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Databases

Computers often use databases to store data and query it

→ Let’s see a few examples...
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Database example: SMS on Android

42% 13:37

John Doe

Hi there! :-)

Just wanted to let you know that I'm
at your defense!

How is it going?

Just started

Dunno yet

OK. Good luck! I hope they won't get
tired of self-referential jokes in the
slides! ...

Mon 14:32

Mon 14:33

Mon 14:32

Mon 14:34

Mon 14:34

Mon 14:36

Send secure SMS

time from to message
14:32 John A. Hi there! :)
14:32 John A. Just wanted...
14:33 John A. How is it...
14:34 A. John Dunno yet
14:34 A. John Just started
14:36 John A. OK. Good...
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In reality...

CREATE TABLE sms (_id INTEGER, thread_id INTEGER,
address TEXT, address_device_id INTEGER, person INTEGER,
date INTEGER, date_sent INTEGER, protocol INTEGER,
read INTEGER, status INTEGER, type INTEGER,
reply_path_present INTEGER,
delivery_receipt_count INTEGER, subject TEXT, body TEXT,
mismatched_identities TEXT, service_center TEXT,
date_delivery_received INTEGER);

INSERT INTO sms VALUES(
14041,224,'+33611210549',1,NULL,1451921855098,
1451921849000,0,1,-1,-2147483628,0,0,NULL,
'Hi there!',NULL,'+33609002960',0);

INSERT INTO sms VALUES(
14042,224,'+33611210549',1,NULL,1451921945081,
1451921945081,NULL,1,-1,-2147483561,NULL,0,NULL,
'Just wanted...',NULL,NULL,0);

...
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Database example: Wikipedia

title time size user
Naza 14:48 -59 92.115.58.241
HK Olimpija Ljubljana (2004) 14:48 +4 86.58.36.235
Monster High 14:48 +18 66.244.123.117
List of songs recorded by Celine Dion 14:48 +25 79.94.26.185
Biodegradable waste 14:48 +5 59.90.26.215
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In reality...
CREATE TABLE mw_recentchanges (rc_id INT(8),

rc_timestamp VARCHAR(14), rc_cur_time VARCHAR(14),
rc_user INT(10), rc_user_text VARCHAR(255),
rc_namespace INT(11), rc_title VARCHAR(255),
rc_comment VARCHAR(255), rc_minor TINYINT(3),
rc_bot TINYINT(3), rc_new TINYINT(3),
rc_cur_id INT(10), rc_this_oldid INT(10),
rc_last_oldid INT(10), rc_type TINYINT(3),
rc_moved_to_ns TINYINT(3), rc_moved_to_title VARCHAR(255),
rc_patrolled TINYINT(3), rc_ip CHAR(15),
rc_old_len INT(10), rc_new_len INT(10),
rc_deleted TINYINT(1), rc_logid INT(10),
rc_log_type VARCHAR(255), rc_log_action VARCHAR(255),
rc_params BLOB,

);

INSERT INTO mw_recentchanges VALUES
(1, '20160314144837', '20160314144827', 1, '92.115.58.241', 0,
'Naza', '', 0, 0, 0, 1, 2, 1, 0, 0, '', 1, '92.115.58.241',
559, 500, 0, 0, NULL, NULL, ''),

INSERT INTO mw_recentchanges VALUES
(2, '20160314144842', '20160314144842', 1, '66.244.123.117', 2,
'Monster High', '', 0, 0, 1, 2, 3, 0, 1, 0, '', 1, '66.244.123.117',
102, 120, 0, 0, NULL, NULL, '');
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Uncertainty

Databases usually assume that data is
→ complete
→ crisp
→ certain
→ correct

In many situations, this is not the case...
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Example: Never-Ending Language Learning
Web
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Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many sources of uncertainty

Errors in sources:

Entity disambiguation:
“The place and function of Venus in Ovid...”
“Computed backscattering function of Venus and the moon...”

Anaphora resolution:
“Obama told Hollande that he was not a spying target”

Incompleteness

9/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Many uncertain data applications

Information extraction
Machine learning
Speech recognition
Data integration
Crowdsourcing
...

PhD defense scheduling

(a)

(b)

(c)
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Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited

79
Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79

Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers

37
Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37

Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers

13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers 13

Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers

29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers 29

Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up

??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Uncertainty applied to PhD defenses

Who will attend this PhD defense?

Statistics
Number of people invited 79
Number of definite yes answers 37
Number of definite no answers 13
Number of uncertain answers 29
Number of additional people showing up ??

11/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Why is uncertainty challenging?

Data is uncertain if we don’t know its exact state
A possible world is an actual outcome

Simplest method: write out all possible worlds

List of the people
who may show up:

Flo
Guy
Tat
...
more?

→ 29 uncertain people
→ 536 870 912 possibilities
→ If the list of people is incomplete,

infinitely many possible completions
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Uncertainty representation and semantics

Uncertain databases represent implicitly the possible worlds

→ Probabilities

Flo 0.4
Guy 0.3
Tat 0.2

...

→ Correlations
Only one of Isa and
Pal can come
Mat and Val either
come together or not
Nell will probably
come if Mike does

→ Logical rules
If someone comes to
the defense
then they will also
come to the drinks
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Summary of uncertainty goals

Representing our knowledge about the data
Computing numerical probabilities
Reasoning with logical constraints

→ End goal: A database system with first-class uncertainty
Feed uncertain data to the system
Get uncertain query results
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Summary of uncertainty goals

Representing our knowledge about the data
Computing numerical probabilities
Reasoning with logical constraints

→ End goal: A database system with first-class uncertainty
Feed uncertain data to the system
Get uncertain query results

Uncertain data

Query
How many people
to the drinks?

?
Uncertain answer

42 ±5 with 80%
confidence
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Why are uncertainty and probabilities challenging?

Uncertain attendees

Flo 0.4
Guy 0.3
Tat 0.2
Ell 0.1

...

People who should meet

Flo Guy
Ell Tat
Ell Guy

What is the probability that one of the pairs can meet?
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Computing probabilities

Ell
0.1

Tat
0.2

Guy
0.3

Flo
0.4

Yo
0.5

Ted
0.6

Lou
0.7

Mike
0.8

Dad
0.9

0.1× 0.2 = 0.02
0.3× 0.4 = 0.12
1− (1− 0.02)× (1− 0.12) = 0.1376
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Computing probabilities
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0.1

Tat
0.2

Guy
0.3

Flo
0.4

Yo
0.5

Ted
0.6

Lou
0.7

Mike
0.8

Dad
0.9

If Ell is missing:
0.3× 0.4 = 0.12

If Ell is here:
If Guy is missing:

We need Tat: 0.2
If Guy is here: success!

Total: (1− 0.1)× 0.12
+ 0.1×

(
0.3 + (1− 0.3)× 0.2

)
= 0.152
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My PhD topic

→ Make it easier to use uncertain data
by making assumptions on the structure of data

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.1× 0.2 = 0.02

0.3× 0.4 = 0.12

0.5× 0.7 = 0.35

0.6× 0.8 = 0.48

→ 1− (1− 0.02)× · · · × (1− 0.48)
= 0.7085088
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Roadmap

I studied different questions related to uncertainty:

Representing and querying uncertain ordered data
Possibility and certainty on ordered relations
Preprint: A., Ba, Deutch, Senellart 2016
Completing uncertain ordered numerical values
Preprint: A., Amsterdamer, Milo, Senellart 2016

Reasoning on incomplete data under constraints
Combining several decidable reasoning languages
A., Benedikt 2015a, IJCAI’15
Addressing the finiteness hypothesis
A., Benedikt 2015b, LICS’15; Thesis Part II

Query evaluation on treelike probabilistic data
A., Bourhis, Senellart 2015, 2016, ICALP’15, PODS’16; Thesis Part I

Other work: (A. 2014, 2015a,b; A., Allauzen, Mohri 2015; A., Amsterdamer, Milo
2014a,b; A., Maniu, Senellart 2015; A., Galárraga, Preda, Suchanek 2014; Talaika,
Biega, A., Suchanek 2015; Tang, A., Senellart, Bressan 2014a,b)
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Uncertain ordered relations

Food
tiramisu kougelhopf

bretzel

munster

Drinks
champagne

riesling

I partially know guest preferences
What should my parents bring?

→ What are the top two Alsatian products?

Possible:
riesling

kougelhopf

Not possible:
kougelhopf

munster

→ On which queries and data can we efficiently
find possible and certain answers?
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Uncertain numerical values

small
sweet

medium
sweet

large
sweet

small
salty

medium
salty

large
salty

tiny
both

small
both

medium
both

large
both

How much food do people eat?

Let’s ask friends who defended recently
Some order relations are implied
How to estimate for my own defense?

→ Interpolation scheme for posets
based on integration on polytopes

→ Complexity study and tractable cases
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Open-world query answering

Incomplete data:
Fabian supervises Luis
Fabian is at the defense
Fabian is in DBWeb

Fabian comes to the drinks
Luis is a DBWeb student
Luis comes to the drinks

! Logical constraints:
People at the defense will have drinks
All DBWeb students will have drinks
If your advisor is in DBWeb
then you are a DBWeb student

? Is the following query certain?
→ Will a DBWeb student meet their

advisor at the drinks?

→ Yes!

→ For which rule languages is this task decidable?
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Expressive open-world query answering

Different communities use different kinds of constraints:
Constraints with facts of arity > 2

Fabian supervises Luis: arity 2
Antoine’s defense is in B312 on Monday: arity 3

Constraints with number restrictions
Everyone can invite at most one person
Students have at most two advisors

→ I show that those can be combined under some restrictions
to obtain decidable query answering
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Query answering assuming finiteness

Consider the guests to the defense, −→ shows who invites whom
Data:

Antoine

John

Rules:

Each guest invites someone
Nobody is invited by two people

→ Is this sensible?
→ Can we do reasoning assuming finiteness?
→ What difference does it make?
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Query answering assuming finiteness

Consider the guests to the defense, −→ shows who invites whom
Data:

Antoine

John

?

?

. . .

Rules:
Each guest invites someone
Nobody is invited by two people
There are finitely many guests!

→ Can we do reasoning assuming finiteness?
→ What difference does it make?
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Finite open-world query answering

I study the following constraints on arbitrary arity:
Inclusion dependencies with one exported element

→ If x invites y then y invites some z
Functional dependencies
→ If x and y invite z then x = y

→ We can compute new constraints implied by finiteness
using (Cosmadakis, Kanellakis, Vardi 1990)

→ With the new constraints, we can forget finiteness
→ First techniques for open-world query answering

with arbitrary arity signatures and functional dependencies
where assuming finiteness makes a difference
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Tuple-independent databases

We fix a relational signature σ (here: S, arity 2).

S
a a 1
b v 0.5
b w 0.2

aa

1
b

v

0.5

w

0.2

This TID instance represents the following probability distribution:

0.5× 0.2

S
a a
b v
b w

0.5× (1− 0.2)

S
a a
b v

(1− 0.5)× 0.2

S
a a

b w

(1− 0.5)× (1− 0.2)

S
a a
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Query evaluation on probabilistic instances

We want to evaluate the probability of a query on a TID instance

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b 0.4
c 0.6

S
a a 1
b v 0.5
b w 0.2

T
v 0.3
w 0.7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability:
0.4×

(
1− (1− 0.5× 0.3)× (1− 0.2× 0.7)

)
= 0.1076
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Complexity of probabilistic query evaluation (PQE)

What is the data complexity of probabilistic query evaluation
depending on the class Q of queries and class I of instances?

Existing dichotomy result: (Dalvi, Suciu 2012)
Q are (unions of) conjunctive queries, I is all instances
There is a class S ⊆ Q of safe queries
PQE is PTIME for any q ∈ S on all instances
PQE is #P-hard for any q ∈ Q\S on all instances
q : ∃x y R(x) ∧ S(x, y) ∧ T(y) is unsafe!

Is there a smaller class I such that PQE is tractable for a larger Q?
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Trees and treelike instances

Goal: find an instance class I where PQE is tractable

Idea: let I be treelike instances (constant bound on treewidth)
Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ Known results (Courcelle 1990):
I: treelike instances; Q: monadic second-order queries

→ non-probabilistic QE is in linear time
→ Does this extend to probabilistic QE?

30/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Trees and treelike instances

Goal: find an instance class I where PQE is tractable
Idea: let I be treelike instances (constant bound on treewidth)

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ Known results (Courcelle 1990):
I: treelike instances; Q: monadic second-order queries

→ non-probabilistic QE is in linear time
→ Does this extend to probabilistic QE?

30/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Trees and treelike instances

Goal: find an instance class I where PQE is tractable
Idea: let I be treelike instances (constant bound on treewidth)

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ Known results (Courcelle 1990):
I: treelike instances; Q: monadic second-order queries

→ non-probabilistic QE is in linear time
→ Does this extend to probabilistic QE?

30/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Trees and treelike instances

Goal: find an instance class I where PQE is tractable
Idea: let I be treelike instances (constant bound on treewidth)

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ Known results (Courcelle 1990):
I: treelike instances; Q: monadic second-order queries

→ non-probabilistic QE is in linear time

→ Does this extend to probabilistic QE?

30/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Trees and treelike instances

Goal: find an instance class I where PQE is tractable
Idea: let I be treelike instances (constant bound on treewidth)

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ Known results (Courcelle 1990):
I: treelike instances; Q: monadic second-order queries

→ non-probabilistic QE is in linear time
→ Does this extend to probabilistic QE?

30/42



Databases Uncertainty Overview of my PhD Research Treelike Data Conclusion

Our main result

An instance-based dichotomy result:
Upper bound.

For I the treelike instances and Q the MSO queries
→ PQE is in linear time modulo arithmetic costs

Also for expressive provenance representations
Also with bounded-treewidth correlations

Lower bound.
For any unbounded-tw family I and Q the FO queries
→ PQE is #P-hard under RP reductions assuming:

Signature arity is 2 (graphs)
High-tw instances in I are easily constructible
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Technical tool: lineages
The lineage of a query q on an instance I:

Boolean function ϕ whose variables are the facts of I
A subinstance of I satisfies q iff ϕ is true for that valuation

Example query: ∃x y z R(x, y) ∧ R(y, z)

R
a b
b c
d e
e d
f f

→ Lineage: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5
→ For all ν : I → {0, 1} we have ν(ϕ) = 1 iff {F ∈ I | ν(F) = 1} |= q
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Using lineages

To solve the PQE problem on treelike instances for MSO

First solve the problem on trees
Then use the results of (Courcelle 1990)

Use lineage for PQE:
Compute a lineage representation efficiently

→ Probability of the lineage = probability of the query
Compute the lineage probability efficiently
(show it is not #P-hard as in the general case)
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Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example query:
“Is there both a red and a green node?”
Valuation: {2, 3, 7}

The query is true
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keep or discard node labels.
Example query:
“Is there both a red and a green node?”
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Lineage circuits on trees

1

5

76

2

43

q: Is there both a red and a green node?
Which valuations satisfy q?

Lineage circuit of a query q
on an uncertain tree T

Boolean circuit C
with input gates g2, g3, g7

→ ν(T) satisfies q iff ν(C) is true

∧

∨ g7

g2 g3
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Our main results

Theorem
For any query q given as a bottom-up tree automaton A,
for any input tree T, we can build a lineage circuit of A on T
in linear time in A and T.

MSO on treelike instances ⇒ MSO on trees (Courcelle 1990).
Theorem
For any fixed MSO query q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time in I a lineage circuit of q on I.

The lineage circuits are themselves treelike, hence:
Corollary
Probabilistic query evaluation of MSO queries on treelike instances
is in linear time up to arithmetic operations.
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Extension 1: general semirings

Semiring of positive Boolean functions (PosBool[X],∨,∧, f, t)

Provenance semirings: (Green, Karvounarakis, Tannen 2007)
Provenance for arbitrary (commutative) semirings
For queries in the positive relational algebra and Datalog

Our construction can be extended to N[X]-provenance
for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem
For any fixed UCQ q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time a N[X]-provenance circuit of q on I.
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Extension 2: correlations

Our probabilistic instances assume independence on all facts

More expressive: Block-Independent Disjoint instances:

name favorite p
john kougelhopf 0.8
john bretzel 0.2
jane kougelhopf 0.1
jane bretzel 0.9

Theorem
Probabilistic query evaluation of MSO queries on treelike BID
is in linear time up to arithmetic operations.

Generalises to pc-tables with treelike correlations
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Lower bound goal

Class I of unbounded-treewidth instances, query q in class Q
Show that probabilistic query evaluation of q on I is hard

→ Restrict to arity-2 (= labeled graphs) for technical reasons
→ Impose that I is tw-constructible:

Given k ∈ N, we can construct in time Poly(k)
an instance of I of treewidth ≥ k

Theorem
There is a first-order query q such that
for any unbounded-tw, tw-constructible, arity-2 instance family I,
probabilistic query eval for q on I is #P-hard under RP reductions.

Proven by extracting arbitrary graphs as minors of high-treewidth
families using (Chekuri, Chuzhoy 2014)
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Conclusion

Main contributions to the study of uncertain data management:
New decidable languages to reason on incomplete data

New techniques and results for finite reasoning
Representations and complexity for uncertain ordered data
Instance-based dichotomy for probabilistic instances:

Tractable data complexity for MSO on treelike families
(based on treelike lineage circuits via tree automata)
Extends to general provenance semirings for UCQs
Extends to probabilistic correlations
Lower bound for FO on any non-treelike family
(assuming arity-two and treewidth-constructibility)
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Ongoing and future work

Probabilistic query answering
Tractability in combined complexity for some queries
Hybrid tractability criteria based on instance and query
Practical implementation with partial decompositions

Open-world query answering
Managing order relations and transitive relations
Extending provenance techniques to open-world reasoning

Thanks for your attention!
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