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Why bother? Applications of query lineages

Evaluation: the lineage gives you the query answer

e Counting:
- Compute the probability that the query is true
- Count how many subinstances satisfy the query

» Enumeration: efficiently enumerate the subinstances

Explanation:

- Representation of why the query is true
- What-if: is the query still true without these facts?
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Another application: Query answers

Lineages can also represent the answers to non-Boolean queries!

* Study answers of non-Boolean query Q( YY) 1 32 R(x,y) AS(Y,2)
Q(x,y) on instance | R(a,b),R(a’,b),S(b,c)
» Add assignment facts X(v), Y(v) to | X(a),X(a’),X(b),X(c)
for each element v (linear) Y(a),Y(a’),Y(b),Y(c)

 Consider the Boolean query X(X) AY(Y) A (32 R(x,Y) A S(Y,2))
Q" X() AY(y)AQx.y)

e Compute a lineage C' of Q’ (X(a) AR(a,b) v X(a’) AR(d', b))
on I plus assignment facts AY(b) AS(b, c)
* Define C by replacing all variables by 1 (X(a) v X(a')) A Y(b)

except assignment facts
— The circuit C represents the query answers (a,b) and (a’, b)

We can count the answers. enumerate them etc. 4l



Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], PODS ToT award): annotate
results of a relational algebra query with a semiring expression

[ac] | [ac] |
ABC ac | {p} ac|2p®
abe |p ae | {p,r} ae |pr
dbe |r de |{p,r} dc | pr
fgels de | {r,s} de | 2r7 + s
fel{rs} fel2s7+rs

(a) (b) (c)

Figure 5: Why-prov. and provenance polynomials
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Figure 5: Why-prov. and provenance polynomials

What is the difference?

» Lineage = provenance in the semiring of Boolean functions
- No multiplicity of facts or derivations
— Essentially only make sense for relational algebra

« Circuit representation: more concise 5/m
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* Unions of Conjunctive Queries (UCQ)

Computing lineages: theory

Theorem
For any UCQ, given an instance, we can construct its lineage
in polynomial time. (disjunction of all matches)

« Acyclic Conjunctive Queries (ACQ)
Theorem

For any ACQ, given an instance, we can construct its lineage
in linear time. (following a join tree)

» Monadic Second Order queries (MSO)
Theorem

For any MSO query, given a tree (or word), we can construct
its lineage in linear time. (automaton product)

« Datalog: see [Deutch et al., 2014], PTIME 6/



Computing lineages: practice

* ProvSQL: PostgreSQL extension to compute query lineages
» Keeps track of the lineage of query results as a circuit
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Computing lineages: practice

* ProvSQL: PostgreSQL extension to compute query lineages
» Keeps track of the lineage of query results as a circuit

a3nm=# SELECT id, name, city FROM personnel;

New York
Paris
Berlin
Magdalen Paris
Nancy Paris
Susan Berlin
(7 rous)

a3nm=# SELECT x,formula(provenance(), 'personnel_id') FROM
(SELECT DISTINCT city FROM personnel) t;

__________ S
| (3 ®5 ®6)
Berlin | 4 @7)
Neu York | (1 @2)
(3 rous)

You can run it! https://github.com/PierreSenellart/provsql


https://github.com/PierreSenellart/provsql
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Knowledge compilation and tractable circuit classes

Knowledge compilation:

 Translate your problem to a circuit
» Design general-purpose algorithms on the circuits
— Satisfiability, counting, probability computation, enumeration...

Without knowledge compilation: ~ With knowledge compilation:

O(n?) algorithms O(n) algorithms

Task 1 Setting A——— Circuit
Setting A — .

Task 2 Setting B ————— Circuit

Task 1 Circuit — Task 1
SettingB —

Task 2 Circuit ——— Task 2

— Tractability: use tractable circuit classes
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Tractable circuit classes: Theory vs practice

There is a whole zoo of tractable circuit classes...

dec-DNNF —> d-DNNF DNNF

i

dec-SDNNF ——> d-SDNNF SDNNF

FBDD ——|—> uFBDD —|—> nFBDD

/7 d a
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dec-DNNF —> d-DNNF DNNF

i

dec-SDNNF ——> d-SDNNF SDNNF

FBDD ——|—> uFBDD —|—> nFBDD

/7 d a

OBDD uOBDD nOBDD

But in practice there are solvers for arbitrary circuits:

« Satisfiability (SAT): MapleSAT, Cadical, Glucose, etc.
e Counting: c2d, d4, dsharp, etc.
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Computing lineages in tractable classes

« Self-join-Free Conjunctive Queries (SFCQs)

Theorem [Jha and Suciu, 2013]

For any safe SFCQ, given an instance, we can construct
an OBDD representation of the lineage in polynomial time.

« Monadic Second Order queries (MSO)

Theorem [Amarilli et al., 2015]

For any MSO query, given a tree (or word), we can construct
a d-SDNNF representation (or OBDD) of the lineage in linear time.

» Unions of Conjunctive Queries (UCQ)

Conjecture (see [Monet, 2020])
For any safe UCQ, given an instance, we can construct
a d-D representation of the lineage in polynomial time.

Thanks for your attention! n/
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