TELECOM

Paris

Query Lineages and Knowledge Compilation

Antoine Amarilli’
November 13, 2019

1Télecom Paris

1/

Query Lineage Definitions

* Relational database instance I: set of facts

e Boolean query Q: take an instance and answer yes/no

2/1

Query Lineage Definitions

* Relational database instance I: set of facts

e Boolean query Q: take an instance and answer yes/no

Example: query Q:
3xyz R(x,y) A S(Y,2)

2/1

Query Lineage Definitions

* Relational database instance I: set of facts

e Boolean query Q: take an instance and answer yes/no

Example: query Q:
3xyz R(x,y) A S(Y,2)

R S
b c

o o

2/1

Query Lineage Definitions

* Relational database instance I: set of facts
e Boolean query Q: take an instance and answer yes/no

» Lineage of Q on I: a Boolean circuit over the facts of |
accepting exactly the subsets of I where Q is true

Example: query Q:
3xyz R(x,y) AS(Y,2)

R S
b c

o o

2/1

Query Lineage Definitions

* Relational database instance I: set of facts
e Boolean query Q: take an instance and answer yes/no

» Lineage of Q on I: a Boolean circuit over the facts of |
accepting exactly the subsets of I where Q is true

Example: query Q: 0
3xyz R(x,y) AS(Y,2)

R

- (V)
a b b ¢
b)

2/1

Why bother? Applications of query lineages

» Evaluation: the lineage gives you the query answer

3/m

Why bother? Applications of query lineages

» Evaluation: the lineage gives you the query answer

e Counting:
- Compute the probability that the query is true
- Count how many subinstances satisfy the query

3/m

Why bother? Applications of query lineages

» Evaluation: the lineage gives you the query answer

e Counting:
- Compute the probability that the query is true
- Count how many subinstances satisfy the query

» Enumeration: efficiently enumerate the subinstances

3/m

Why bother? Applications of query lineages

Evaluation: the lineage gives you the query answer

e Counting:
- Compute the probability that the query is true
- Count how many subinstances satisfy the query

» Enumeration: efficiently enumerate the subinstances

Explanation:

- Representation of why the query is true
- What-if: is the query still true without these facts?

3/m

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

 Study answers of non-Boolean query
Q(x,y) on instance |

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

 Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y, 2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

 Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y, 2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)

» Add assignment facts X(v), Y(v) to |
for each element v (linear)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

 Study answers of non-Boolean query Q(,¥) : 32 R(x,y) AS(y, 2)
Q(x,y) on instance | R(a,b),R(a’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

 Study answers of non-Boolean query Q(,¥) : 32 R(x,y) AS(y, 2)
Q(x,y) on instance | R(a,b),R(a’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

e Consider the Boolean query
Q" X(x) AY(y) AQ(x,y)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y,2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

» Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q' X(x) A Y(Y) A Q(x.Y)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(YY) 1 32 R(x,y) AS(Y,2)
Q(x,y) on instance | R(a,b),R(a’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

» Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q' X(x) A Y(Y) A Q(x.Y)

e Compute a lineage C’ of Q/
on I plus assignment facts

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y,2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

 Consider the Boolean query X(X) A Y(Y) A (32 R(X,y) AS(Y,2))
Q" : X(X) A Y(y) AQx,Y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y,2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

 Consider the Boolean query X(X) A Y(Y) A (32 R(X,y) AS(Y,2))
Q" : X(X) A Y(y) AQx,Y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)

e Define C by replacing all variables by 1
except assignment facts

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y,2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

» Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q' X(x) A Y(Y) A Q(x.Y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)
* Define C by replacing all variables by 1 (X(a) v X(a')) A Y(b)

except assignment facts

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y,2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

» Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q' X(x) A Y(Y) A Q(x.Y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)
* Define C by replacing all variables by 1 (X(a) v X(a')) A Y(b)

except assignment facts

— The circuit C represents the query answers

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(x,y) : 3z R(x,y) A S(y,2)
Q(x,y) on instance | I :R(a,b),R(d’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

 Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q" X() AY(y)AQx.y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)
* Define C by replacing all variables by 1 (X(a) v X(a')) A Y(b)

except assignment facts

— The circuit C represents the query answers (a,b) and (a’, b)

4/

Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q(YY) 1 32 R(x,y) AS(Y,2)
Q(x,y) on instance | R(a,b),R(a’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

 Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q" X() AY(y)AQx.y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)
* Define C by replacing all variables by 1 (X(a) v X(a')) A Y(b)

except assignment facts
— The circuit C represents the query answers (a,b) and (a’, b)

We can count the answers. enumerate them etc. 4l

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

[ac] | [ac] |
ABC ac | {p} ac|2p®
abe |p ae | {p,r} ae |pr
dbe |r de |{p,r} dc | pr
fgels de | {r,s} de | 2r7 + s
fel{rs} fel2s7+rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

5/M

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

[ac] | [ac] |
ABC ac | {p} ac|2p?
abe |p ae | {p,r} ae |pr
dbe |r de |{p,r} dc | pr
fgels de | {r,s} de | 2r7 + s
fel{rs} fel2s7+rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

What is the difference?

 Lineage = provenance in the semiring of Boolean functions

5/M

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

[ac] | [ac] |
ABC ac | {p} ac|2p®
abe |p ae | {p,r} ae |pr
dbe |r de |{p,r} dc | pr
fgels de | {r,s} de | 2r7 + s
fel{rs} fel2s7+rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

What is the difference?

» Lineage = provenance in the semiring of Boolean functions
- No multiplicity of facts or derivations
— Essentially only make sense for relational algebra

5/11

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

[ac] | [ac] |
ABC ac | {p} ac|2p®
abe |p ae | {p,r} ae |pr
dbe |r de |{p,r} dc | pr
fgels de | {r,s} de | 2r7 + s
fel{rs} fel2s7+rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials

What is the difference?

» Lineage = provenance in the semiring of Boolean functions
- No multiplicity of facts or derivations
— Essentially only make sense for relational algebra

« Circuit representation: more concise 5/m

Computing lineages: theory

* Unions of Conjunctive Queries (UCQ)

For any UCQ, given an instance, we can construct its lineage
in polynomial time.

6/1

Computing lineages: theory

* Unions of Conjunctive Queries (UCQ)

For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

6/1

Computing lineages: theory

* Unions of Conjunctive Queries (UCQ)

For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

« Acyclic Conjunctive Queries (ACQ)
Theorem

For any ACQ, given an instance, we can construct its lineage
in linear time.

6/1

Computing lineages: theory

* Unions of Conjunctive Queries (UCQ)

For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

« Acyclic Conjunctive Queries (ACQ)
Theorem

For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

6/1

* Unions of Conjunctive Queries (UCQ)

Computing lineages: theory

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

« Acyclic Conjunctive Queries (ACQ)
Theorem

For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

» Monadic Second Order queries (MSO)
Theorem

For any MSO query, given a tree (or word), we can construct
its lineage in linear time.

6/1

* Unions of Conjunctive Queries (UCQ)

Computing lineages: theory

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

« Acyclic Conjunctive Queries (ACQ)
Theorem

For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

» Monadic Second Order queries (MSO)
Theorem

For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

6/1

* Unions of Conjunctive Queries (UCQ)

Computing lineages: theory

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

« Acyclic Conjunctive Queries (ACQ)
Theorem

For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

» Monadic Second Order queries (MSO)
Theorem

For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

« Datalog: see [Deutch et al., 2014], PTIME 6/

Computing lineages: practice

* ProvSQL: PostgreSQL extension to compute query lineages
» Keeps track of the lineage of query results as a circuit

7/

https://github.com/PierreSenellart/provsql

Computing lineages: practice

* ProvSQL: PostgreSQL extension to compute query lineages
» Keeps track of the lineage of query results as a circuit

a3nm=# SELECT id, name, city FROM personnel;

New York
Paris
Berlin
Magdalen Paris
Nancy Paris
Susan Berlin
(7 rous)

a3nm=# SELECT x,formula(provenance(), 'personnel_id') FROM
(SELECT DISTINCT city FROM personnel) t;

__________ S
| (3 ®5 ®6)
Berlin | 4 @7)
Neu York | (1 @2)
(3 rous)

You can run it! https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql

Knowledge compilation and tractable circuit classes

Knowledge compilation:

 Translate your problem to a circuit
» Design general-purpose algorithms on the circuits
— Satisfiability, counting, probability computation, enumeration...

8/1

Knowledge compilation and tractable circuit classes

Knowledge compilation:

 Translate your problem to a circuit
» Design general-purpose algorithms on the circuits
— Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
0(n?) algorithms

Task 1
Setting A —

Setting B

8/1

Knowledge compilation and tractable circuit classes

Knowledge compilation:

 Translate your problem to a circuit
» Design general-purpose algorithms on the circuits
— Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation: ~ With knowledge compilation:

O(n?) algorithms O(n) algorithms

Task 1 Setting A ———— Circuit
Setting A — .

Task 2 Setting B ——— Circuit

Setting B

8/1

Knowledge compilation and tractable circuit classes

Knowledge compilation:

 Translate your problem to a circuit
» Design general-purpose algorithms on the circuits
— Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation: ~ With knowledge compilation:

O(n?) algorithms O(n) algorithms

Task 1 Setting A ——— Circuit
Setting A — .

Task 2 Setting B ———— Circuit

Task 1 Circuit —— Task 1
SettingB —

Task 2 Circuit ——— Task 2

8/1

Knowledge compilation and tractable circuit classes

Knowledge compilation:

 Translate your problem to a circuit
» Design general-purpose algorithms on the circuits
— Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation: ~ With knowledge compilation:

O(n?) algorithms O(n) algorithms

Task 1 Setting A——— Circuit
Setting A — .

Task 2 Setting B ————— Circuit

Task 1 Circuit — Task 1
SettingB —

Task 2 Circuit ——— Task 2

— Tractability: use tractable circuit classes

8/1

Tractable circuit classes: Theory vs practice

There is a whole zoo of tractable circuit classes...

dec-DNNF —> d-DNNF DNNF

i

dec-SDNNF ——> d-SDNNF SDNNF

FBDD ——|—> uFBDD —|—> nFBDD

/7 d a

OBDD uOBDD nOBDD

9/M

Tractable circuit classes: Theory vs practice

There is a whole zoo of tractable circuit classes...

dec-DNNF —> d-DNNF DNNF

i

dec-SDNNF ——> d-SDNNF SDNNF

FBDD ——|—> uFBDD —|—> nFBDD

/7 d a

OBDD uOBDD nOBDD

But in practice there are solvers for arbitrary circuits:

« Satisfiability (SAT): MapleSAT, Cadical, Glucose, etc.
e Counting: c2d, d4, dsharp, etc.

9/M

A tractable circuit class: d-SDNNF

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

10/1

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— efficient satisfiability

10/1

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— efficient satisfiability

e Deterministic: inputs of v-gates are
mutually exclusive

10/1

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— efficient satisfiability

e Deterministic: inputs of v-gates are
mutually exclusive

— efficient counting

10/1

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— efficient satisfiability

e Deterministic: inputs of v-gates are
mutually exclusive

— efficient counting

 Structured: there is a vtree that
structures the A-gates

10/1

A tractable circuit class: d-SDNNF

* Negation Normal Form: negations
only applied to the leaves

e Decomposable: inputs of A-gates are
independent (no variable has a path
to two different inputs of the same
A-gate)

— efficient satisfiability

e Deterministic: inputs of v-gates are
mutually exclusive

— efficient counting

 Structured: there is a vtree that
structures the A-gates

— efficient enumeration

10/1

Computing lineages in tractable classes

« Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]

For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

1/m

Computing lineages in tractable classes

« Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]

For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

« Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]

For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

1/m

Computing lineages in tractable classes

« Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]

For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

« Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]

For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

» Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

1/m

Computing lineages in tractable classes

« Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]

For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

« Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]

For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

» Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention! n/

References i

[Amarilli, A, Bourhis, P, and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.

[d Deutch, D., Milo, T, Roy, S., and Tannen, V. (201z).
Circuits for Datalog Provenance.
In ICDT.

[Green, T.J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
http://openproceedings.org/ICDT/2014/paper_36.pdf
http://db.cis.upenn.edu/DL/07/pods07.pdf

References ii

[\ Jha, A. and Suciu, D. (2013).
Knowledge compilation meets database theory: compiling
queries to decision diagrams.
Theory of Computing Systems, 52(3).

[{ Monet, M. (2020).
Solving a Special Case of the Intensional vs Extensional

Conjecture in Probabilistic Databases.
In PODS.
To appear.

http://mikael-monet.net/publications/monet2020solving.pdf
http://mikael-monet.net/publications/monet2020solving.pdf

	Appendix

