

## Probabilities and Provenance on Trees and Treelike Instances

Antoine Amarilli<sup>1</sup>, Pierre Bourhis<sup>2</sup>, Pierre Senellart<sup>1,3,4</sup>

September 7th, 2016

<sup>1</sup>Télécom ParisTech

<sup>2</sup>CNRS CRIStAL

<sup>3</sup>National University of Singapore

<sup>4</sup>École normale supérieure de Paris



























#### (Metro|RER)\*|(Bus|Tram)\*



(Metro|RER)\*|(Bus|Tram)\*









**Output:** the **probability** that the query is true under the distribution (assuming independence of all probabilistic events)



**Output:** the **probability** that the query is true under the distribution (assuming independence of all probabilistic events)

**Complexity:** already **#P-hard** in the input database! (from #MONOTONE-SAT)























































- Trees have treewidth 1
- Cycles have treewidth 2
- *k*-cliques and (k 1)-grids have treewidth k 1





- Trees have treewidth 1
- Cycles have treewidth 2
- *k*-cliques and (k 1)-grids have treewidth k 1
- $\rightarrow$  Treelike: the treewidth is bounded by a constant

Treelike **data** 



## MSO query (RER|metro)\* |(bus|tram)\*

Treelike **data** 

















#### Theorem

For any **fixed** Boolean MSO query **q** and  $k \in \mathbb{N}$ , given a database **D** of **treewidth**  $\leq k$  with **independent probabilities**, we can compute in **linear time** the probability that **D** satisfies **q** 

#### What can we do for unbounded-treewidth instances?

What can we do for unbounded-treewidth instances? ... not much.

#### Theorem

For any graph signature  $\sigma$ , there is a **first-order** query **q** such that for any constructible **unbounded-treewidth** class  $\mathcal{I}$ , probability evaluation of **q** on  $\mathcal{I}$  is **#P-hard** under RP reductions

#### Theorem

For any graph signature  $\sigma$ , there is a **first-order** query **q** such that for any constructible **unbounded-treewidth** class  $\mathcal{I}$ , probability evaluation of **q** on  $\mathcal{I}$  is **#P-hard** under RP reductions



**Proof idea:** extract instances of a hard problem as **topological minors** using recent **polynomial bounds** [Chekuri and Chuzhoy, 2014]

#### Theorem

For any graph signature  $\sigma$ , there is a **first-order** query **q** such that for any constructible **unbounded-treewidth** class  $\mathcal{I}$ , probability evaluation of **q** on  $\mathcal{I}$  is **#P-hard** under RP reductions



**Proof idea:** extract instances of a hard problem as **topological minors** using recent **polynomial bounds** [Chekuri and Chuzhoy, 2014]

- Improving the **lower bound**:
  - From graphs to arbitrary arity databases
  - + From FO down to unions of conjunctive queries with  $\neq$

- Improving the lower bound:
  - From graphs to arbitrary arity databases
  - + From FO down to unions of conjunctive queries with  $\neq$
- Complexity in query and database currently  $\Omega\left(2^{2^{\dots^{2^{|Q|}}}} \times |D|\right)$  $\rightarrow$  Which queries can efficiently be compiled to automata?

- Improving the lower bound:
  - From graphs to arbitrary arity databases
  - + From FO down to unions of conjunctive queries with  $\neq$
- Complexity in query and database currently  $\Omega(2^{2^{\dots^{2^{|Q|}}}} \times |D|)$  $\rightarrow$  Which queries can efficiently be compiled to automata?
- Non-Boolean queries: efficient enumeration of query results?

- Improving the lower bound:
  - From graphs to arbitrary arity databases
  - + From FO down to unions of conjunctive queries with  $\neq$

• Complexity in query and database – currently  $\Omega(2^{2^{\dots^{2^{|Q|}}}} \times |D|)$  $\rightarrow$  Which queries can efficiently be compiled to automata?

- Non-Boolean queries: efficient enumeration of query results?
- Other tasks: probabilistic **conditioning** *"Knowing that I'm here, what's the probability that RER B is up?"*

- Improving the lower bound:
  - From graphs to arbitrary arity databases
  - + From FO down to unions of conjunctive queries with  $\neq$

• Complexity in query and database – currently  $\Omega(2^{2^{\dots^{2^{|Q|}}}} \times |D|)$  $\rightarrow$  Which queries can efficiently be compiled to automata?

- Non-Boolean queries: efficient enumeration of query results?
- Other tasks: probabilistic **conditioning** *"Knowing that I'm here, what's the probability that RER B is up?"*

#### Thanks for your attention!

## Chekuri, C. and Chuzhoy, J. (2014). Polynomial bounds for the grid-minor theorem.

In STOC.

## Courcelle, B. (1990).

# The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Inf. Comput., 85(1).

#### **Image credits**

- Slide 2:
  - https://commons.wikimedia.org/wiki/File:
    Paris\_Metro\_map.svg (cropped), user Umx on Wikimedia
    Commons, public domain
  - http://www.parisvoyage.com/images/cartoon18.jpg, ParisVoyage, fair use
  - http://www.vianavigo.com/fileadmin/galerie/pdf/CGU\_t\_.pdf (cropped), RATP, fair use
- Slides 4 and 5: https://commons.wikimedia.org/wiki/File: Carte\_Transilien\_RER\_sch%C3%A9matique.svg (modified), user Benjamin Smith on Wikimedia Commons, license CC BY-SA 4.0 international.