
Tractable Query Answering
Under Probabilistic Constraints

Antoine Amarilli1, Pierre Bourhis2, Pierre Senellart1,3

1Télécom ParisTech
2CNRS-LIFL

3National University of Singapore

September 4th, 2014

Tractable Query Evaluation
On Probabilistic Instances

Antoine Amarilli1, Pierre Bourhis2, Pierre Senellart1,3

1Télécom ParisTech
2CNRS-LIFL

3National University of Singapore

September 4th, 2014

Background Ideas Results Consequences

Instances and queries

Given a relational instance (= set of facts, hypergraph)
I = {R(a, b),R(b, c),S(c)}
Given a conjunctive query (CQ) (existentially quantified)
q : ∃xy R(x, y) ∧ S(y)

→ Query evaluation (model checking) of q on I
→ Data complexity: q is fixed

1/9

Background Ideas Results Consequences

Instances and queries

Given a relational instance (= set of facts, hypergraph)
I = {R(a, b),R(b, c),S(c)}
Given a conjunctive query (CQ) (existentially quantified)
q : ∃xy R(x, y) ∧ S(y)

→ Query evaluation (model checking) of q on I

→ Data complexity: q is fixed

1/9

Background Ideas Results Consequences

Instances and queries

Given a relational instance (= set of facts, hypergraph)
I = {R(a, b),R(b, c),S(c)}
Given a conjunctive query (CQ) (existentially quantified)
q : ∃xy R(x, y) ∧ S(y)

→ Query evaluation (model checking) of q on I

→ Data complexity: q is fixed

1/9

Background Ideas Results Consequences

Instances and queries

Given a relational instance (= set of facts, hypergraph)
I = {R(a, b),R(b, c),S(c)}
Given a conjunctive query (CQ) (existentially quantified)
q : ∃xy R(x, y) ∧ S(y)

→ Query evaluation (model checking) of q on I

→ Data complexity: q is fixed

1/9

Background Ideas Results Consequences

Instances and queries

Given a relational instance (= set of facts, hypergraph)
I = {R(a, b),R(b, c),S(c)}
Given a conjunctive query (CQ) (existentially quantified)
q : ∃xy R(x, y) ∧ S(y)

→ Query evaluation (model checking) of q on I
→ Data complexity: q is fixed

1/9

Background Ideas Results Consequences

Uncertain and probabilistic instances

Set of uncertain events
eflight CDG → VIE flight AF1756 takes place

ebus Vienna → Bratislava buses are running

Annotate instance facts with formulae on the events
IsIn(AA, Paris) ¬eflight
IsIn(AA, Vienna) eflight ∧ ¬ebus
IsIn(AA, Bratislava) eflight ∧ ebus

→ Semantics: a set of instances (possible worlds).
Add a probability distribution on each event

each event has probability 0 < p < 1 of being true
all events are assumed to be independent

→ Semantics: a probability distribution on instances.
→ Query evaluation: determine the probability of q on Î.

2/9

Background Ideas Results Consequences

Uncertain and probabilistic instances

Set of uncertain events
eflight CDG → VIE flight AF1756 takes place

ebus Vienna → Bratislava buses are running
Annotate instance facts with formulae on the events
IsIn(AA, Paris) ¬eflight
IsIn(AA, Vienna) eflight ∧ ¬ebus
IsIn(AA, Bratislava) eflight ∧ ebus

→ Semantics: a set of instances (possible worlds).
Add a probability distribution on each event

each event has probability 0 < p < 1 of being true
all events are assumed to be independent

→ Semantics: a probability distribution on instances.
→ Query evaluation: determine the probability of q on Î.

2/9

Background Ideas Results Consequences

Uncertain and probabilistic instances

Set of uncertain events
eflight CDG → VIE flight AF1756 takes place

ebus Vienna → Bratislava buses are running
Annotate instance facts with formulae on the events
IsIn(AA, Paris) ¬eflight
IsIn(AA, Vienna) eflight ∧ ¬ebus
IsIn(AA, Bratislava) eflight ∧ ebus

→ Semantics: a set of instances (possible worlds).

Add a probability distribution on each event
each event has probability 0 < p < 1 of being true
all events are assumed to be independent

→ Semantics: a probability distribution on instances.
→ Query evaluation: determine the probability of q on Î.

2/9

Background Ideas Results Consequences

Uncertain and probabilistic instances

Set of uncertain events
eflight CDG → VIE flight AF1756 takes place

ebus Vienna → Bratislava buses are running
Annotate instance facts with formulae on the events
IsIn(AA, Paris) ¬eflight
IsIn(AA, Vienna) eflight ∧ ¬ebus
IsIn(AA, Bratislava) eflight ∧ ebus

→ Semantics: a set of instances (possible worlds).
Add a probability distribution on each event

each event has probability 0 < p < 1 of being true
all events are assumed to be independent

→ Semantics: a probability distribution on instances.
→ Query evaluation: determine the probability of q on Î.

2/9

Background Ideas Results Consequences

Uncertain and probabilistic instances

Set of uncertain events
eflight CDG → VIE flight AF1756 takes place

ebus Vienna → Bratislava buses are running
Annotate instance facts with formulae on the events
IsIn(AA, Paris) ¬eflight
IsIn(AA, Vienna) eflight ∧ ¬ebus
IsIn(AA, Bratislava) eflight ∧ ebus

→ Semantics: a set of instances (possible worlds).
Add a probability distribution on each event

each event has probability 0 < p < 1 of being true
all events are assumed to be independent

→ Semantics: a probability distribution on instances.

→ Query evaluation: determine the probability of q on Î.

2/9

Background Ideas Results Consequences

Uncertain and probabilistic instances

Set of uncertain events
eflight CDG → VIE flight AF1756 takes place

ebus Vienna → Bratislava buses are running
Annotate instance facts with formulae on the events
IsIn(AA, Paris) ¬eflight
IsIn(AA, Vienna) eflight ∧ ¬ebus
IsIn(AA, Bratislava) eflight ∧ ebus

→ Semantics: a set of instances (possible worlds).
Add a probability distribution on each event

each event has probability 0 < p < 1 of being true
all events are assumed to be independent

→ Semantics: a probability distribution on instances.
→ Query evaluation: determine the probability of q on Î.

2/9

Background Ideas Results Consequences

Hardness and tractability

With arbitrary annotations
→ Query evaluation is #P-hard even with a single fact

(Immediate reduction from #SAT)
With simple annotations (one unique event per tuple)
→ Query evaluation is #P-hard on arbitrary instances

(Use the instance to do the reduction)

Existing work:
→ Fix a simple annotation scheme
→ Show dichotomy between #P-hard and PTIME queries

Our approach:
→ Find a restriction on the instance and annotations
→ Show that many queries are tractable in this case

3/9

Background Ideas Results Consequences

Hardness and tractability

With arbitrary annotations
→ Query evaluation is #P-hard even with a single fact

(Immediate reduction from #SAT)
With simple annotations (one unique event per tuple)
→ Query evaluation is #P-hard on arbitrary instances

(Use the instance to do the reduction)
Existing work:
→ Fix a simple annotation scheme
→ Show dichotomy between #P-hard and PTIME queries

Our approach:
→ Find a restriction on the instance and annotations
→ Show that many queries are tractable in this case

3/9

Background Ideas Results Consequences

Hardness and tractability

With arbitrary annotations
→ Query evaluation is #P-hard even with a single fact

(Immediate reduction from #SAT)
With simple annotations (one unique event per tuple)
→ Query evaluation is #P-hard on arbitrary instances

(Use the instance to do the reduction)
Existing work:
→ Fix a simple annotation scheme
→ Show dichotomy between #P-hard and PTIME queries

Our approach:
→ Find a restriction on the instance and annotations
→ Show that many queries are tractable in this case

3/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

tree encoding TI

tree decomposition
O(|I|) for fixed width

instance I
R(a, b) R(b, c) S(c)

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

tree encoding TI

tree decomposition
O(|I|) for fixed width

instance I
R(a, b) R(b, c) S(c)

query q
∃xy R(x, y) ∧ S(y)

tree encoding TI

tree decomposition
O(|I|) for fixed width

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

tree encoding TI

tree decomposition
O(|I|) for fixed width

instance I
R(a, b) R(b, c) S(c)

query q
∃xy R(x, y) ∧ S(y)

tree encoding TI

tree decomposition
O(|I|) for fixed width

deterministic
tree automaton Aq

rewriting
O(1) data complexity

query q
∃xy R(x, y) ∧ S(y)

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

tree encoding TI

tree decomposition
O(|I|) for fixed width

instance I
R(a, b) R(b, c) S(c)

query q
∃xy R(x, y) ∧ S(y)

tree encoding TI

tree decomposition
O(|I|) for fixed width

deterministic
tree automaton Aq

rewriting
O(1) data complexity

query q
∃xy R(x, y) ∧ S(y) deterministic

tree automaton Aq

rewriting
O(1) data complexity

evaluation
linear time

query answer

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

tree encoding TI

tree decomposition
O(|I|) for fixed width

instance I
R(a, b) R(b, c) S(c)

query q
∃xy R(x, y) ∧ S(y)

tree encoding TI

tree decomposition
O(|I|) for fixed width

deterministic
tree automaton Aq

rewriting
O(1) data complexity

query q
∃xy R(x, y) ∧ S(y) deterministic

tree automaton Aq

rewriting
O(1) data complexity

evaluation
linear time

query answer

evaluation
linear time

query answer

→ Linear time data complexity

4/9

Background Ideas Results Consequences

Bounded treewidth
An idea from instances without probabilities...

If an instance has low treewidth then it is almost a tree
Assume that the instance treewidth is constant...

instance I
R(a, b) R(b, c) S(c)

tree encoding TI

tree decomposition
O(|I|) for fixed width

instance I
R(a, b) R(b, c) S(c)

query q
∃xy R(x, y) ∧ S(y)

tree encoding TI

tree decomposition
O(|I|) for fixed width

deterministic
tree automaton Aq

rewriting
O(1) data complexity

query q
∃xy R(x, y) ∧ S(y) deterministic

tree automaton Aq

rewriting
O(1) data complexity

evaluation
linear time

query answer

evaluation
linear time

query answer

→ Linear time data complexity
4/9

Background Ideas Results Consequences

Tractable inference

An idea from probabilities without instances...
Represent a propositional formula F as a Boolean circuit
Assume the circuit has constant treewidth

→ Probability of F can be computed in linear time
(using junction tree algorithm for Bayesian networks)
(assuming constant-time arithmetic operations)

5/9

Background Ideas Results Consequences

cc-tables

Boolean circuit for the annotations

1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

Circuit must have low treewidth
Instance must have low treewidth

→ Need simultaneous decomposition

6/9

Background Ideas Results Consequences

cc-tables

Boolean circuit for the annotations
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

Circuit must have low treewidth
Instance must have low treewidth

→ Need simultaneous decomposition

6/9

Background Ideas Results Consequences

cc-tables

Boolean circuit for the annotations
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

Circuit must have low treewidth
Instance must have low treewidth

→ Need simultaneous decomposition

6/9

Background Ideas Results Consequences

cc-tables

Boolean circuit for the annotations
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

Circuit must have low treewidth
Instance must have low treewidth

→ Need simultaneous decomposition

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

6/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

7/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

7/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

7/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

7/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

deterministic
tree automaton Aq

rewriting
O(1) data complexity

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

7/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

deterministic
tree automaton Aq

rewriting
O(1) data complexity

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

probability p

probabilistic inference
O(|C|) for fixed width

0.42

7/9

Background Ideas Results Consequences

Main result

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

instance I
1/21/21/2

∧

∧
R(a, b)

R(b, c)

R(c, d)

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

tree encoding TI

tree decomposition
O(|I|) for fixed width

1/2
R(a, b)

1/2

R(b, c)
∧

1/2

R(c, d)
∧

query q
∃xy R(x, y) ∧ S(y)

query q
∃xy R(x, y) ∧ S(y)

deterministic
tree automaton Aq

rewriting
O(1) data complexity

deterministic
tree automaton Aq

rewriting
O(1) data complexity

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

instrumentation
linear time

bounded
treewidth
circuit C

1/2

1/2

∧

1/2

∧

A

A

A

probability p

probabilistic inference
O(|C|) for fixed width

0.42
probability p

probabilistic inference
O(|C|) for fixed width

0.42

7/9

Background Ideas Results Consequences

Consequences

For queries representable as deterministic automata ...
→ CQs
→ Monadic second-order
→ Guarded second-order

... on various probabilistic models ...
→ Tuple-independent tables
→ Block-independent disjoint tables
→ pc-tables (presented before)
→ Probabilistic XML

... assuming bounded treewidth (for reasonable definitions) ...
→ ... probability of fixed q can be computed in O(|̂I|)!

8/9

Background Ideas Results Consequences

Consequences

For queries representable as deterministic automata ...
→ CQs
→ Monadic second-order
→ Guarded second-order

... on various probabilistic models ...
→ Tuple-independent tables
→ Block-independent disjoint tables
→ pc-tables (presented before)
→ Probabilistic XML

... assuming bounded treewidth (for reasonable definitions) ...
→ ... probability of fixed q can be computed in O(|̂I|)!

8/9

Background Ideas Results Consequences

Consequences

For queries representable as deterministic automata ...
→ CQs
→ Monadic second-order
→ Guarded second-order

... on various probabilistic models ...
→ Tuple-independent tables
→ Block-independent disjoint tables
→ pc-tables (presented before)
→ Probabilistic XML

... assuming bounded treewidth (for reasonable definitions) ...

→ ... probability of fixed q can be computed in O(|̂I|)!

8/9

Background Ideas Results Consequences

Consequences

For queries representable as deterministic automata ...
→ CQs
→ Monadic second-order
→ Guarded second-order

... on various probabilistic models ...
→ Tuple-independent tables
→ Block-independent disjoint tables
→ pc-tables (presented before)
→ Probabilistic XML

... assuming bounded treewidth (for reasonable definitions) ...
→ ... probability of fixed q can be computed in O(|̂I|)!

8/9

Background Ideas Results Consequences

Conclusion

We can combine the following techniques:
Computing tree decompositions
Encoding problems to automata on tree encodings of instances
Evaluating probabilities on bounded-treewidth circuits

Applications:
Tractable probabilistic query evaluation in practice?
Reasoning under uncertain rules
(hence the bait-and-switch on the title...)

Questions:
Other semirings than Boolean AND/OR?
Other tasks than probabilistic inference?

5
votes

0
answers

48
views

What are bounded-treewidth circuits good for?
circuit-complexity pr.probability treewidth arithmetic-circuits

modified aug 28 at 13:05 a3nm 1,432http://cstheory.stackexchange.com/q/25624

Thanks for your attention!

9/9

Background Ideas Results Consequences

Conclusion

We can combine the following techniques:
Computing tree decompositions
Encoding problems to automata on tree encodings of instances
Evaluating probabilities on bounded-treewidth circuits

Applications:
Tractable probabilistic query evaluation in practice?
Reasoning under uncertain rules
(hence the bait-and-switch on the title...)

Questions:
Other semirings than Boolean AND/OR?
Other tasks than probabilistic inference?

5
votes

0
answers

48
views

What are bounded-treewidth circuits good for?
circuit-complexity pr.probability treewidth arithmetic-circuits

modified aug 28 at 13:05 a3nm 1,432http://cstheory.stackexchange.com/q/25624

Thanks for your attention!

9/9

Background Ideas Results Consequences

Conclusion

We can combine the following techniques:
Computing tree decompositions
Encoding problems to automata on tree encodings of instances
Evaluating probabilities on bounded-treewidth circuits

Applications:
Tractable probabilistic query evaluation in practice?
Reasoning under uncertain rules
(hence the bait-and-switch on the title...)

Questions:
Other semirings than Boolean AND/OR?
Other tasks than probabilistic inference?

5
votes

0
answers

48
views

What are bounded-treewidth circuits good for?
circuit-complexity pr.probability treewidth arithmetic-circuits

modified aug 28 at 13:05 a3nm 1,432http://cstheory.stackexchange.com/q/25624

Thanks for your attention!

9/9

Background Ideas Results Consequences

Conclusion

We can combine the following techniques:
Computing tree decompositions
Encoding problems to automata on tree encodings of instances
Evaluating probabilities on bounded-treewidth circuits

Applications:
Tractable probabilistic query evaluation in practice?
Reasoning under uncertain rules
(hence the bait-and-switch on the title...)

Questions:
Other semirings than Boolean AND/OR?
Other tasks than probabilistic inference?

5
votes

0
answers

48
views

What are bounded-treewidth circuits good for?
circuit-complexity pr.probability treewidth arithmetic-circuits

modified aug 28 at 13:05 a3nm 1,432http://cstheory.stackexchange.com/q/25624

Thanks for your attention!

9/9

Background Ideas Results Consequences

Conclusion

We can combine the following techniques:
Computing tree decompositions
Encoding problems to automata on tree encodings of instances
Evaluating probabilities on bounded-treewidth circuits

Applications:
Tractable probabilistic query evaluation in practice?
Reasoning under uncertain rules
(hence the bait-and-switch on the title...)

Questions:
Other semirings than Boolean AND/OR?
Other tasks than probabilistic inference?

5
votes

0
answers

48
views

What are bounded-treewidth circuits good for?
circuit-complexity pr.probability treewidth arithmetic-circuits

modified aug 28 at 13:05 a3nm 1,432http://cstheory.stackexchange.com/q/25624

Thanks for your attention!
9/9

	Background
	Ideas
	Results
	Consequences

