
Query Lineages and Knowledge Compilation

Antoine Amarilli1

November 13, 2019
1Télécom Paris

1/11



Query Lineage Definitions

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Lineage of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/11



Query Lineage Definitions

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Lineage of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/11



Query Lineage Definitions

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Lineage of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c

R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/11



Query Lineage Definitions

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Lineage of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c

R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/11



Query Lineage Definitions

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Lineage of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/11



Why bother? Applications of query lineages

• Evaluation: the lineage gives you the query answer

• Counting:
• Compute the probability that the query is true
• Count how many subinstances satisfy the query

• Enumeration: e�ciently enumerate the subinstances

• Explanation:
• Representation of why the query is true
• What-if: is the query still true without these facts?

3/11



Why bother? Applications of query lineages

• Evaluation: the lineage gives you the query answer

• Counting:
• Compute the probability that the query is true
• Count how many subinstances satisfy the query

• Enumeration: e�ciently enumerate the subinstances

• Explanation:
• Representation of why the query is true
• What-if: is the query still true without these facts?

3/11



Why bother? Applications of query lineages

• Evaluation: the lineage gives you the query answer

• Counting:
• Compute the probability that the query is true
• Count how many subinstances satisfy the query

• Enumeration: e�ciently enumerate the subinstances

• Explanation:
• Representation of why the query is true
• What-if: is the query still true without these facts?

3/11



Why bother? Applications of query lineages

• Evaluation: the lineage gives you the query answer

• Counting:
• Compute the probability that the query is true
• Count how many subinstances satisfy the query

• Enumeration: e�ciently enumerate the subinstances

• Explanation:
• Representation of why the query is true
• What-if: is the query still true without these facts?

3/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts

(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))
∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers

(a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc.

4/11



Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

• Study answers of non-Boolean query
Q(x, y) on instance I

Q(x, y) : ∃z R(x, y) ∧ S(y, z)
I : R(a,b),R(a′,b), S(b, c)

• Add assignment facts X(v), Y(v) to I
for each element v (linear)

X(a), X(a′), X(b), X(c)
Y(a), Y(a′), Y(b), Y(c)

• Consider the Boolean query
Q′ : X(x) ∧ Y(y) ∧ Q(x, y)

X(x) ∧ Y(y) ∧ (∃z R(x, y) ∧ S(y, z))

• Compute a lineage C′ of Q′

on I plus assignment facts
(X(a) ∧ R(a,b) ∨ X(a′) ∧ R(a′,b))

∧Y(b) ∧ S(b, c)

• Define C by replacing all variables by 1
except assignment facts

(X(a) ∨ X(a′)) ∧ Y(b)

→ The circuit C represents the query answers (a,b) and (a′,b)

We can count the answers, enumerate them, etc. 4/11



Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

What is the di�erence?

• Lineage = provenance in the semiring of Boolean functions
• No multiplicity of facts or derivations
→ Essentially only make sense for relational algebra

• Circuit representation: more concise

5/11



Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

What is the di�erence?

• Lineage = provenance in the semiring of Boolean functions

• No multiplicity of facts or derivations
→ Essentially only make sense for relational algebra

• Circuit representation: more concise

5/11



Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

What is the di�erence?

• Lineage = provenance in the semiring of Boolean functions
• No multiplicity of facts or derivations
→ Essentially only make sense for relational algebra

• Circuit representation: more concise

5/11



Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

What is the di�erence?

• Lineage = provenance in the semiring of Boolean functions
• No multiplicity of facts or derivations
→ Essentially only make sense for relational algebra

• Circuit representation: more concise 5/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time.

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME

6/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME

6/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time.

(following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME

6/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME

6/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time.

(automaton product)

• Datalog: see [Deutch et al., 2014], PTIME

6/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME

6/11



Computing lineages: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

• Monadic Second Order queries (MSO)
Theorem
For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

• Datalog: see [Deutch et al., 2014], PTIME 6/11



Computing lineages: practice

• ProvSQL: PostgreSQL extension to compute query lineages
• Keeps track of the lineage of query results as a circuit

You can run it! https://github.com/PierreSenellart/provsql

7/11

https://github.com/PierreSenellart/provsql


Computing lineages: practice

• ProvSQL: PostgreSQL extension to compute query lineages
• Keeps track of the lineage of query results as a circuit

You can run it! https://github.com/PierreSenellart/provsql 7/11

https://github.com/PierreSenellart/provsql


Knowledge compilation and tractable circuit classes

Knowledge compilation:

• Translate your problem to a circuit
• Design general-purpose algorithms on the circuits
→ Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A
Task 1

Task 2

Setting B
Task 1

Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit

Setting B Circuit

Circuit Task 1

Circuit Task 2

→ Tractability: use tractable circuit classes

8/11



Knowledge compilation and tractable circuit classes

Knowledge compilation:

• Translate your problem to a circuit
• Design general-purpose algorithms on the circuits
→ Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A
Task 1

Task 2

Setting B
Task 1

Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit

Setting B Circuit

Circuit Task 1

Circuit Task 2

→ Tractability: use tractable circuit classes

8/11



Knowledge compilation and tractable circuit classes

Knowledge compilation:

• Translate your problem to a circuit
• Design general-purpose algorithms on the circuits
→ Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A
Task 1

Task 2

Setting B
Task 1

Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit

Setting B Circuit

Circuit Task 1

Circuit Task 2

→ Tractability: use tractable circuit classes

8/11



Knowledge compilation and tractable circuit classes

Knowledge compilation:

• Translate your problem to a circuit
• Design general-purpose algorithms on the circuits
→ Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A
Task 1

Task 2

Setting B
Task 1

Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit

Setting B Circuit

Circuit Task 1

Circuit Task 2

→ Tractability: use tractable circuit classes

8/11



Knowledge compilation and tractable circuit classes

Knowledge compilation:

• Translate your problem to a circuit
• Design general-purpose algorithms on the circuits
→ Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A
Task 1

Task 2

Setting B
Task 1

Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit

Setting B Circuit

Circuit Task 1

Circuit Task 2

→ Tractability: use tractable circuit classes
8/11



Tractable circuit classes: Theory vs practice

There is a whole zoo of tractable circuit classes...

But in practice there are solvers for arbitrary circuits:

• Satisfiability (SAT): MapleSAT, Cadical, Glucose, etc.

• Counting: c2d, d4, dsharp, etc.

9/11



Tractable circuit classes: Theory vs practice

There is a whole zoo of tractable circuit classes...

But in practice there are solvers for arbitrary circuits:

• Satisfiability (SAT): MapleSAT, Cadical, Glucose, etc.

• Counting: c2d, d4, dsharp, etc.

9/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)

→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive

→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates

→ e�cient enumeration

10/11



A tractable circuit class: d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

• Negation Normal Form: negations
only applied to the leaves

• Decomposable: inputs of ∧-gates are
independent (no variable has a path
to two di�erent inputs of the same
∧-gate)
→ e�cient satisfiability

• Deterministic: inputs of ∨-gates are
mutually exclusive
→ e�cient counting

• Structured: there is a vtree that
structures the ∧-gates
→ e�cient enumeration

10/11



Computing lineages in tractable classes

• Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]
For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

• Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]
For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

• Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention!

11/11



Computing lineages in tractable classes

• Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]
For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

• Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]
For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

• Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention!

11/11



Computing lineages in tractable classes

• Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]
For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

• Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]
For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

• Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention!

11/11



Computing lineages in tractable classes

• Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]
For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

• Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]
For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

• Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention! 11/11



References i

Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.
Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for Datalog Provenance.
In ICDT.
Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
http://openproceedings.org/ICDT/2014/paper_36.pdf
http://db.cis.upenn.edu/DL/07/pods07.pdf


References ii

Jha, A. and Suciu, D. (2013).
Knowledge compilation meets database theory: compiling
queries to decision diagrams.
Theory of Computing Systems, 52(3).

Monet, M. (2020).
Solving a Special Case of the Intensional vs Extensional
Conjecture in Probabilistic Databases.
In PODS.
To appear.

http://mikael-monet.net/publications/monet2020solving.pdf
http://mikael-monet.net/publications/monet2020solving.pdf

	Appendix

