
Introduction Existing approaches Result Proof ideas Conclusion

Open-World Finite Query Answering
Under Number Restrictions

Antoine Amarilli1,2

1Télécom ParisTech, Paris, France
2University of Oxford, Oxford, United Kingdom

August 12, 2014

1/24

Introduction Existing approaches Result Proof ideas Conclusion

Open-world query answering

Evaluate query q over instance I, open-world assumption:
The instance I is correct but incomplete
Consider all possible completions J satisfying constraints Σ
Certain answers to query q among those completions

⇒ Formally: I,Σ |= q if J |= q for all J ⊇ I s.t. J |= Σ

Constraints:
TGDs, especially inclusion dependencies (ID)
⇒ Unary inclusion dependencies (UID): R[A] ⊆ S[B]

Number restrictions, especially functional dependencies (FD)

Finite vs unrestricted QA
Instance: List of employees

Constraint 1: Each employee reviews some employee (UID)
Constraint 2: At most one reviewer per employee (FD)

Query: Are all employees reviewed?

2/24

Introduction Existing approaches Result Proof ideas Conclusion

Open-world query answering

Evaluate query q over instance I, open-world assumption:
The instance I is correct but incomplete
Consider all possible completions J satisfying constraints Σ
Certain answers to query q among those completions

⇒ Formally: I,Σ |= q if J |= q for all J ⊇ I s.t. J |= Σ

Constraints:
TGDs, especially inclusion dependencies (ID)
⇒ Unary inclusion dependencies (UID): R[A] ⊆ S[B]

Number restrictions, especially functional dependencies (FD)

Finite vs unrestricted QA
Instance: List of employees

Constraint 1: Each employee reviews some employee (UID)
Constraint 2: At most one reviewer per employee (FD)

Query: Are all employees reviewed?

2/24

Introduction Existing approaches Result Proof ideas Conclusion

Open-world query answering

Evaluate query q over instance I, open-world assumption:
The instance I is correct but incomplete
Consider all possible completions J satisfying constraints Σ
Certain answers to query q among those completions

⇒ Formally: I,Σ |= q if J |= q for all J ⊇ I s.t. J |= Σ

Constraints:
TGDs, especially inclusion dependencies (ID)
⇒ Unary inclusion dependencies (UID): R[A] ⊆ S[B]

Number restrictions, especially functional dependencies (FD)

Finite vs unrestricted QA
Instance: List of employees

Constraint 1: Each employee reviews some employee (UID)
Constraint 2: At most one reviewer per employee (FD)

Query: Are all employees reviewed?

2/24

Introduction Existing approaches Result Proof ideas Conclusion

Table of Contents

1 Introduction

2 Existing approaches

3 Result

4 Proof ideas

5 Conclusion

3/24

Introduction Existing approaches Result Proof ideas Conclusion

Undecidability barrier

Entailment of IDs and FDs is undecidable [Mitchell, 1983]
Already for binary IDs and unary FDs:
R[A,B] ⊆ S[C,D], R[A] → R[B]

⇒ QA (finite or not) is also undecidable [Calì et al., 2003]
(Remark: this proof requires constants in the query)

⇒ We can’t have everything

4/24

Introduction Existing approaches Result Proof ideas Conclusion

Undecidability barrier

Entailment of IDs and FDs is undecidable [Mitchell, 1983]
Already for binary IDs and unary FDs:
R[A,B] ⊆ S[C,D], R[A] → R[B]

⇒ QA (finite or not) is also undecidable [Calì et al., 2003]
(Remark: this proof requires constants in the query)

⇒ We can’t have everything

4/24

Introduction Existing approaches Result Proof ideas Conclusion

Idea 1: Separability

The chase for IDs: universal model
Intuition: apply all IDs with fresh elements
FDs are separable from IDs if they do not impact the chase
Sufficient conditions for separability, e.g., non-conflicting:
⇒ exported positions must not be a strict superset of a key

When separable, we can ignore FDs (just check them on I)

⇒ The chase is infinite in general so it doesn’t work in the finite
⇒ Finite QA undecidable for separable IDs/FDs [Rosati, 2006]

(intuition: their finite consequences may not be separable)

5/24

Introduction Existing approaches Result Proof ideas Conclusion

Idea 1: Separability

The chase for IDs: universal model
Intuition: apply all IDs with fresh elements
FDs are separable from IDs if they do not impact the chase
Sufficient conditions for separability, e.g., non-conflicting:
⇒ exported positions must not be a strict superset of a key

When separable, we can ignore FDs (just check them on I)
⇒ The chase is infinite in general so it doesn’t work in the finite
⇒ Finite QA undecidable for separable IDs/FDs [Rosati, 2006]

(intuition: their finite consequences may not be separable)

5/24

Introduction Existing approaches Result Proof ideas Conclusion

Idea 2: Finite controllability

Finite controllability means that finite and infinite QA coincide
IDs are finitely controllable [Rosati, 2006]
⇒ Construction: finite chase (chase with distant reuses)

Generalizes to the guarded fragment [Barany et al., 2010]
⇒ (Guarded means that ∀/∃ must be covered by an atom)
⇒ Intuition: query acyclification and cycle blowup

Generalises to IDs/FDs with foreign keys condition
[Rosati, 2006]

⇒ FDs are not expressible in the guarded fragment.
⇒ IDs/FDs are not finitely controllable!

6/24

Introduction Existing approaches Result Proof ideas Conclusion

Idea 2: Finite controllability

Finite controllability means that finite and infinite QA coincide
IDs are finitely controllable [Rosati, 2006]
⇒ Construction: finite chase (chase with distant reuses)

Generalizes to the guarded fragment [Barany et al., 2010]
⇒ (Guarded means that ∀/∃ must be covered by an atom)
⇒ Intuition: query acyclification and cycle blowup

Generalises to IDs/FDs with foreign keys condition
[Rosati, 2006]

⇒ FDs are not expressible in the guarded fragment.
⇒ IDs/FDs are not finitely controllable!

6/24

Introduction Existing approaches Result Proof ideas Conclusion

Idea 3: Arity-two

Finite and unrestricted QA decidable in arity-two for the
two-variable guarded fragment and counting constraints
[Pratt-Hartmann, 2009]

Intuition: again, encode the acyclic part of the query
Satisfiability decidable by reduction to an inequation system

Explicit construction for DLs [Ibáñez-García et al., 2014]

⇒ Only for arity-two signatures
⇒ No clear way to generalize to higher arity

7/24

Introduction Existing approaches Result Proof ideas Conclusion

Idea 3: Arity-two

Finite and unrestricted QA decidable in arity-two for the
two-variable guarded fragment and counting constraints
[Pratt-Hartmann, 2009]

Intuition: again, encode the acyclic part of the query
Satisfiability decidable by reduction to an inequation system

Explicit construction for DLs [Ibáñez-García et al., 2014]
⇒ Only for arity-two signatures
⇒ No clear way to generalize to higher arity

7/24

Introduction Existing approaches Result Proof ideas Conclusion

Table of Contents

1 Introduction

2 Existing approaches

3 Result

4 Proof ideas

5 Conclusion

8/24

Introduction Existing approaches Result Proof ideas Conclusion

Our setting

So:
Finite QA
TGDs and EGDs with interaction (not FC)
High-arity signatures

⇒ Can we have all three?

⇒ What if we restrict the language to UIDs and FDs?
No direct encoding to arity-two (unlike UIDs/UKDs...)
UIDs are important IDs in practice
UIDs match the DL intuition
UIDs are less expressive than BIDs
and...

9/24

Introduction Existing approaches Result Proof ideas Conclusion

Our setting

So:
Finite QA
TGDs and EGDs with interaction (not FC)
High-arity signatures

⇒ Can we have all three?
⇒ What if we restrict the language to UIDs and FDs?

No direct encoding to arity-two (unlike UIDs/UKDs...)
UIDs are important IDs in practice
UIDs match the DL intuition
UIDs are less expressive than BIDs
and...

9/24

Introduction Existing approaches Result Proof ideas Conclusion

Our setting

So:
Finite QA
TGDs and EGDs with interaction (not FC)
High-arity signatures

⇒ Can we have all three?
⇒ What if we restrict the language to UIDs and FDs?

No direct encoding to arity-two (unlike UIDs/UKDs...)
UIDs are important IDs in practice
UIDs match the DL intuition
UIDs are less expressive than BIDs
and...

9/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure for UIDs and FDs

Implication of UIDs/FDs is decidable and PTIME
[Cosmadakis et al., 1990]
Unrestricted and finite do not coincide

For unrestricted: implication of FDs and UIDs in isolation
For finite: add cycle reversal:

Consider only unary FDs: R[i] → S[j]
When R[i] ⊆ S[j] we have |R[i]| ≤ |S[j]|
When R[i] → S[j] we have |R[i]| ≥ |S[j]|
Inequality cycles with this encoding

⇒ In the finite, such cycles must be reversed

10/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure for UIDs and FDs

Implication of UIDs/FDs is decidable and PTIME
[Cosmadakis et al., 1990]
Unrestricted and finite do not coincide
For unrestricted: implication of FDs and UIDs in isolation

For finite: add cycle reversal:
Consider only unary FDs: R[i] → S[j]
When R[i] ⊆ S[j] we have |R[i]| ≤ |S[j]|
When R[i] → S[j] we have |R[i]| ≥ |S[j]|
Inequality cycles with this encoding

⇒ In the finite, such cycles must be reversed

10/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure for UIDs and FDs

Implication of UIDs/FDs is decidable and PTIME
[Cosmadakis et al., 1990]
Unrestricted and finite do not coincide
For unrestricted: implication of FDs and UIDs in isolation
For finite: add cycle reversal:

Consider only unary FDs: R[i] → S[j]
When R[i] ⊆ S[j] we have |R[i]| ≤ |S[j]|
When R[i] → S[j] we have |R[i]| ≥ |S[j]|
Inequality cycles with this encoding

⇒ In the finite, such cycles must be reversed

10/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure for UIDs and FDs

Implication of UIDs/FDs is decidable and PTIME
[Cosmadakis et al., 1990]
Unrestricted and finite do not coincide
For unrestricted: implication of FDs and UIDs in isolation
For finite: add cycle reversal:

Consider only unary FDs: R[i] → S[j]
When R[i] ⊆ S[j] we have |R[i]| ≤ |S[j]|
When R[i] → S[j] we have |R[i]| ≥ |S[j]|
Inequality cycles with this encoding

⇒ In the finite, such cycles must be reversed

10/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()
R() R[2] ⊆ R[1]

R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()

R() R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()
R()

R() R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()
R()

R()

R()

R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()
R()

R()

R()

R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|

⇒ |R[2]| = |R[1]|
Add R[1] ⊆ R[2]
Add

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()
R()

R()

R()

R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()
R()

R()

R()

R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add R[1] → R[2]

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite closure example

I

R()

R()
R()

R()

R()

!
R[2] ⊆ R[1]
R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add R[1] → R[2]

⇒ No finite model!

11/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite controllability up to closure

In arity-two, UIDs/UFDs finitely controllable up to finite
closure [Rosati, 2008, Ibáñez-García et al., 2014]

⇒ To perform finite QA on instance I, UIDs/UFDs Σ:
Compute Σ∗ the finite closure of Σ
Check if I satisfies the UFDs of Σ∗

Perform unrestricted QA with I and Σ∗

Easy because UIDs/UFDs are non-conflicting so separable

⇒ Does this also hold with higher-arity relations and FDs?

12/24

Introduction Existing approaches Result Proof ideas Conclusion

Finite controllability up to closure

In arity-two, UIDs/UFDs finitely controllable up to finite
closure [Rosati, 2008, Ibáñez-García et al., 2014]

⇒ To perform finite QA on instance I, UIDs/UFDs Σ:
Compute Σ∗ the finite closure of Σ
Check if I satisfies the UFDs of Σ∗

Perform unrestricted QA with I and Σ∗

Easy because UIDs/UFDs are non-conflicting so separable

⇒ Does this also hold with higher-arity relations and FDs?

12/24

Introduction Existing approaches Result Proof ideas Conclusion

The result

Theorem
UIDs and FDs, though not finitely controllable, are finitely
controllable up to finite closure, on arbitrary arity signatures.

⇒ It suffices to show that for any k, I, and Σ∗, there is a finite
completion of I by Σ∗ which is universal for queries of size ≤ k

13/24

Introduction Existing approaches Result Proof ideas Conclusion

The result

Theorem
UIDs and FDs, though not finitely controllable, are finitely
controllable up to finite closure, on arbitrary arity signatures.

⇒ It suffices to show that for any k, I, and Σ∗, there is a finite
completion of I by Σ∗ which is universal for queries of size ≤ k

13/24

Introduction Existing approaches Result Proof ideas Conclusion

Table of Contents

1 Introduction

2 Existing approaches

3 Result

4 Proof ideas

5 Conclusion

14/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase

R()
R()
R()

Consider k-neighborhood equivalence

Quotient the chase by this relation
May violate FDs
Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase

R()
R()
R()

Consider k-neighborhood equivalence
Quotient the chase by this relation

May violate FDs
Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()

Consider k-neighborhood equivalence
Quotient the chase by this relation

May violate FDs
Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()

Consider k-neighborhood equivalence
Quotient the chase by this relation
May violate FDs

Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()!

Consider k-neighborhood equivalence
Quotient the chase by this relation
May violate FDs

Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()

Consider k-neighborhood equivalence
Quotient the chase by this relation
May violate FDs
Not universal (cycles) even for ≤ k

Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()!

Consider k-neighborhood equivalence
Quotient the chase by this relation
May violate FDs
Not universal (cycles) even for ≤ k

Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()

Consider k-neighborhood equivalence
Quotient the chase by this relation
May violate FDs
Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries

Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Quotienting the chase

R[2] ⊆ R[1]

R()
chase chase/≡2

R()
R()
R()

R()
R()
R()
R()

Consider k-neighborhood equivalence
Quotient the chase by this relation
May violate FDs
Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient

15/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()

Follow the chase

Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

Follow the chase

Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()* * * *

Follow the chase

Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()* * * *

Follow the chase
Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()
danger

non-danger

* * * *

Follow the chase
Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()
danger

non-danger

* * * *

Follow the chase
Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous

Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()
danger

non-danger

* *

Follow the chase
Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous

Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()
danger

non-danger

* *

Follow the chase
Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Frugal chase steps

R()
R[3] ⊆ S[1]

S()
danger

non-danger

initial
segment

Follow the chase
Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing

16/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()
A()

R[2] ⊆ R[1] R[2] → R[1]

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...

... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()
A()

R[2] ⊆ R[1] R[2] → R[1]

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...

... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()

A()

R[2] ⊆ R[1] R[2] → R[1]

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...

... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle

Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle

Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]
⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle

Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]
⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle

Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R() R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]
⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle

Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]
⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)

More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]
⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)

More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]

R()

⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...

Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]

R()

⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...

... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]

R()

⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R()

R()
R()

R()
R()

A()

R[2] ⊆ R[1] R[2] → R[1]

R()

⊆ ←

17/24

Introduction Existing approaches Result Proof ideas Conclusion

Dependency graph

R()* * * *
()* *S

Build a DAG on the dependency cycles

We never create fresh elements
for a higher dependency in the DAG
Satisfy cycles along a topological sort

⇒ Finite extension that satisfies UIDs/UFDs
with a homomorphism to the quotient

18/24

Introduction Existing approaches Result Proof ideas Conclusion

Dependency graph

R()* * * *
()* *S

Build a DAG on the dependency cycles

We never create fresh elements
for a higher dependency in the DAG
Satisfy cycles along a topological sort

⇒ Finite extension that satisfies UIDs/UFDs
with a homomorphism to the quotient

18/24

Introduction Existing approaches Result Proof ideas Conclusion

Dependency graph

R()* * * *
()* *S

Build a DAG on the dependency cycles

We never create fresh elements
for a higher dependency in the DAG
Satisfy cycles along a topological sort

⇒ Finite extension that satisfies UIDs/UFDs
with a homomorphism to the quotient

18/24

Introduction Existing approaches Result Proof ideas Conclusion

Dependency graph

R()* * * *
()* *S

Build a DAG on the dependency cycles
We never create fresh elements
for a higher dependency in the DAG

Satisfy cycles along a topological sort
⇒ Finite extension that satisfies UIDs/UFDs

with a homomorphism to the quotient

18/24

Introduction Existing approaches Result Proof ideas Conclusion

Dependency graph

R()* * * *
()* *S

Build a DAG on the dependency cycles
We never create fresh elements
for a higher dependency in the DAG
Satisfy cycles along a topological sort

⇒ Finite extension that satisfies UIDs/UFDs
with a homomorphism to the quotient

18/24

Introduction Existing approaches Result Proof ideas Conclusion

Dependency graph

R()* * * *
()* *S

Build a DAG on the dependency cycles
We never create fresh elements
for a higher dependency in the DAG
Satisfy cycles along a topological sort

⇒ Finite extension that satisfies UIDs/UFDs
with a homomorphism to the quotient

18/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

Ignored so far
May only be triggered at non-dangerous reuses
Idea: if non-dangerous but dangerous for higher-arity FD
then no unary key

R()
exportnon-danger

Idea:
create many reuse candidates
combine them in different patterns

⇒ Lemma: if no UKD then O(n>1) patterns for O(n) elements

19/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

Ignored so far
May only be triggered at non-dangerous reuses
Idea: if non-dangerous but dangerous for higher-arity FD
then no unary key

R()
exportnon-danger

!

Idea:
create many reuse candidates
combine them in different patterns

⇒ Lemma: if no UKD then O(n>1) patterns for O(n) elements

19/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

Ignored so far
May only be triggered at non-dangerous reuses
Idea: if non-dangerous but dangerous for higher-arity FD
then no unary key

R()
exportnon-danger

!
Idea:

create many reuse candidates
combine them in different patterns

⇒ Lemma: if no UKD then O(n>1) patterns for O(n) elements
19/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

I

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

I

reuse candidates

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

I

reuse candidates

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R() R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R() R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R() R()

R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R() R()

R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Higher-arity FDs

R()

R() R()

R()

I

reuse candidates

...

model
completion

O(n)
elements

O(n>1)
patterns

O(n)
reuses

R()
R()

20/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles

Usually: product with a group of high girth [Otto, 2002]
Ensures all non-instance cycles are large
We cannot do it directly as it would violate the FDs

However, intuition:
FD violations can only appear on non-dangerous reuses...
... and those facts are mapped to the same quotient fact
... so cycles on them are self-homomorphic in the quotient

R()
R()

model M

non-danger reuses

⇒ Blow up cycles, but not those cycles

21/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles

Usually: product with a group of high girth [Otto, 2002]
Ensures all non-instance cycles are large
We cannot do it directly as it would violate the FDs
However, intuition:

FD violations can only appear on non-dangerous reuses...
... and those facts are mapped to the same quotient fact
... so cycles on them are self-homomorphic in the quotient

R()
R()

model M

non-danger reuses

⇒ Blow up cycles, but not those cycles

21/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles

Usually: product with a group of high girth [Otto, 2002]
Ensures all non-instance cycles are large
We cannot do it directly as it would violate the FDs
However, intuition:

FD violations can only appear on non-dangerous reuses...
... and those facts are mapped to the same quotient fact
... so cycles on them are self-homomorphic in the quotient

R()
R()

model M chase/≡k

non-danger reuses

R()h

⇒ Blow up cycles, but not those cycles

21/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles

Usually: product with a group of high girth [Otto, 2002]
Ensures all non-instance cycles are large
We cannot do it directly as it would violate the FDs
However, intuition:

FD violations can only appear on non-dangerous reuses...
... and those facts are mapped to the same quotient fact
... so cycles on them are self-homomorphic in the quotient

R()
R()

model M chase/≡k

non-danger reuses

R()h

⇒ Blow up cycles, but not those cycles
21/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles via the product

chase/≡k

k-acyclic-
universal

22/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles via the product

chase/≡k
hom

k-acyclic-
universal

M

satisfies Σ*
safe overlaps

22/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles via the product

chase/≡k
hom

k-acyclic-
universal

M

satisfies Σ*
safe overlaps

k-universal

chase/≡k

×GM ×G

prod prod

satisfies Σ*

22/24

Introduction Existing approaches Result Proof ideas Conclusion

Blowing up cycles via the product

chase/≡k
hom

k-acyclic-
universal

M

satisfies Σ*
safe overlaps

k-universal

chase/≡k

×GM ×G

prod prod

hom

satisfies Σ*
k-universal

22/24

Introduction Existing approaches Result Proof ideas Conclusion

Table of Contents

1 Introduction

2 Existing approaches

3 Result

4 Proof ideas

5 Conclusion

23/24

Introduction Existing approaches Result Proof ideas Conclusion

Summary

UIDs/FDs finitely controllable up to closure
Main differences with arity-two:

Clusters for non-dangerous reuses
Combinations for higher-arity FDs
More complex reconnexions along cycles
More elaborate cycle elimination (via the quotient)

⇒ Generalize to richer unary languages for high arity?
Need construction for finite implication
Does the finite model construction adapt?

Thanks for your attention!

24/24

Introduction Existing approaches Result Proof ideas Conclusion

Summary

UIDs/FDs finitely controllable up to closure
Main differences with arity-two:

Clusters for non-dangerous reuses
Combinations for higher-arity FDs
More complex reconnexions along cycles
More elaborate cycle elimination (via the quotient)

⇒ Generalize to richer unary languages for high arity?
Need construction for finite implication
Does the finite model construction adapt?

Thanks for your attention!

24/24

References I

Barany, V., Gottlob, G., and Otto, M. (2010).
Querying the guarded fragment.
In LICS.
Calì, A., Lembo, D., and Rosati, R. (2003).
On the decidability and complexity of query answering over
inconsistent and incomplete databases.
In PODS.
Cosmadakis, S. S., Kanellakis, P. C., and Vardi, M. Y. (1990).
Polynomial-time implication problems for unary inclusion
dependencies.
JACM, 37(1).

1/3

References II

Ibáñez-García, Y., Lutz, C., and Schneider, T. (2014).
Finite model reasoning in horn description logics.
In KR.
Mitchell, J. C. (1983).
The implication problem for functional and inclusion
dependencies.
Information and Control, 56(3).

Otto, M. (2002).
Modal and guarded characterisation theorems over finite
transition systems.
In LICS.

2/3

References III

Pratt-Hartmann, I. (2009).
Data-complexity of the two-variable fragment with counting
quantifiers.
Inf. Comput., 207(8).

Rosati, R. (2006).
On the decidability and finite controllability of query
processing in databases with incomplete information.
In PODS.
Rosati, R. (2008).
Finite model reasoning in DL-Lite.
In ESWC.

3/3

	Introduction
	Existing approaches
	Result
	Proof ideas
	Conclusion

