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Query Lineage Definitions

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Lineage of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c R(a ,b) R(a′,b)

∨ S(b, c)

∧
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Why bother? Applications of query lineages

• Evaluation: the lineage gives you the query answer

• Counting:
• Compute the probability that the query is true
• Count how many subinstances satisfy the query

• Enumeration: e�ciently enumerate the subinstances

• Explanation:
• Representation of why the query is true
• What-if: is the query still true without these facts?
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Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts

(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))
∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers

(a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc. 4/11



Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

What is the di�erence?

• Lineage = provenance in the semiring of Boolean functions
• No multiplicity of facts or derivations
→ Essentially only make sense for relational algebra

• Circuit representation: more concise
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Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time.

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME
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Computing lineages: practice

• ProvSQL: PostgreSQL extension to compute query lineages
• Keeps track of the lineage of query results as a circuit

You can run it! https://github.com/PierreSenellart/provsql
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Knowledge compilation and tractable circuit classes

Knowledge compilation:

• Translate your problem to a circuit
• Design general-purpose algorithms on the circuits
→ Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A
Task 1

Task 2

Setting B
Task 1

Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit

Setting B Circuit

Circuit Task 1

Circuit Task 2

→ Tractability: use tractable circuit classes
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Tractable circuit classes: Theory vs practice

There is a whole zoo of tractable circuit classes...

But in practice there are solvers for arbitrary circuits:

• Satisfiability (SAT): MapleSAT, Cadical, Glucose, etc.

• Counting: c2d, d4, dsharp, etc.
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A tractable circuit class: d-SDNNF
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• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration
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Computing lineages in tractable classes

• Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]
For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

• Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]
For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

• Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention!
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