
Probabilities and Provenance
on Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, Pierre Senellart1,3,4

September 7th, 2016
1Télécom ParisTech

2CNRS CRIStAL

3National University of Singapore

4École normale supérieure de Paris
1/7

How to travel to Highlights from Paris?

2/7

How to travel to Highlights from Paris?

2/7

How to travel to Highlights from Paris?

2/7

How to travel to Highlights from Paris?

2/7

How to travel to Highlights from Paris?

(Metro|RER)*|(Bus|Tram)*
2/7

How to travel to Highlights from Paris?

(Metro|RER)*|(Bus|Tram)*
2/7

How to travel to Highlights from Paris?

(Metro|RER)*|(Bus|Tram)*
2/7

How to travel to Highlights from Paris?

50%

(Metro|RER)*|(Bus|Tram)*
2/7

How to travel to Highlights from Paris?

50%

2/7

How to travel to Highlights from Paris?

50%

90% (Metro|RER)*|(Bus|Tram)*
2/7

How to travel to Highlights from Paris?

(Metro|RER)*|(Bus|Tram)*

50%

90%

42%

37%

90%

83%

78%

72%

2/7

How to travel to Highlights from Paris?

(Metro|RER)*|(Bus|Tram)*

50%

90%

42%

37%

90%

83%

78%

72%

What is the
probability
that I can attend
Highlights 2016?

2/7

Problem statement

Input:

? Query Q (Metro|RER)*|(Bus|Tram)*

Database D or graph
% Probabilities on facts or edges 50%

Output: the probability that the query is true under the distribution
(assuming independence of all probabilistic events)

Complexity: already #P-hard in the input database!
(from #MONOTONE-SAT)

3/7

Problem statement

Input:

? Query Q (Metro|RER)*|(Bus|Tram)*

Database D or graph

% Probabilities on facts or edges 50%

Output: the probability that the query is true under the distribution
(assuming independence of all probabilistic events)

Complexity: already #P-hard in the input database!
(from #MONOTONE-SAT)

3/7

Problem statement

Input:

? Query Q (Metro|RER)*|(Bus|Tram)*

Database D or graph
% Probabilities on facts or edges 50%

Output: the probability that the query is true under the distribution
(assuming independence of all probabilistic events)

Complexity: already #P-hard in the input database!
(from #MONOTONE-SAT)

3/7

Problem statement

Input:

? Query Q (Metro|RER)*|(Bus|Tram)*

Database D or graph
% Probabilities on facts or edges 50%

Output: the probability that the query is true under the distribution
(assuming independence of all probabilistic events)

Complexity: already #P-hard in the input database!
(from #MONOTONE-SAT)

3/7

Problem statement

Input:

? Query Q (Metro|RER)*|(Bus|Tram)*

Database D or graph
% Probabilities on facts or edges 50%

Output: the probability that the query is true under the distribution
(assuming independence of all probabilistic events)

Complexity: already #P-hard in the input database!
(from #MONOTONE-SAT)

3/7

Using treewidth to make the problem tractable

Treewidth
by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth
by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth
by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7

Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
4/7

Tractability on treelike instances

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton
(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

linear
[Courcelle]

Treelike data
Query

answer
TRUE

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Provenance
circuit∧linear

Treelike data

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Provenance
circuit∧linear

Treelike data

Probability
95%

linear

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Tractability on treelike instances

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Provenance
circuit∧linear

Treelike data

Probability
95%

linear

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q

5/7

Lower bound

What can we do for unbounded-treewidth instances?

... not much.

Theorem
For any graph signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
probability evaluation of q on I is #P-hard under RP reductions

3

1

2

4 3 4

2

1

maps vertices
to vertices

maps edges to
vertex-disjoint paths

Proof idea: extract instances of a hard problem as topological minors
using recent polynomial bounds [Chekuri and Chuzhoy, 2014]

6/7

Lower bound

What can we do for unbounded-treewidth instances? ... not much.

Theorem
For any graph signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
probability evaluation of q on I is #P-hard under RP reductions

Proof idea: extract instances of a hard problem as topological minors
using recent polynomial bounds [Chekuri and Chuzhoy, 2014]

6/7

Lower bound

Theorem
For any graph signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
probability evaluation of q on I is #P-hard under RP reductions

Proof idea: extract instances of a hard problem as topological minors
using recent polynomial bounds [Chekuri and Chuzhoy, 2014]

6/7

Lower bound

Theorem
For any graph signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
probability evaluation of q on I is #P-hard under RP reductions

Proof idea: extract instances of a hard problem as topological minors
using recent polynomial bounds [Chekuri and Chuzhoy, 2014]

6/7

Lower bound

Theorem
For any graph signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
probability evaluation of q on I is #P-hard under RP reductions

3

1

2

4 3 4

2

1

maps vertices
to vertices

maps edges to
vertex-disjoint paths

Proof idea: extract instances of a hard problem as topological minors
using recent polynomial bounds [Chekuri and Chuzhoy, 2014]

6/7

Future and ongoing work

• Improving the lower bound:
• From graphs to arbitrary arity databases
• From FO down to unions of conjunctive queries with 6=

• Complexity in query and database — currently Ω

(
22.

. .
2|Q|

× |D|
)

→ Which queries can efficiently be compiled to automata?

• Non-Boolean queries: efficient enumeration of query results?

• Other tasks: probabilistic conditioning
“Knowing that I’m here, what’s the probability that RER B is up?”

Thanks for your attention!

7/7

Future and ongoing work

• Improving the lower bound:
• From graphs to arbitrary arity databases
• From FO down to unions of conjunctive queries with 6=

• Complexity in query and database — currently Ω

(
22.

. .
2|Q|

× |D|
)

→ Which queries can efficiently be compiled to automata?

• Non-Boolean queries: efficient enumeration of query results?

• Other tasks: probabilistic conditioning
“Knowing that I’m here, what’s the probability that RER B is up?”

Thanks for your attention!

7/7

Future and ongoing work

• Improving the lower bound:
• From graphs to arbitrary arity databases
• From FO down to unions of conjunctive queries with 6=

• Complexity in query and database — currently Ω

(
22.

. .
2|Q|

× |D|
)

→ Which queries can efficiently be compiled to automata?

• Non-Boolean queries: efficient enumeration of query results?

• Other tasks: probabilistic conditioning
“Knowing that I’m here, what’s the probability that RER B is up?”

Thanks for your attention!

7/7

Future and ongoing work

• Improving the lower bound:
• From graphs to arbitrary arity databases
• From FO down to unions of conjunctive queries with 6=

• Complexity in query and database — currently Ω

(
22.

. .
2|Q|

× |D|
)

→ Which queries can efficiently be compiled to automata?

• Non-Boolean queries: efficient enumeration of query results?

• Other tasks: probabilistic conditioning
“Knowing that I’m here, what’s the probability that RER B is up?”

Thanks for your attention!

7/7

Future and ongoing work

• Improving the lower bound:
• From graphs to arbitrary arity databases
• From FO down to unions of conjunctive queries with 6=

• Complexity in query and database — currently Ω

(
22.

. .
2|Q|

× |D|
)

→ Which queries can efficiently be compiled to automata?

• Non-Boolean queries: efficient enumeration of query results?

• Other tasks: probabilistic conditioning
“Knowing that I’m here, what’s the probability that RER B is up?”

Thanks for your attention!
7/7

References I

Chekuri, C. and Chuzhoy, J. (2014).
Polynomial bounds for the grid-minor theorem.
In STOC.
Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs.
Inf. Comput., 85(1).

Image credits

• Slide 2:
• https://commons.wikimedia.org/wiki/File:
Paris_Metro_map.svg (cropped), user Umx on Wikimedia
Commons, public domain

• http://www.parisvoyage.com/images/cartoon18.jpg,
ParisVoyage, fair use

• http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf

(cropped), RATP, fair use

• Slides 4 and 5: https://commons.wikimedia.org/wiki/File:
Carte_Transilien_RER_sch%C3%A9matique.svg (modified), user
Benjamin Smith on Wikimedia Commons, license CC BY-SA 4.0
international.

https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg
https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg
http://www.parisvoyage.com/images/cartoon18.jpg
http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf
https://commons.wikimedia.org/wiki/File:Carte_Transilien_RER_sch%C3%A9matique.svg
https://commons.wikimedia.org/wiki/File:Carte_Transilien_RER_sch%C3%A9matique.svg

	Appendix

