
Get a Sample for a Discount

Get a Sample for a Discount
Sampling-Based XML Data Pricing

Ruiming Tang, Antoine Amarilli,
Pierre Senellart, Stéphane Bressan

1 / 25



Get a Sample for a Discount

Introduction

Introduction

I In most data pricing literature
(e.g., [Koutris et al., 2012a, Koutris et al., 2012b,
Koutris et al., 2013, Li and Miklau, 2012]), data prices are
prescribed and not negotiable, and give access to the best
data quality that the provider can achieve.

I We propose a pricing framework, in which data quality can be
traded for discounted prices. We allow a data consumer to
propose her own price for the requested data.

I If the proposed price is the full price of the requested data, the
requested data is returned to the data consumer.

I If the proposed price is less than the full price, a lower quality
version of the requested data is returned.

I What are the dimensions to access data quality?

2 / 25



Get a Sample for a Discount

Introduction

Introduction

I In most data pricing literature
(e.g., [Koutris et al., 2012a, Koutris et al., 2012b,
Koutris et al., 2013, Li and Miklau, 2012]), data prices are
prescribed and not negotiable, and give access to the best
data quality that the provider can achieve.

I We propose a pricing framework, in which data quality can be
traded for discounted prices. We allow a data consumer to
propose her own price for the requested data.

I If the proposed price is the full price of the requested data, the
requested data is returned to the data consumer.

I If the proposed price is less than the full price, a lower quality
version of the requested data is returned.

I What are the dimensions to access data quality?

2 / 25



Get a Sample for a Discount

Introduction

Introduction

I In most data pricing literature
(e.g., [Koutris et al., 2012a, Koutris et al., 2012b,
Koutris et al., 2013, Li and Miklau, 2012]), data prices are
prescribed and not negotiable, and give access to the best
data quality that the provider can achieve.

I We propose a pricing framework, in which data quality can be
traded for discounted prices. We allow a data consumer to
propose her own price for the requested data.

I If the proposed price is the full price of the requested data, the
requested data is returned to the data consumer.

I If the proposed price is less than the full price, a lower quality
version of the requested data is returned.

I What are the dimensions to access data quality?

2 / 25



Get a Sample for a Discount

Introduction

Introduction

I In most data pricing literature
(e.g., [Koutris et al., 2012a, Koutris et al., 2012b,
Koutris et al., 2013, Li and Miklau, 2012]), data prices are
prescribed and not negotiable, and give access to the best
data quality that the provider can achieve.

I We propose a pricing framework, in which data quality can be
traded for discounted prices. We allow a data consumer to
propose her own price for the requested data.

I If the proposed price is the full price of the requested data, the
requested data is returned to the data consumer.

I If the proposed price is less than the full price, a lower quality
version of the requested data is returned.

I What are the dimensions to access data quality?

2 / 25



Get a Sample for a Discount

Introduction

Introduction

I Data quality dimensions (defined in
[Pipino et al., 2002, Wang and Strong, 1996]):

I intrinsic quality (believability, objectivity, accuracy, reputation)
I contextual quality (value-added, relevancy, timeliness, ease of

operation, appropriate amount of data, completeness)
I representational quality (interpretability, ease of understanding,

concise representation, consistent representation)
I accessibility quality (accessibility, security)

I In our previous work [Tang et al., 2013], we proposed a
pricing framework for relational data, in which accuracy can
be traded for discounted prices.

I In this paper, we propose a pricing framework for XML data,
in which completeness can be traded for discounted prices.

3 / 25



Get a Sample for a Discount

Introduction

Introduction

I Data quality dimensions (defined in
[Pipino et al., 2002, Wang and Strong, 1996]):

I intrinsic quality (believability, objectivity, accuracy, reputation)
I contextual quality (value-added, relevancy, timeliness, ease of

operation, appropriate amount of data, completeness)
I representational quality (interpretability, ease of understanding,

concise representation, consistent representation)
I accessibility quality (accessibility, security)

I In our previous work [Tang et al., 2013], we proposed a
pricing framework for relational data, in which accuracy can
be traded for discounted prices.

I In this paper, we propose a pricing framework for XML data,
in which completeness can be traded for discounted prices.

3 / 25



Get a Sample for a Discount

Introduction

Introduction

I Data quality dimensions (defined in
[Pipino et al., 2002, Wang and Strong, 1996]):

I intrinsic quality (believability, objectivity, accuracy, reputation)
I contextual quality (value-added, relevancy, timeliness, ease of

operation, appropriate amount of data, completeness)
I representational quality (interpretability, ease of understanding,

concise representation, consistent representation)
I accessibility quality (accessibility, security)

I In our previous work [Tang et al., 2013], we proposed a
pricing framework for relational data, in which accuracy can
be traded for discounted prices.

I In this paper, we propose a pricing framework for XML data,
in which completeness can be traded for discounted prices.

3 / 25



Get a Sample for a Discount

Introduction

Introduction

I Data quality dimensions (defined in
[Pipino et al., 2002, Wang and Strong, 1996]):

I intrinsic quality (believability, objectivity, accuracy, reputation)
I contextual quality (value-added, relevancy, timeliness, ease of

operation, appropriate amount of data, completeness)
I representational quality (interpretability, ease of understanding,

concise representation, consistent representation)
I accessibility quality (accessibility, security)

I In our previous work [Tang et al., 2013], we proposed a
pricing framework for relational data, in which accuracy can
be traded for discounted prices.

I In this paper, we propose a pricing framework for XML data,
in which completeness can be traded for discounted prices.

3 / 25



Get a Sample for a Discount

Framework Description

Our Framework

I Three main actors in data markets:

I Data provider: she has an XML document and sets a price to
this document. She also assigns a weight to each node.

I Data consumer: she proposes a price for the document. The
proposed price may be lower than the price of the document
because

I she has a limited budget
I she wants to explore the document before the full purchase

I Data market owner:
I she negotiates with the data provider a pricing function to

decide the completeness of a sample that should be returned,
according to a proposed price

I she samples a rooted subtree of the requested document with
the decided completeness uniformly at random.

4 / 25



Get a Sample for a Discount

Framework Description

Our Framework

I Three main actors in data markets:
I Data provider: she has an XML document and sets a price to

this document. She also assigns a weight to each node.

I Data consumer: she proposes a price for the document. The
proposed price may be lower than the price of the document
because

I she has a limited budget
I she wants to explore the document before the full purchase

I Data market owner:
I she negotiates with the data provider a pricing function to

decide the completeness of a sample that should be returned,
according to a proposed price

I she samples a rooted subtree of the requested document with
the decided completeness uniformly at random.

4 / 25



Get a Sample for a Discount

Framework Description

Our Framework

I Three main actors in data markets:
I Data provider: she has an XML document and sets a price to

this document. She also assigns a weight to each node.
I Data consumer: she proposes a price for the document. The

proposed price may be lower than the price of the document
because

I she has a limited budget
I she wants to explore the document before the full purchase

I Data market owner:
I she negotiates with the data provider a pricing function to

decide the completeness of a sample that should be returned,
according to a proposed price

I she samples a rooted subtree of the requested document with
the decided completeness uniformly at random.

4 / 25



Get a Sample for a Discount

Framework Description

Our Framework

I Three main actors in data markets:
I Data provider: she has an XML document and sets a price to

this document. She also assigns a weight to each node.
I Data consumer: she proposes a price for the document. The

proposed price may be lower than the price of the document
because

I she has a limited budget
I she wants to explore the document before the full purchase

I Data market owner:
I she negotiates with the data provider a pricing function to

decide the completeness of a sample that should be returned,
according to a proposed price

I she samples a rooted subtree of the requested document with
the decided completeness uniformly at random.

4 / 25



Get a Sample for a Discount

Framework Description

Weight and Completeness of a rooted subtree

I A rooted subtree t′ of a tree t is (1) a subtree of t and (2)
root(t′) = root(t).

I The weight of a tree (weight(t)) is intuitively, the sum
weight of all the nodes.

I Completeness of t′ with respect to a tree t (t′ is a rooted

subtree of t) is ct(t
′) = weight(t′)

weight(t) .

5 / 25



Get a Sample for a Discount

Framework Description

Weight and Completeness of a rooted subtree

I A rooted subtree t′ of a tree t is (1) a subtree of t and (2)
root(t′) = root(t).

I The weight of a tree (weight(t)) is intuitively, the sum
weight of all the nodes.

I Completeness of t′ with respect to a tree t (t′ is a rooted

subtree of t) is ct(t
′) = weight(t′)

weight(t) .

5 / 25



Get a Sample for a Discount

Framework Description

Weight and Completeness of a rooted subtree

I A rooted subtree t′ of a tree t is (1) a subtree of t and (2)
root(t′) = root(t).

I The weight of a tree (weight(t)) is intuitively, the sum
weight of all the nodes.

I Completeness of t′ with respect to a tree t (t′ is a rooted

subtree of t) is ct(t
′) = weight(t′)

weight(t) .

5 / 25



Get a Sample for a Discount

Framework Description

Pricing Function

I The pricing function of a tree t is a function
φt : [0, 1]→ Q+. Its input is the completeness of a rooted
subtree t′ and it returns the price of t′, as a non-negative
rational.

I Non-decreasing. The more complete a rooted subtree is, the
more expensive it should be, i.e., c1 ≥ c2 ⇒ φt(c1) ≥ φt(c2).

I Arbitrage-free. Buying a rooted subtree of completeness
c1 + c2 should not be more expensive than buying two
subtrees with respective completeness c1 and c2, i.e.,
φt(c1) + φt(c2) ≥ φt(c1 + c2). This property is useful when
considering repeated requests.

6 / 25



Get a Sample for a Discount

Framework Description

Pricing Function

I The pricing function of a tree t is a function
φt : [0, 1]→ Q+. Its input is the completeness of a rooted
subtree t′ and it returns the price of t′, as a non-negative
rational.

I Non-decreasing. The more complete a rooted subtree is, the
more expensive it should be, i.e., c1 ≥ c2 ⇒ φt(c1) ≥ φt(c2).

I Arbitrage-free. Buying a rooted subtree of completeness
c1 + c2 should not be more expensive than buying two
subtrees with respective completeness c1 and c2, i.e.,
φt(c1) + φt(c2) ≥ φt(c1 + c2). This property is useful when
considering repeated requests.

6 / 25



Get a Sample for a Discount

Framework Description

Pricing Function

I The pricing function of a tree t is a function
φt : [0, 1]→ Q+. Its input is the completeness of a rooted
subtree t′ and it returns the price of t′, as a non-negative
rational.

I Non-decreasing. The more complete a rooted subtree is, the
more expensive it should be, i.e., c1 ≥ c2 ⇒ φt(c1) ≥ φt(c2).

I Arbitrage-free. Buying a rooted subtree of completeness
c1 + c2 should not be more expensive than buying two
subtrees with respective completeness c1 and c2, i.e.,
φt(c1) + φt(c2) ≥ φt(c1 + c2). This property is useful when
considering repeated requests.

6 / 25



Get a Sample for a Discount

Framework Description

Pricing Function

I Minimum and maximum bound. We should have
φt(0) = prmin and φt(1) = prt, where prmin is the minimum
cost that a data consumer has to pay using the data market
and prt is the price of the whole tree t.

I All these properties can be satisfied, for instance, by functions
of the form φt(c) = (prt − prmin)c

p + prmin where p ≤ 1.

7 / 25



Get a Sample for a Discount

Framework Description

Pricing Function

I Minimum and maximum bound. We should have
φt(0) = prmin and φt(1) = prt, where prmin is the minimum
cost that a data consumer has to pay using the data market
and prt is the price of the whole tree t.

I All these properties can be satisfied, for instance, by functions
of the form φt(c) = (prt − prmin)c

p + prmin where p ≤ 1.

7 / 25



Get a Sample for a Discount

Framework Description

Sampling Problem

I Given a proposed price pr0, once a completeness value
c ∈ φ−1t (pr0) is chosen, the weight of the returned rooted
subtree is fixed as c× weight(t).

I We consider the problem of uniform sampling a rooted
subtree with prescribed weight (instead with prescribed
completeness). The problem of sampling a rooted subtree,
given a tree t and a weight k, is to sample a rooted subtree t′

of t, such that weight(t′) = k, uniformly at random.

I Why “uniformly at random”? To be fair to the data consumer,
there should be an equal chance to explore every possible part
of the XML document that is worth the proposed price.

8 / 25



Get a Sample for a Discount

Framework Description

Sampling Problem

I Given a proposed price pr0, once a completeness value
c ∈ φ−1t (pr0) is chosen, the weight of the returned rooted
subtree is fixed as c× weight(t).

I We consider the problem of uniform sampling a rooted
subtree with prescribed weight (instead with prescribed
completeness). The problem of sampling a rooted subtree,
given a tree t and a weight k, is to sample a rooted subtree t′

of t, such that weight(t′) = k, uniformly at random.

I Why “uniformly at random”? To be fair to the data consumer,
there should be an equal chance to explore every possible part
of the XML document that is worth the proposed price.

8 / 25



Get a Sample for a Discount

Framework Description

Sampling Problem

I Given a proposed price pr0, once a completeness value
c ∈ φ−1t (pr0) is chosen, the weight of the returned rooted
subtree is fixed as c× weight(t).

I We consider the problem of uniform sampling a rooted
subtree with prescribed weight (instead with prescribed
completeness). The problem of sampling a rooted subtree,
given a tree t and a weight k, is to sample a rooted subtree t′

of t, such that weight(t′) = k, uniformly at random.

I Why “uniformly at random”? To be fair to the data consumer,
there should be an equal chance to explore every possible part
of the XML document that is worth the proposed price.

8 / 25



Get a Sample for a Discount

Tractability of the Sampling Problem

Tractability of the Sampling Problem

I Given a tree t and a weight x, it is NP-hard to sample a
rooted subtree of t of weight x uniformly at random.

I Tractable cases:

I Unweighted Sampling: w(n) = 1 for all n.
I 0/1-weights Sampling.: w(n) ∈ {0, 1} for all n.

9 / 25



Get a Sample for a Discount

Tractability of the Sampling Problem

Tractability of the Sampling Problem

I Given a tree t and a weight x, it is NP-hard to sample a
rooted subtree of t of weight x uniformly at random.

I Tractable cases:
I Unweighted Sampling: w(n) = 1 for all n.
I 0/1-weights Sampling.: w(n) ∈ {0, 1} for all n.

9 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I We first present a sampling algorithm for binary trees and
extend the algorithm to any unranked trees.

I First phase: Subtree Counting. We start by computing a
matrix D such that, for every node ni of the input tree t and
any value 0 ≤ k ≤ size(t), Di[k] is the number of subtrees of
size k rooted at node ni.

10 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I We first present a sampling algorithm for binary trees and
extend the algorithm to any unranked trees.

I First phase: Subtree Counting. We start by computing a
matrix D such that, for every node ni of the input tree t and
any value 0 ≤ k ≤ size(t), Di[k] is the number of subtrees of
size k rooted at node ni.

10 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I

0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

I For leaf nodes, there is one rooted subtree of 
size 1 and one rooted subtree of size 0, 
therefore ܦଵ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ

⨁ସܦ ହൌܦ	 ሺ1,2,1ሻ therefore ܦଶ ൌ ሺ1,1,2,1ሻ

⨁ଶܦ ଷൌܦ	 ሺ1,2,3,3,1ሻ therefore ܦ ൌ ሺ1,1,2,3,3,1ሻ

⨁ଵܦ ൌܦ	 ሺ1,2,3,5,6,4,1ሻ therefore ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

I

ଶܦ ൌ ሺ1,1,2,1ሻ

size=0, 
empty tree

size=0 size=0

size=1

size=0 size=1size=1

size=3

size=1 size=1size=0

size=2
݊ଶ

݊ସ ݊ହ

݊ଶ݊ଶ݊ଶ

݊ସ݊ସ݊ସ ݊ହ݊ହ݊ହ

11 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I

0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n
I For leaf nodes, there is one rooted subtree of 

size 1 and one rooted subtree of size 0, 
therefore ܦଵ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ

⨁ସܦ ହൌܦ	 ሺ1,2,1ሻ therefore ܦଶ ൌ ሺ1,1,2,1ሻ

⨁ଶܦ ଷൌܦ	 ሺ1,2,3,3,1ሻ therefore ܦ ൌ ሺ1,1,2,3,3,1ሻ

⨁ଵܦ ൌܦ	 ሺ1,2,3,5,6,4,1ሻ therefore ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

I

ଶܦ ൌ ሺ1,1,2,1ሻ

size=0, 
empty tree

size=0 size=0

size=1

size=0 size=1size=1

size=3

size=1 size=1size=0

size=2
݊ଶ

݊ସ ݊ହ

݊ଶ݊ଶ݊ଶ

݊ସ݊ସ݊ସ ݊ହ݊ହ݊ହ

11 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I

0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n
I For leaf nodes, there is one rooted subtree of 

size 1 and one rooted subtree of size 0, 
therefore ܦଵ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ

⨁ସܦ ହൌܦ	 ሺ1,2,1ሻ therefore ܦଶ ൌ ሺ1,1,2,1ሻ

⨁ଶܦ ଷൌܦ	 ሺ1,2,3,3,1ሻ therefore ܦ ൌ ሺ1,1,2,3,3,1ሻ

⨁ଵܦ ൌܦ	 ሺ1,2,3,5,6,4,1ሻ therefore ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

I

ଶܦ ൌ ሺ1,1,2,1ሻ

size=0, 
empty tree

size=0 size=0

size=1

size=0 size=1size=1

size=3

size=1 size=1size=0

size=2
݊ଶ

݊ସ ݊ହ

݊ଶ݊ଶ݊ଶ

݊ସ݊ସ݊ସ ݊ହ݊ହ݊ହ

11 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I Second phase: Uniform Sampling. We sample a rooted
subtree from t in a recursive top-down manner, based on the
matrix D computed.

I The basic idea is that to sample a rooted subtree at node ni,
we decide on the size of the subtrees rooted at each child
node, biased by the number of outcomes as counted in D, and
then sample rooted subtrees of the desired sizes recursively.

12 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I
0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ
Assume we want to sample a rooted 
subtree of size 3. From ܦ, we know 
that there are 3 such rooted subtrees.

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

Assume we want to sample a rooted subtree of size 3. From 
., we know that there are 3 such rooted subtreesܦ

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊ଵ ݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

13 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I
0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ
Assume we want to sample a rooted 
subtree of size 3. From ܦ, we know 
that there are 3 such rooted subtrees.

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

Assume we want to sample a rooted subtree of size 3. From 
., we know that there are 3 such rooted subtreesܦ

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊ଵ ݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

13 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I
0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ
Assume we want to sample a rooted 
subtree of size 3. From ܦ, we know 
that there are 3 such rooted subtrees.

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

Assume we want to sample a rooted subtree of size 3. From 
., we know that there are 3 such rooted subtreesܦ

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊ଵ ݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

13 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I
0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ
Assume we want to sample a rooted 
subtree of size 3. From ܦ, we know 
that there are 3 such rooted subtrees.

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

Assume we want to sample a rooted subtree of size 3. From 
., we know that there are 3 such rooted subtreesܦ

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊ଵ ݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

13 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I
0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ
Assume we want to sample a rooted 
subtree of size 3. From ܦ, we know 
that there are 3 such rooted subtrees.

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

ଵܦ ൌ ସܦ ൌ ହܦ ൌ ଷܦ ൌ ሺ1,1ሻ
ଶܦ ൌ 1,1,2,1 , ܦ ൌ ሺ1,1,2,3,3,1ሻ

ܦ ൌ ሺ1,1,2,3,5,6,4,1ሻ

Assume we want to sample a rooted subtree of size 3. From 
., we know that there are 3 such rooted subtreesܦ

݊ must be included in the sample. We have to sample 2 
rooted subtrees at ݊ଵ, ݊ respectively whose sizes sum up to 2.

Only 2 possibilities: 
(1) a rooted subtree at ݊ଵ of size 1 and a rooted subtree
at ݊ of size 1. There is ܦଵ 1 ൈ ܦ 1 ൌ 1 such case.
(2) a rooted subtree at ݊ଵ of size 0 and a rooted subtree
at ݊ of size 2. There are ܦଵ 0 ൈ ܦ 2 ൌ 2 such case.

We sample the first case with probability ଵ
ଷ
and the second case with probability ଶ

ଷ
.

Assume we sample the second case. Then we need to sample a rooted 
submtree at ݊ଵ of size 0 and sample a rooted subtree at ݊ of size 2. We 
recursively operates the above process.

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

I

……size=1

size=1

݊

݊ଵ ݊

……size=0

size=2

݊

݊ଵ ݊

ଵܦ 1 ൈ ܦ 1 ൌ 1 ଵܦ 0 ൈ ܦ 2 ൌ 2

݊

݊ଵ ݊

݊

݊

݊

݊ଵ ݊

݊ଷ݊ଶ

ଵ ൌ
ଵ
ଷ

ଶ ൌ
ଶ
ଷ

13 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I Complexity of Phase 1 (the size of t is n) is O(n3).
I Each Di has size at most n. Therefore computing the

convolution sum of two such Di’s is in O(n2).
I We need to compute at most n convolution sums. Therefore

the overall complexity is O(n3).

I Complexity of Phase 2 (the size of t is n) is O(n2).

I At each node ni, the number of possibilities to consider is
O(n), since ni has at most two children.

I There are n nodes, hence the overall complexity is O(n2).

14 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Binary Trees

Unweighted Sampling for Binary Trees

I Complexity of Phase 1 (the size of t is n) is O(n3).
I Each Di has size at most n. Therefore computing the

convolution sum of two such Di’s is in O(n2).
I We need to compute at most n convolution sums. Therefore

the overall complexity is O(n3).

I Complexity of Phase 2 (the size of t is n) is O(n2).
I At each node ni, the number of possibilities to consider is
O(n), since ni has at most two children.

I There are n nodes, hence the overall complexity is O(n2).

14 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Unranked Trees

Unweighted Sampling for Unranked Trees

I The sampling algorithm for binary trees can be adapted for
unranked trees, thanks to the associativity of the convolution
sum.

15 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Unranked Trees

Unweighted Sampling for Unranked Trees

I Based on this idea, we introduce “dummy node” to represent
a set of (more than two) nodes. An unranked tree can be
transformed to a binary tree by adding such “dummy nodes”.

I The change in the Phase 1 and Phase 2: when we are reaching
a “dummy node”, this node has weight (namely size) 0.

I For instance, n6 is a “dummy node”.

I

0n

1n
2n 3n

5n4n

0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

16 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Unranked Trees

Unweighted Sampling for Unranked Trees

I Based on this idea, we introduce “dummy node” to represent
a set of (more than two) nodes. An unranked tree can be
transformed to a binary tree by adding such “dummy nodes”.

I The change in the Phase 1 and Phase 2: when we are reaching
a “dummy node”, this node has weight (namely size) 0.

I For instance, n6 is a “dummy node”.

I

0n

1n
2n 3n

5n4n

0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

16 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

Unweighted Sampling for Unranked Trees

Unweighted Sampling for Unranked Trees

I Based on this idea, we introduce “dummy node” to represent
a set of (more than two) nodes. An unranked tree can be
transformed to a binary tree by adding such “dummy nodes”.

I The change in the Phase 1 and Phase 2: when we are reaching
a “dummy node”, this node has weight (namely size) 0.

I For instance, n6 is a “dummy node”.

I

0n

1n
2n 3n

5n4n

0n

1n
2n 3n

5n4n

0n

1n

2n 3n

5n4n

6n

0n

1n

3n 4n

6n5n

2n

16 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

0/1-weights Sampling

0/1-weights Sampling

I 0/1-weights sampling problem can be resolved by adapting
the sampling algorithm of unweighted sampling for unranked
trees, since nodes of 0 weight are similar to dummy nodes.
(Details refer to the paper)

I We have presented the algorithms of sampling problem for a
single request. Next, we are going to discuss the case of
multiple requests from a data consumer.

17 / 25



Get a Sample for a Discount

Algorithms for Tractable Sampling

0/1-weights Sampling

0/1-weights Sampling

I 0/1-weights sampling problem can be resolved by adapting
the sampling algorithm of unweighted sampling for unranked
trees, since nodes of 0 weight are similar to dummy nodes.
(Details refer to the paper)

I We have presented the algorithms of sampling problem for a
single request. Next, we are going to discuss the case of
multiple requests from a data consumer.

17 / 25



Get a Sample for a Discount

Repeated Requests

Repeated Requests

I Motivation: after having bought incomplete data, the data
consumer may realize that she needs additional data, in which
case she would like to obtain more incomplete data that is not
redundant with what she already has.

I Sampling problem: A rooted subtree, including nodes that she
already has and a set of new nodes whose sum weight is k, is
sampled uniformly at random.

I This problem is NP-hard.
I The unweighted version of this problem is tractable. We can

set the weights of nodes that a data consumer already has to 0.
Then this sampling problem is similar to 0/1-weights sampling
problem with slight adaption. (Details refer to the paper)

18 / 25



Get a Sample for a Discount

Repeated Requests

Repeated Requests

I Motivation: after having bought incomplete data, the data
consumer may realize that she needs additional data, in which
case she would like to obtain more incomplete data that is not
redundant with what she already has.

I Sampling problem: A rooted subtree, including nodes that she
already has and a set of new nodes whose sum weight is k, is
sampled uniformly at random.

I This problem is NP-hard.
I The unweighted version of this problem is tractable. We can

set the weights of nodes that a data consumer already has to 0.
Then this sampling problem is similar to 0/1-weights sampling
problem with slight adaption. (Details refer to the paper)

18 / 25



Get a Sample for a Discount

Repeated Requests

Repeated Requests

I Motivation: after having bought incomplete data, the data
consumer may realize that she needs additional data, in which
case she would like to obtain more incomplete data that is not
redundant with what she already has.

I Sampling problem: A rooted subtree, including nodes that she
already has and a set of new nodes whose sum weight is k, is
sampled uniformly at random.

I This problem is NP-hard.

I The unweighted version of this problem is tractable. We can
set the weights of nodes that a data consumer already has to 0.
Then this sampling problem is similar to 0/1-weights sampling
problem with slight adaption. (Details refer to the paper)

18 / 25



Get a Sample for a Discount

Repeated Requests

Repeated Requests

I Motivation: after having bought incomplete data, the data
consumer may realize that she needs additional data, in which
case she would like to obtain more incomplete data that is not
redundant with what she already has.

I Sampling problem: A rooted subtree, including nodes that she
already has and a set of new nodes whose sum weight is k, is
sampled uniformly at random.

I This problem is NP-hard.
I The unweighted version of this problem is tractable. We can

set the weights of nodes that a data consumer already has to 0.
Then this sampling problem is similar to 0/1-weights sampling
problem with slight adaption. (Details refer to the paper)

18 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I We proposed a framework for a data market in which data
quality can be traded for a discount.

I We studied the case of XML documents with completeness as
the quality dimension.

I The data consumer proposes a price but may get only a
sample if the proposed price is lower than that of the entire
document.

I A sample is a rooted subtree of prescribed weight, as
determined by the proposed price, sampled uniformly at
random.

19 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I We proposed a framework for a data market in which data
quality can be traded for a discount.

I We studied the case of XML documents with completeness as
the quality dimension.

I The data consumer proposes a price but may get only a
sample if the proposed price is lower than that of the entire
document.

I A sample is a rooted subtree of prescribed weight, as
determined by the proposed price, sampled uniformly at
random.

19 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I We proposed a framework for a data market in which data
quality can be traded for a discount.

I We studied the case of XML documents with completeness as
the quality dimension.

I The data consumer proposes a price but may get only a
sample if the proposed price is lower than that of the entire
document.

I A sample is a rooted subtree of prescribed weight, as
determined by the proposed price, sampled uniformly at
random.

19 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I We proposed a framework for a data market in which data
quality can be traded for a discount.

I We studied the case of XML documents with completeness as
the quality dimension.

I The data consumer proposes a price but may get only a
sample if the proposed price is lower than that of the entire
document.

I A sample is a rooted subtree of prescribed weight, as
determined by the proposed price, sampled uniformly at
random.

19 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I We proved that if nodes in the XML document have arbitrary
non-negative weights, the sampling problem is intractable.

I We identified tractable cases, namely the unweighted
sampling problem and 0/1-weights sampling problem, for
which we devised P-TIME algorithms. We also considered
repeated requests and provided P-TIME solutions to the
unweighted cases.

20 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I We proved that if nodes in the XML document have arbitrary
non-negative weights, the sampling problem is intractable.

I We identified tractable cases, namely the unweighted
sampling problem and 0/1-weights sampling problem, for
which we devised P-TIME algorithms. We also considered
repeated requests and provided P-TIME solutions to the
unweighted cases.

20 / 25



Get a Sample for a Discount

Conclusion and Future Work

Conclusion and Future Work

I The more general issue that we are currently investigating is
that of sampling rooted subtrees uniformly at random under
more expressive conditions than size restrictions or
0/1-weights. In particular, we intend to identify the
tractability boundary to describe the class of tree statistics for
which it is possible to sample rooted subtrees in P-TIME
under a uniform distribution.

21 / 25



Get a Sample for a Discount

References

References I

Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., and
Suciu, D. (2012a).
Query-based data pricing.
In PODS.

Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., and
Suciu, D. (2012b).
QueryMarket demonstration: Pricing for online data markets.
PVLDB, 5(12).

Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., and
Suciu, D. (2013).
Toward practical query pricing with QueryMarket.
In SIGMOD.

22 / 25



Get a Sample for a Discount

References

References II

Li, C. and Miklau, G. (2012).
Pricing aggregate queries in a data marketplace.
In WebDB.

Pipino, L., Lee, Y. W., and Wang, R. Y. (2002).
Data quality assessment.
Commun. ACM, 45(4).

Tang, R., Shao, D., Bressan, S., and Valduriez, P. (2013).
What you pay for is what you get.
In DEXA (2).

23 / 25



Get a Sample for a Discount

References

References III

Wang, R. Y. and Strong, D. M. (1996).
Beyond accuracy: What data quality means to data
consumers.
J. of Management Information Systems, 12(4).

24 / 25



Get a Sample for a Discount

Q/A

Thank you! Questions?

25 / 25


	Introduction
	Framework Description
	Tractability of the Sampling Problem
	Algorithms for Tractable Sampling
	Unweighted Sampling for Binary Trees
	Unweighted Sampling for Unranked Trees
	0/1-weights Sampling

	Repeated Requests
	Conclusion and Future Work
	References
	Q/A

