.2

Databases 000	Uncertainty 000000	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Mv PhD	topic			

- \rightarrow Make it easier to use uncertain data by making assumptions on the structure of data
- 0.1 0.2 $0.1 \times 0.2 = 0.02$

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Mv PhD	topic			

- \rightarrow Make it easier to use uncertain data by making assumptions on the structure of data
- 0.1 0.2 $0.1 \times 0.2 = 0.02$ • $0.3 \times 0.4 = 0.12$

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
My PhD	topic			

- → Make it easier to use uncertain data by making assumptions on the structure of data
- 0.1 ---- 0.2 0.1 × 0.2 = 0.02 • 0.3 × 0.4 = 0.12
 - $0.5 \times 0.4 = 0.12$ • $0.5 \times 0.7 = 0.35$

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
My PhD	topic			

- → Make it easier to use uncertain data by making assumptions on the structure of data
- 0.1 0.2 0.1 × 0.2 = 0.02 • 0.3 × 0.4 = 0.12 • 0.5 × 0.7 = 0.35 0.3 - 0.4 • 0.6 × 0.8 = 0.48

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Mv PhD	topic			

- → Make it easier to use uncertain data by making assumptions on the structure of data
- 0.1 ----- 0.2

- $0.1 \times 0.2 = 0.02$
- $0.3 \times 0.4 = 0.12$
- $\bullet \ 0.5 \times 0.7 = 0.35$
- $\bullet \ 0.6 \times 0.8 = 0.48$
- $\rightarrow 1 (1 0.02) \times \cdots \times (1 0.48)$

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Mv PhD	topic			

- → Make it easier to use uncertain data by making assumptions on the structure of data
- 0.1 _____ 0.2 0.3 -0.4 0.5 0.6

0.8

0.7

- $0.1 \times 0.2 = 0.02$
- $0.3 \times 0.4 = 0.12$
- $0.5 \times 0.7 = 0.35$

•
$$0.6 \times 0.8 = 0.48$$

→
$$1 - (1 - 0.02) \times \cdots \times (1 - 0.48)$$

= 0.7085088

Databases 000	Uncertainty 000000●	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Mv PhD	topic			

- → Make it easier to use uncertain data by making assumptions on the structure of data
- $0.1 \times 0.2 = 0.02$ 0.1 ----- 0.2 • $0.3 \times 0.4 = 0.12$ • $0.5 \times 0.7 = 0.35$ 0.3 -0.4 • $0.6 \times 0.8 = 0.48$ \rightarrow 1 - (1 - 0.02) $\times \cdots \times$ (1 - 0.48) = 0.70850880.5 0.6 **KPECTED** 0.7 0.8

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000	Conclusion
Table of c	contents			

3 Overview of my PhD Research

Probabilities and Provenance on Trees and Treelike Instances

5 Conclusion

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	•000000	000000000000	
Roadmap				

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	•000000	0000000000000	00
Roadmap				

- Representing and querying uncertain ordered data
 - Possibility and certainty on ordered relations Preprint: A., Ba, Deutch, Senellart 2016
 - Completing uncertain ordered numerical values Preprint: A., Amsterdamer, Milo, Senellart 2016

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	•000000	0000000000000	00
Roadmap				

- Representing and querying uncertain ordered data
 - Possibility and certainty on ordered relations Preprint: A., Ba, Deutch, Senellart 2016
 - Completing uncertain ordered numerical values Preprint: A., Amsterdamer, Milo, Senellart 2016
- Reasoning on incomplete data under constraints
 - Combining several decidable reasoning languages A., Benedikt 2015a, IJCAI'15
 - Addressing the finiteness hypothesis A., Benedikt 2015b, LICS'15; Thesis Part II

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000	Conclusion
Roadmap				

- Representing and querying uncertain ordered data
 - Possibility and certainty on ordered relations Preprint: A., Ba, Deutch, Senellart 2016
 - Completing uncertain ordered numerical values Preprint: A., Amsterdamer, Milo, Senellart 2016
- Reasoning on incomplete data under constraints
 - Combining several decidable reasoning languages A., Benedikt 2015a, IJCAI'15
 - Addressing the finiteness hypothesis A., Benedikt 2015b, LICS'15; Thesis Part II
- Query evaluation on treelike probabilistic data A., Bourhis, Senellart 2015, 2016, ICALP'15, PODS'16; Thesis Part I

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	•000000	000000000000	00
D				

Roadmap

- Representing and querying uncertain ordered data
 - Possibility and certainty on ordered relations Preprint: A., Ba, Deutch, Senellart 2016
 - Completing uncertain ordered numerical values Preprint: A., Amsterdamer, Milo, Senellart 2016
- Reasoning on incomplete data under constraints
 - Combining several decidable reasoning languages A., Benedikt 2015a, IJCAI'15
 - Addressing the finiteness hypothesis A., Benedikt 2015b, LICS'15; Thesis Part II
- Query evaluation on treelike probabilistic data A., Bourhis, Senellart 2015, 2016, ICALP'15, PODS'16; Thesis Part I

Other work: (A. 2014, 2015a,b; A., Allauzen, Mohri 2015; A., Amsterdamer, Milo 2014a,b; A., Maniu, Senellart 2015; A., Galárraga, Preda, Suchanek 2014; Talaika, Biega, A., Suchanek 2015; Tang, A., Senellart, Bressan 2014a,b)

Databases

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Uncertain ordered relations

Food

tiramisu kougelhopf

bretzel

munster

Drinks

champagne

riesling

Conclusion 00

Uncertain ordered relations

Food

• I partially know guest preferences tiramisu kougelhopf

bretzel

munster

Drinks

champagne

riesling

Drinks

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusio
000	0000000	000000	000000000000	00
11 .		1.1.1		

Drinks

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusior
000	0000000		0000000000000	00
11		1.0		

Drinks

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion

Drinks

I have a set of the	متناميتها ببم	lations		
000	0000000	000000	00000000000	00
Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclu

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data	Conclusio 00
Uncertain	ordered re	elations		

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 0000000000000	Conclusion
Uncertain	ordered r	relations		

kougelhopf

kougelhopf munster

Not possible:

Drinks

champagne riesling

 \rightarrow On which queries and data can we efficiently find possible and certain answers?

Databases Uncertainty Overview of my PhD Research Treelike Data

Conclusion 00

Uncertain numerical values

• How much food do people eat?

 Databases
 Uncertainty
 Overview of m

 000
 0000000
 0000000

Overview of my PhD Research

Treelike Data

Conclusion

Uncertain numerical values

- How much food do people eat?
- Let's ask friends who defended recently
| Databases
000 | Uncertainty
0000000 | Overvie
00000 | w of my PhD Research
00 | Treelike Data
0000000000000 | Conclusion |
|------------------|------------------------|------------------|---|--|------------|
| Uncertain | numer | ical valı | ies | | |
| small
sweet | tiny
both | small
salty | | | |
| medium
sweet | small
both | medium
salty | How much focLet's ask friend | od do people eat?
ds who defended i | recently |
| large
sweet | medium
both | large
salty | | | |
| | large | | | | |

Databases 000	Uncertainty 0000000	Overvie 00000	w of my PhD Research 00	Treelike Data 0000000000000	Conclusion
Uncertain	numer	cal valu	ies		
small sweet	tiny both	small salty			
medium sweet	small both	medium salty	How much focLet's ask friend	d do people eat? <mark>Is</mark> who defended	recently
large sweet	medium both	large salty			
	large				

Databases 000	Uncertainty 0000000	Overvier 00000	w of my PhD Research 00	Treelike Data 000000000000	Conclusion
Uncertain	numer	ical valu	ies		
small sweet	tiny both	small salty			
medium sweet	small both	medium salty	edium salty • How much food do people ea • Let's ask friends who defended • Some order relations are impl large salty	do people eat? who defended rec ions are implied	ently
large sweet	medium both	large salty			

large both DatabasesUncertaintyOr00000000000000000

Overview of my PhD Research

Treelike Data

Conclusion

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied

Overview of my PhD Research

Treelike Data

Conclusion 00

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied
- How to estimate for my own defense?

Overview of my PhD Research 000000

Treelike Data

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied
- How to estimate for my own defense?

DatabasesUncertaintyOverview000000000000000

Overview of my PhD Research

Treelike Data

Conclusion

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied
- How to estimate for my own defense?

Overview of my PhD Research

Treelike Data

Conclusion

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied
- How to estimate for my own defense?
- \rightarrow Interpolation scheme for posets based on integration on polytopes

Overview of my PhD Research

Treelike Data

Conclusion 00

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied
- How to estimate for my own defense?
- \rightarrow Interpolation scheme for posets based on integration on polytopes

Overview of my PhD Research

Treelike Data

Conclusion 00

- How much food do people eat?
- Let's ask friends who defended recently
- Some order relations are implied
- How to estimate for my own defense?
- \rightarrow Interpolation scheme for posets based on integration on polytopes
- $\rightarrow\,$ Complexity study and tractable cases

Databases	l
000	C

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb

Databases	
000	

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student

Databas	es
000	

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student
- Is the following query certain?
- → Will a DBWeb student meet their advisor at the drinks?

Database	s
000	

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb
- Fabian comes to the drinks

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student
- Is the following query certain?
- → Will a DBWeb student meet their advisor at the drinks?

Data	bases
000	

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb
- Fabian comes to the drinks
- Luis is a DBWeb student

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student
- Is the following query certain?
- → Will a DBWeb student meet their advisor at the drinks?

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb
- Fabian comes to the drinks
- Luis is a DBWeb student
- Luis comes to the drinks

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student
- Is the following query certain?
- → Will a DBWeb student meet their advisor at the drinks?

Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb
- Fabian comes to the drinks
- Luis is a DBWeb student
- Luis comes to the drinks

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student
- Is the following query certain?
- → Will a DBWeb student meet their advisor at the drinks?
- \rightarrow Yes!

Databases

Uncertainty 0000000 Overview of my PhD Research

Treelike Data

Conclusion

Open-world query answering

Incomplete data:

- Fabian supervises Luis
- Fabian is at the defense
- Fabian is in DBWeb
- Fabian comes to the drinks
- Luis is a DBWeb student
- Luis comes to the drinks

A Logical constraints:

- People at the defense will have drinks
- All DBWeb students will have drinks
- If your advisor is in DBWeb then you are a DBWeb student
- Is the following query certain?
- → Will a DBWeb student meet their advisor at the drinks?
- \rightarrow Yes!

 \rightarrow For which rule languages is this task decidable?

abases Uncertainty Over

Overview of my PhD Research

Treelike Data

Conclusion

Expressive open-world query answering

Different communities use different kinds of constraints:

• Constraints with facts of arity > 2

Treelike Data

Conclusion

Expressive open-world query answering

- Constraints with facts of arity > 2
 - Fabian supervises Luis: arity 2
 - Antoine's defense is in B312 on Monday: arity 3

Treelike Data

Conclusion

Expressive open-world query answering

- Constraints with facts of arity > 2
 - Fabian supervises Luis: arity 2
 - Antoine's defense is in B312 on Monday: arity 3
- Constraints with number restrictions

Treelike Data

Conclusion

Expressive open-world query answering

- Constraints with facts of arity > 2
 - Fabian supervises Luis: arity 2
 - Antoine's defense is in B312 on Monday: arity 3
- Constraints with number restrictions
 - Everyone can invite at most one person
 - Students have at most two advisors

Treelike Data

Conclusion

Expressive open-world query answering

- Constraints with facts of arity > 2
 - Fabian supervises Luis: arity 2
 - Antoine's defense is in B312 on Monday: arity 3
- Constraints with number restrictions
 - Everyone can invite at most one person
 - Students have at most two advisors
- \rightarrow I show that those can be combined under some restrictions to obtain decidable query answering

s Uncertainty C 0000000 C

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Rules:

Data: ∩ Antoine ↓ John Uncertainty O 0000000 O

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Rules:

• Each guest invites someone

Uncertainty O 0000000 O

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: () Antoine ↓ John

- Each guest invites someone
- Nobody is invited by two people

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: () Antoine ↓ John

- Each guest invites someone
- Nobody is invited by two people
- \rightarrow Is this sensible?

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: () Antoine John

- Each guest invites someone
- Nobody is invited by two people
- \rightarrow Is this sensible?

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: () Antoine John ?

- Each guest invites someone
- Nobody is invited by two people
- \rightarrow Is this sensible?

Uncertainty O 0000000 O

Overview of my PhD Research

Treelike Data

Conclusion 00

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: () Antoine John ?

- Each guest invites someone
- Nobody is invited by two people
- \rightarrow Is this sensible?

Uncertainty Or 0000000 Or

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: Antoine John ? Ŷ ?

- Each guest invites someone
- Nobody is invited by two people
- \rightarrow Is this sensible?

Uncertainty Ov 0000000 00

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

 \rightarrow Is this sensible?

Each guest invites someone

Nobody is invited by two people

Rules:

Data: Antoine John 2 Ψ

Uncertainty Ove

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

 \rightarrow Is this sensible?

Each guest invites someone

Nobody is invited by two people

Rules:

Data: Antoine John . . .

Uncertainty Ove

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Each guest invites someone

 \rightarrow Is this sensible? **No!**

Nobody is invited by two people

Rules:

Data: Antoine John . . .

Uncertainty Ov 0000000 OC

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Each guest invites someone

Nobody is invited by two peopleThere are finitely many guests!

Rules:

Data: Antoine John

. . .

Uncertainty O 0000000 O

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: Antoine John

. . .

- Each guest invites someone
- Nobody is invited by two people
- There are finitely many guests!
- \rightarrow Can we do reasoning assuming finiteness?
Uncertainty 0000000

Overview of my PhD Research

Treelike Data

Conclusion

Query answering assuming finiteness

Consider the guests to the defense, \longrightarrow shows who invites whom

Data: Antoine John

. . .

Databases

Rules:

- Each guest invites someone
- Nobody is invited by two people
- There are finitely many guests!
- \rightarrow Can we do reasoning assuming finiteness?
- \rightarrow What difference does it make?

Databases	Uncertainty
000	0000000

Treelike Data

Conclusion

Finite open-world query answering

- I study the following constraints on arbitrary arity:
 - Inclusion dependencies with one exported element

bases	Uncertainty
	0000000

Data

Overview of my PhD Research

Treelike Data 000000000000 Conclusion

Finite open-world query answering

- I study the following constraints on arbitrary arity:
 - Inclusion dependencies with one exported element
 - \rightarrow If x invites y then y invites some z

bases	Uncertainty
	0000000

Data

Overview of my PhD Research

Treelike Data

Conclusion

Finite open-world query answering

- I study the following constraints on arbitrary arity:
 - Inclusion dependencies with one exported element
 - \rightarrow If x invites y then y invites some z
 - Functional dependencies

ases	Uncertainty
	0000000

Databa

Overview of my PhD Research

Treelike Data

Conclusion

Finite open-world query answering

- I study the following constraints on arbitrary arity:
 - Inclusion dependencies with one exported element
 - \rightarrow If x invites y then y invites some z
 - Functional dependencies

 \rightarrow If x and y invite z then x = y

5	Uncertainty
	0000000

Treelike Data

Conclusion

Finite open-world query answering

• I study the following constraints on arbitrary arity:

- Inclusion dependencies with one exported element
 - \rightarrow If x invites y then y invites some z
- Functional dependencies

 \rightarrow If x and y invite z then x = y

 \rightarrow We can compute new constraints implied by finiteness using (Cosmadakis, Kanellakis, Vardi 1990)

es	Uncertaint
	0000000

Treelike Data

Conclusion

Finite open-world query answering

- I study the following constraints on arbitrary arity:
 - Inclusion dependencies with one exported element
 - \rightarrow If x invites y then y invites some z
 - Functional dependencies

 \rightarrow If x and y invite z then x = y

- \rightarrow We can compute new constraints implied by finiteness using (Cosmadakis, Kanellakis, Vardi 1990)
- \rightarrow With the new constraints, we can forget finiteness

ses	Uncerta
	00000

Treelike Data

Conclusion

Finite open-world query answering

- I study the following constraints on arbitrary arity:
 - Inclusion dependencies with one exported element
 - \rightarrow If x invites y then y invites some z
 - Functional dependencies

 \rightarrow If x and y invite z then x = y

- \rightarrow We can compute new constraints implied by finiteness using (Cosmadakis, Kanellakis, Vardi 1990)
- \rightarrow With the new constraints, we can forget finiteness
- → First techniques for open-world query answering with arbitrary arity signatures and functional dependencies where assuming finiteness makes a difference

 Databases
 Uncertainty
 Overview of my PhD Research
 Treelike Data
 Conclusion

 000
 0000000
 00000000
 00
 00
 00

Table of contents

Probabilities and Provenance on Trees and Treelike Instances

5 Conclusion

abases	Uncert
C	0000

Treelike Data ●00000000000000 Conclusion

Tuple-independent databases

We fix a relational signature σ (here: *S*, arity 2).

S		
а	а	1
b	v	0.5
b	W	0.2

tabases	Uncertainty	Overview of r
0	0000000	0000000

Treelike Data ●0000000000000 Conclusion

Tuple-independent databases

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data ●000000000000	Conclusion
		1		

We fix a relational signature σ (here: *S*, arity 2).

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusio
000	0000000		●000000000000	00
T 1 1		1		

We fix a relational signature σ (here: *S*, arity 2).

0.5	imes 0.2
	S
а	а
Ь	V
b	W

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusio
000	0000000		●000000000000	00
T 1 1	1 1 .	1		

We fix a relational signature σ (here: *S*, arity 2).

0.5	$\times 0.2$	$0.5 \times (1)$	1 - 0.2)
:	S	9	S
а	а	а	а
b	V	Ь	V
Ь	W		

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusi
000	0000000		●000000000000	00
T 1 1	1 1 .	1		

We fix a relational signature σ (here: *S*, arity 2).

0.5 :	× 0.2	$0.5 \times ($	1 - 0.2)	(1 - 0.	$(5) \times 0.$	2
	S	:	S	2	5	
а	а	а	а	 а	а	
Ь	V	b	V			
Ь	W			b	W	

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusio
000	0000000		●000000000000	00
- · ·	1 I I	1		

We fix a relational signature σ (here: *S*, arity 2).

0.5 >	× 0.2	$0.5 \times (1)$	1 - 0.2)	(1 - 0.	$(5) \times 0.2$	(1 - 0.5)	$\times (1 - 0)$.2)
9	S	9	5		S		S	
а	а	а	а	а	а	а	а	
b	V	b	V					
b	W			Ь	W			

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	00000000000	00

We want to evaluate the probability of a query on a TID instance

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	00000000000	00

We want to evaluate the probability of a query on a TID instance

$$q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$$

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

R		
а	1	
b	0.4	
С	0.6	

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

R				S	
а	1		а	а	1
Ь	0.4		b	v	0.5
С	0.6		Ь	W	0.2

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

	R	S			Т	
а	1	а	а	1	v	0.3
b	0.4	b	V	0.5	W	0.7
С	0.6	Ь	W	0.2	b	1

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

	R	S			Т	
а	1	а	а	1	V	0.3
b	0.4	b	V	0.5	W	0.7
С	0.6	Ь	W	0.2	Ь	1

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

	R	S			Т	
а	1	а	а	1	V	0.3
b	0.4	b	V	0.5	W	0.7
С	0.6	b	W	0.2	b	1

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

	R	S			Т	
а	1	а	а	1	v	0.3
b	0.4	b	V	0.5	W	0.7
С	0.6	b	W	0.2	b	1

• The query is true iff R(b) is here and one of:

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

	R	_	S			т	
а	1		а	а	1	V	0.3
b	0.4		b	V	0.5	W	0.7
С	0.6		b	W	0.2	b	1

• The query is true iff R(b) is here and one of:

• S(b, v) and T(v) are here

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R			S		Т		
а	1		а	а	1	v	0.3
b	0.4		b	v	0.5	W	0.7
С	0.6		b	W	0.2	b	1

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R			S		Т		
а	1		а	а	1	v	0.3
b	0.4		b	V	0.5	W	0.7
С	0.6		b	W	0.2	Ь	1

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

 \rightarrow Probability:

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R			S		Т		
а	1		а	а	1	v	0.3
b	0.4		b	V	0.5	W	0.7
С	0.6		b	W	0.2	Ь	1

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

 \rightarrow Probability:

 $0.4 \times$

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R				S		Т		
а	1	ć	a a	а	1	V	0.3	
b	0.4	l	5	V	0.5	W	0.7	
С	0.6	l	ο I	V	0.2	Ь	1	

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

 \rightarrow Probability:

 $0.4 \times (1 -$

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R		_		S		Т		
а	1		а	а	1	V	0.3	
b	0.4		b	V	0.5	w	0.7	
С	0.6		b	W	0.2	Ь	1	

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

 \rightarrow Probability:

 $0.4 \times (1 - (1 - 0.5 \times 0.3))$

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R			S		Т		
а	1		а	а	1	V	0.3
b	0.4		b	V	0.5	W	0.7
С	0.6		b	w	0.2	b	1

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

 \rightarrow Probability:

 $0.4 \times (1 - (1 - 0.5 \times 0.3) \times (1 - 0.2 \times 0.7))$

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000	00

We want to evaluate the probability of a query on a TID instance

 $q: \exists x y \ R(x) \land S(x, y) \land T(y)$

R		S			Т	
а	1	а	а	1	V	0.3
b	0.4	b	V	0.5	W	0.7
С	0.6	b	W	0.2	b	1

• The query is true iff R(b) is here and one of:

- S(b, v) and T(v) are here
- S(b, w) and T(w) are here

 \rightarrow Probability:

 $0.4 \times \left(1 - (1 - 0.5 \times 0.3) \times (1 - 0.2 \times 0.7)\right) = 0.1076$

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: (Dalvi, Suciu 2012)
 - \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
 - There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: (Dalvi, Suciu 2012)
 - \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
 - There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: (Dalvi, Suciu 2012)
 - \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
 - There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in Q \setminus S$ on all instances

Complexity of probabilistic query evaluation (PQE)

What is the data complexity of probabilistic query evaluation depending on the class Q of queries and class I of instances?

- Existing dichotomy result: (Dalvi, Suciu 2012)
 - \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
 - There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in \mathcal{Q} \setminus \mathcal{S}$ on all instances
 - $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$ is unsafe!

Complexity of probabilistic query evaluation (PQE)

What is the data complexity of probabilistic query evaluation depending on the class Q of queries and class I of instances?

- Existing dichotomy result: (Dalvi, Suciu 2012)
 - \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
 - There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in \mathcal{Q} \setminus \mathcal{S}$ on all instances
 - $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$ is unsafe!

Is there a smaller class \mathcal{I} such that PQE is tractable for a larger \mathcal{Q} ?

 Databases
 Uncertainty
 Overview of my PhD Research

 000
 0000000
 0000000

Treelike Data

Conclusion

Trees and treelike instances

\bullet Goal: find an instance class ${\cal I}$ where PQE is tractable

Databases	Uncertainty	Overview of my PhD Research	Treelike
000	0000000	0000000	000000

Treelike Data

Conclusion

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: let \mathcal{I} be treelike instances (constant bound on treewidth)

Databases	Uncertainty	Overview of my PhD Research	Ti
000	0000000	0000000	0

Treelike Data

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: let \mathcal{I} be treelike instances (constant bound on treewidth)
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and (k-1)-grids have treewidth k-1

Databases	Uncertainty	Overview of my PhD Research
000	0000000	000000

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: let \mathcal{I} be treelike instances (constant bound on treewidth)
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and (k-1)-grids have treewidth k-1
- \rightarrow Known results (Courcelle 1990):
 - \mathcal{I} : treelike instances; \mathcal{Q} : monadic second-order queries
 - $\rightarrow\,$ non-probabilistic QE is in linear time

Databases	Uncertainty	Overview of my PhD Research
000	0000000	000000

Treelike Data

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: let \mathcal{I} be treelike instances (constant bound on treewidth)
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and (k-1)-grids have treewidth k-1
- \rightarrow Known results (Courcelle 1990):
 - \mathcal{I} : treelike instances; \mathcal{Q} : monadic second-order queries
 - $\rightarrow\,$ non-probabilistic QE is in linear time
- \rightarrow Does this extend to probabilistic QE?

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		000000000000	00
Our main	result			

An instance-based dichotomy result:

Upper bound.

For ${\mathcal I}$ the treelike instances and ${\mathcal Q}$ the MSO queries

 \rightarrow PQE is in linear time modulo arithmetic costs

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 00000000000	Conclusion
Our main	result			

An instance-based dichotomy result:

Upper bound.

For ${\mathcal I}$ the treelike instances and ${\mathcal Q}$ the MSO queries

- \rightarrow PQE is in linear time modulo arithmetic costs
 - Also for expressive provenance representations
 - Also with bounded-treewidth correlations

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 0000●0000000	Conclusion
Our main	result			

An instance-based dichotomy result:

Upper bound.

For ${\mathcal I}$ the treelike instances and ${\mathcal Q}$ the MSO queries

- \rightarrow PQE is in linear time modulo arithmetic costs
 - Also for expressive provenance representations
 - Also with bounded-treewidth correlations

Lower bound.

For any unbounded-tw family ${\mathcal I}$ and ${\mathcal Q}$ the FO queries

- \rightarrow PQE is #P-hard under RP reductions assuming:
 - Signature arity is 2 (graphs)
 - \bullet High-tw instances in ${\cal I}$ are easily constructible

atabases	Uncerta
00	00000

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

tabases	Uncertainty
0	0000000

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

atabases	Uncertai
00	000000

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

atabases	Uncert
00	0000

certainty 00000 Overview of my PhD Research

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Lineage: $(f_1 \land f_2)$

atabases	Uncerta
00	00000

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Lineage: $(f_1 \land f_2) \lor (f_3 \land f_4)$

atabases	Uncertai
00	000000

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Lineage: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

atabases	Uncertainty
00	0000000

Treelike Data

Conclusion 00

Technical tool: lineages

The lineage of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Lineage: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

atabases	Uncertainty
00	0000000

earch Treelike Data

Technical tool: lineages

The lineage of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Lineage: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

 \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000●000000	Conclusion
Using li	neages			

• To solve the PQE problem on treelike instances for MSO

- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees

- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees
 - Then use the results of (Courcelle 1990)

- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees
 - Then use the results of (Courcelle 1990)
- Use lineage for PQE:

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		000000●000000	00
Using li	neages			

- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees
 - Then use the results of (Courcelle 1990)
- Use lineage for PQE:
 - Compute a lineage representation efficiently

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000●000000	Conclusion
Using li	neages			

- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees
 - Then use the results of (Courcelle 1990)
- Use lineage for PQE:
 - Compute a lineage representation efficiently
 - \rightarrow Probability of the lineage = probability of the query

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000●000000	Conclusion
1.1.2.1.1.1.				

- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees
 - Then use the results of (Courcelle 1990)
- Use lineage for PQE:

Using lineages

- Compute a lineage representation efficiently
- \rightarrow Probability of the lineage = probability of the query
 - Compute the lineage probability efficiently (show it is not #P-hard as in the general case)

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000	Conclusion
Uncertain	trees			

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000●00000	00

A valuation of a tree decides whether to keep or discard node labels.

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		000000000000	00

A valuation of a tree decides whether to keep or discard node labels.

Example query:

"Is there both a red and a green node?"

Valuation: $\{2, 3, 7\}$

The query is true

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		000000000000	00

A valuation of a tree decides whether to keep or discard node labels.

Example query:

"Is there both a red and a green node?"

Valuation: $\{2\}$

The query is false

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		000000000000	00

A valuation of a tree decides whether to keep or discard node labels.

Example query:

"Is there both a red and a green node?"

Valuation: $\{2,7\}$

The query is true

Databases	Uncertainty	Overview of my PhD Research	Treelike Data
000	0000000		0000000●0000
Lineage	circuits or	n trees	

Conclusion 00

.

- *q*: Is there both a red and a green node?
 - Which valuations satisfy q?

Databases	Uncertainty
000	0000000

Treelike Data

Conclusion

Lineage circuits on trees

- q: Is there both a red and a green node?
 - Which valuations satisfy q?
 - Lineage circuit of a query q on an uncertain tree T
 - Boolean circuit C
 - with input gates g_2, g_3, g_7
 - $\rightarrow \nu(T)$ satisfies q iff $\nu(C)$ is true

Databases	Uncertainty
000	0000000

Treelike Data

Conclusion

Lineage circuits on trees

- q: Is there both a red and a green node?
 - Which valuations satisfy q?
 - Lineage circuit of a query q on an uncertain tree T
 - Boolean circuit C
 - with input gates g_2, g_3, g_7

 $\rightarrow \nu(T)$ satisfies q iff $\nu(C)$ is true

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000	0000000	000000000000000000000000000000000000000	00

Our main results

Theorem

For any query q given as a bottom-up tree automaton A, for any input tree T, we can build a lineage circuit of A on T in linear time in A and T.

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 00000000●000	Conclusion
-				

Our main results

Theorem

For any query q given as a bottom-up tree automaton A, for any input tree T, we can build a lineage circuit of A on T in linear time in A and T.

MSO on treelike instances \Rightarrow MSO on trees (Courcelle 1990).

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000●000	Conclusion

Our main results

Theorem

For any query q given as a bottom-up tree automaton A, for any input tree T, we can build a lineage circuit of A on T in linear time in A and T.

MSO on treelike instances \Rightarrow MSO on trees (Courcelle 1990).

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time in I a lineage circuit of q on I.
Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000●000	Conclusion

Our main results

Theorem

For any query q given as a bottom-up tree automaton A, for any input tree T, we can build a lineage circuit of A on T in linear time in A and T.

MSO on treelike instances \Rightarrow MSO on trees (Courcelle 1990).

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time in I a lineage circuit of q on I.

The lineage circuits are themselves treelike, hence:

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000●000	Conclusion

Our main results

Theorem

For any query q given as a bottom-up tree automaton A, for any input tree T, we can build a lineage circuit of A on T in linear time in A and T.

MSO on treelike instances \Rightarrow MSO on trees (Courcelle 1990).

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time in I a lineage circuit of q on I.

The lineage circuits are themselves treelike, hence:

Corollary

Probabilistic query evaluation of MSO queries on treelike instances is in linear time up to arithmetic operations.

Databases Overview of my PhD Research

Treelike Data

Extension 1: general semirings

• Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$

 Databases
 Uncertainty
 Overview of my PhD Research

 000
 0000000
 0000000

Treelike Data

Conclusion

Extension 1: general semirings

- Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: (Green, Karvounarakis, Tannen 2007)
 - Provenance for arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog

Databases Uncertainty Overview of my PhD Research

Treelike Data

Conclusion

Extension 1: general semirings

- Semiring of positive Boolean functions $(\text{PosBool}[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: (Green, Karvounarakis, Tannen 2007)
 - Provenance for arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog

Our construction can be extended to $\mathbb{N}[X]$ -provenance for conjunctive queries and unions of conjunctive queries (UCQ): tabases Uncertainty Overview of my PhD Research

Treelike Data

Conclusion

Extension 1: general semirings

- Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: (Green, Karvounarakis, Tannen 2007)
 - Provenance for arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog

Our construction can be extended to $\mathbb{N}[X]$ -provenance for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem

For any fixed UCQ q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\mathbb{N}[X]$ -provenance circuit of q on I.

Databases	Uncertainty	Overview of my PhD Research	Treelike Data
000	0000000	0000000	000000000000

Conclusion

Extension 2: correlations

• Our probabilistic instances assume independence on all facts

Databases	Uncertainty	Overview of my PhD Research	Tre
000	0000000	0000000	00

Treelike Data

Conclusion

Extension 2: correlations

- Our probabilistic instances assume independence on all facts
- More expressive: Block-Independent Disjoint instances:

Databases	Uncertainty	Overview of my PhD Research	Tree
000	0000000	000000	000

Extension 2: correlations

- Our probabilistic instances assume independence on all facts
- More expressive: Block-Independent Disjoint instances:

<u>name</u>	favorite	р
john	kougelhopf	0.8
john	bretzel	0.2
jane	kougelhopf	0.1
jane	bretzel	0.9

Databases	Uncertainty	Overview of my PhD Research	Tr
000	0000000	0000000	00

Extension 2: correlations

- Our probabilistic instances assume independence on all facts
- More expressive: Block-Independent Disjoint instances:

<u>name</u>	favorite	р
john	kougelhopf	0.8
john	bretzel	0.2
jane	kougelhopf	0.1
jane	bretzel	0.9

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

Databases	Uncertainty	Overview of my PhD Research	$-T_1$
000	0000000	0000000	0

Treelike Data

Conclusion

Extension 2: correlations

- Our probabilistic instances assume independence on all facts
- More expressive: Block-Independent Disjoint instances:

<u>name</u>	favorite	р
john	kougelhopf	0.8
john	bretzel	0.2
jane	kougelhopf	0.1
jane	bretzel	0.9

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

Generalises to pc-tables with treelike correlations

- Class $\mathcal I$ of unbounded-treewidth instances, query q in class $\mathcal Q$
- Show that probabilistic query evaluation of q on \mathcal{I} is hard

- Class $\mathcal I$ of unbounded-treewidth instances, query q in class $\mathcal Q$
- Show that probabilistic query evaluation of q on \mathcal{I} is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000●	Conclusion
Lower h	ound goal			

- Class ${\mathcal I}$ of unbounded-treewidth instances, query q in class ${\mathcal Q}$
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		00000000000●	00
Lower bo	und goal			

- Class ${\mathcal I}$ of unbounded-treewidth instances, query q in class ${\mathcal Q}$
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:
 - Given k ∈ N, we can construct in time Poly(k) an instance of I of treewidth ≥ k

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 00000000000●	Conclusion
Lower bo	und goal			

- Class ${\mathcal I}$ of unbounded-treewidth instances, query q in class ${\mathcal Q}$
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:
 - Given k ∈ N, we can construct in time Poly(k) an instance of I of treewidth ≥ k

Theorem

There is a first-order query q such that for any unbounded-tw, tw-constructible, arity-2 instance family \mathcal{I} , probabilistic query eval for q on \mathcal{I} is #P-hard under RP reductions.

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 00000000000●	Conclusion
Lower bo	und goal			

- Class ${\mathcal I}$ of unbounded-treewidth instances, query q in class ${\mathcal Q}$
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:
 - Given k ∈ N, we can construct in time Poly(k) an instance of I of treewidth ≥ k

Theorem

There is a first-order query q such that for any unbounded-tw, tw-constructible, arity-2 instance family \mathcal{I} , probabilistic query eval for q on \mathcal{I} is #P-hard under RP reductions.

Proven by extracting arbitrary graphs as minors of high-treewidth families using (Chekuri, Chuzhoy 2014)

Databases 000	Uncertainty 0000000	Overview of my PhD Research	Treelike Data 000000000000	Conclusion

Table of contents

- 3 Overview of my PhD Research
- 4 Probabilities and Provenance on Trees and Treelike Instances

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		000000000000	●○
Conclusio	n			

• New decidable languages to reason on incomplete data

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning
- Representations and complexity for uncertain ordered data

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	• O
Conclusio	n			

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning
- Representations and complexity for uncertain ordered data
- Instance-based dichotomy for probabilistic instances:

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	• O
Conclusio	n			

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning
- Representations and complexity for uncertain ordered data
- Instance-based dichotomy for probabilistic instances:
 - Tractable data complexity for MSO on treelike families (based on treelike lineage circuits via tree automata)

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	• O
Conclusio	on			

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning
- Representations and complexity for uncertain ordered data
- Instance-based dichotomy for probabilistic instances:
 - Tractable data complexity for MSO on treelike families (based on treelike lineage circuits via tree automata)
 - Extends to general provenance semirings for UCQs

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	• O
Conclusio	on			

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning
- Representations and complexity for uncertain ordered data
- Instance-based dichotomy for probabilistic instances:
 - Tractable data complexity for MSO on treelike families (based on treelike lineage circuits via tree automata)
 - Extends to general provenance semirings for UCQs
 - Extends to probabilistic correlations

Databases	Uncertainty	Overview of my PhD Research	Treelike Data	Conclusion
000	0000000		0000000000000	• O
Conclusio	on			

- New decidable languages to reason on incomplete data
- New techniques and results for finite reasoning
- Representations and complexity for uncertain ordered data
- Instance-based dichotomy for probabilistic instances:
 - Tractable data complexity for MSO on treelike families (based on treelike lineage circuits via tree automata)
 - Extends to general provenance semirings for UCQs
 - Extends to probabilistic correlations
 - Lower bound for FO on any non-treelike family (assuming arity-two and treewidth-constructibility)

Database: 000	s Uncertainty 0000000	Overview of my PhD Research	Treelike Data

Conclusion

Ongoing and future work

• Probabilistic query answering

- Tractability in combined complexity for some queries
- Hybrid tractability criteria based on instance and query
- Practical implementation with partial decompositions

 Atabases
 Uncertainty
 Overview of my PhD Research

 DO
 0000000
 0000000

Treelike Data

Conclusion

Ongoing and future work

- Probabilistic query answering
 - Tractability in combined complexity for some queries
 - Hybrid tractability criteria based on instance and query
 - Practical implementation with partial decompositions
- Open-world query answering
 - Managing order relations and transitive relations
 - Extending provenance techniques to open-world reasoning

 abases
 Uncertainty
 Overview of my PhD Research

 0000000
 0000000

Treelike Data

Conclusion

Ongoing and future work

- Probabilistic query answering
 - Tractability in combined complexity for some queries
 - Hybrid tractability criteria based on instance and query
 - Practical implementation with partial decompositions
- Open-world query answering
 - Managing order relations and transitive relations
 - Extending provenance techniques to open-world reasoning

Thanks for your attention!

Image sources

- Slides 2 and 14: https://openclipart.org/download/163711/database-server.svg
- Slide 3: SMSSecure https://smssecure.org/ and AOSP https://source.android.com/
- Slide 7: https://openclipart.org/download/36529/interrogation.svg
- Slide 8: http://rtw.ml.cmu.edu/, https://openclipart.org/download/25537/HMTL.svg, and https://twitter.com/cmunell
- Slide 9: https://en.wikipedia.org/wiki/Template:Disputed
- Slide 10: Zhang 2015, p. 9, Dong, Halevy, Yu 2009, p. 4, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2015-041/fig_06b.png, https://code.google.com/p/transducersaurus/wiki/CascadeTutorial, https://www.cs.washington.edu/robotics/mcl/
- Slide 16: https://diaryofawhinyguy.files.wordpress.com/2013/01/rage-guy.png
- Slide 17: http://mylolface.com/assets/faces/ happy-everything-went-better-than-expected.jpg

References I

Amarilli, Antoine (2014). "The Possibility Problem for Probabilistic XML". In: Proc. AMW. URL: http://ceur-ws.org/Vol-1189/paper_2.pdf. Amarilli, Antoine (2015a). "Possibility for Probabilistic XML". In: Ingénierie des Systèmes d'Information. URL: http://arxiv.org/abs/1404.3131. Amarilli, Antoine (2015b). "Structurally Tractable Uncertain Data". In: Proc. PhD Symposium of SIGMOD/PODS. URL: http://arxiv.org/abs/1507.04955. Amarilli, Antoine, Cyril Allauzen, Mehryar Mohri (2015). Minimum Bayesian Risk Methods for Automatic Speech Recognition. United States Patent 9123333. URL: https: //a3nm.net/publications/amarilli2014minimum.pdf.

References II

Amarilli, Antoine, Yael Amsterdamer, Tova Milo (2014a). "On the Complexity of Mining Itemsets from the Crowd Using Taxonomies". In: Proc. ICDT. URL: http://arxiv.org/abs/1312.3248. Amarilli, Antoine, Yael Amsterdamer, Tova Milo (2014b). "Uncertainty in Crowd Data Sourcing Under Structural Constraints". In: Proc. UnCrowd. URL: http://arxiv.org/abs/1403.0783. Amarilli, Antoine, Michael Benedikt (2015a). "Combining Existential Rules and Description Logics". In: Proc. IJCAI. URL: http://arxiv.org/abs/1505.00326. Amarilli, Antoine, Michael Benedikt (2015b). "Finite Open-World Query Answering with Number Restrictions". In: Proc. LICS. URL: http://arxiv.org/abs/1505.04216.

References III

Amarilli, Antoine, Pierre Bourhis, Pierre Senellart (2015). "Provenance Circuits for Trees and Treelike Instances". In: Proc. ICALP. URL: http://arxiv.org/abs/1511.08723. Amarilli, Antoine, Pierre Bourhis, Pierre Senellart (2016). "Tractable Lineages on Treelike Instances: Limits and Extensions". In: Proc. PODS. To appear. URL: https: //a3nm.net/publications/amarilli2016tractable.pdf. Amarilli, Antoine, Silviu Maniu, Pierre Senellart (2015). "Intensional Data on the Web". In: SIGWEB Newsletter, URL: https: //a3nm.net/publications/amarilli2015intensional.pdf. Amarilli, Antoine et al. (2014). "Recent Topics of Research around the YAGO Knowledge Base". In: Proc. APWEB. URL: https://zenodo.org/record/34912.

References IV

Amarilli, Antoine et al. (2016). "Possible and Certain Answers for Queries over Order-Incomplete Data". Preprint: https: //a3nm.net/publications/amarilli2016possible.pdf. Amarilli, Antoine et al. (2016). "Top-k Queries on Unknown Values under Order Constraints". Preprint: https://a3nm.net/publications/amarilli2016top.pdf. Chekuri, Chandra, Julia Chuzhoy (2014). "Polynomial Bounds for the Grid-Minor Theorem". In: Proc. STOC. F. Cosmadakis, Stavros S., Paris C. Kanellakis, Moshe Y. Vardi (1990). "Polynomial-Time Implication Problems for Unary Inclusion Dependencies". In: J. ACM. Courcelle, Bruno (1990). "The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs". In: Inf. Comput. Dalvi, Nilesh, Dan Suciu (2012). "The Dichotomy of Probabilistic Inference for Unions of Conjunctive Queries". In: J. ACM.

References V

Dong, Xin Luna, Alon Halevy, Cong Yu (2009). "Data integration with uncertainty". In: The VLDB Journal—The International Journal on Very Large Data Bases. Green, Todd J., Grigoris Karvounarakis, Val Tannen (2007). "Provenance Semirings". In: Proc. PODS. Talaika, Aliaksandr et al. (2015). "IBEX: Harvesting Entities from the Web Using Unique Identifiers". In: Proc. WebDB. URL: http://arxiv.org/abs/1505.00841. Tang, Ruiming et al. (2014a). "A Framework for Sampling-Based XML Data Pricing". In: Transactions on Large-Scale Data and Knowledge-Centered Systems. URL: https://a3nm.net/publications/tang2014framework.pdf. Tang, Ruiming et al. (2014b). "Get a Sample for a Discount". In: Proc. DEXA. URL: https://a3nm.net/publications/tang2014get.pdf.

References

References VI

