uction	Existing approaches	Result	Proof ideas	Conclusion
	0000	00000	0000000	0

Open-World Finite Query Answering Under Number Restrictions

Antoine Amarilli^{1,2}

¹Télécom ParisTech, Paris, France

 $^2 {\sf University}$ of Oxford, Oxford, United Kingdom

August 12, 2014

- Evaluate query q over instance l, open-world assumption:
 - The instance *I* is correct but incomplete
 - Consider all possible completions J satisfying constraints Σ
 - Certain answers to query q among those completions
 - \Rightarrow Formally: $I, \Sigma \models q$ if $J \models q$ for all $J \supseteq I$ s.t. $J \models \Sigma$

- Open-world query answering
 - Evaluate query q over instance I, open-world assumption:
 - The instance I is correct but incomplete
 - $\bullet\,$ Consider all possible completions J satisfying constraints $\Sigma\,$
 - Certain answers to query q among those completions
 - $\Rightarrow \text{ Formally: } I, \Sigma \models q \text{ if } J \models q \text{ for all } J \supseteq I \text{ s.t. } J \models \Sigma$
 - Constraints:
 - TGDs, especially inclusion dependencies (ID)
 - \Rightarrow Unary inclusion dependencies (UID): $R[A] \subseteq S[B]$
 - Number restrictions, especially functional dependencies (FD)

Open-world query answering

- Evaluate query q over instance I, open-world assumption:
 - The instance I is correct but incomplete
 - $\bullet\,$ Consider all possible completions J satisfying constraints $\Sigma\,$
 - Certain answers to query q among those completions
 - $\Rightarrow \text{ Formally: } I, \Sigma \models q \text{ if } J \models q \text{ for all } J \supseteq I \text{ s.t. } J \models \Sigma$
- Constraints:
 - TGDs, especially inclusion dependencies (ID)
 - ⇒ Unary inclusion dependencies (UID): $R[A] \subseteq S[B]$
 - Number restrictions, especially functional dependencies (FD)
- Finite vs unrestricted QA

Instance: List of employees

Constraint 1: Each employee reviews some employee (UID)

Constraint 2: At most one reviewer per employee (FD)

Query: Are all employees reviewed?

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Table of (Contents			

- 2 Existing approaches
 - 3 Result

- Entailment of IDs and FDs is undecidable [Mitchell, 1983]
- Already for binary IDs and unary FDs: $R[A, B] \subseteq S[C, D], R[A] \rightarrow R[B]$
- ⇒ QA (finite or not) is also undecidable [Calì et al., 2003] (Remark: this proof requires constants in the query)

- Entailment of IDs and FDs is undecidable [Mitchell, 1983]
- Already for binary IDs and unary FDs: $R[A, B] \subseteq S[C, D], R[A] \rightarrow R[B]$
- ⇒ QA (finite or not) is also undecidable [Calì et al., 2003] (Remark: this proof requires constants in the query)
- \Rightarrow We can't have everything

- The chase for IDs: universal model
- Intuition: apply all IDs with fresh elements
- FDs are separable from IDs if they do not impact the chase
- Sufficient conditions for separability, e.g., non-conflicting:
 ⇒ exported positions must not be a strict superset of a key
- When separable, we can ignore FDs (just check them on I)

- The chase for IDs: universal model
- Intuition: apply all IDs with fresh elements
- FDs are separable from IDs if they do not impact the chase
- Sufficient conditions for separability, e.g., non-conflicting:
 ⇒ exported positions must not be a strict superset of a key
- When separable, we can ignore FDs (just check them on *I*)
- \Rightarrow The chase is infinite in general so it doesn't work in the finite
- ⇒ Finite QA undecidable for separable IDs/FDs [Rosati, 2006] (intuition: their finite consequences may not be separable)

- Finite controllability means that finite and infinite QA coincide
- IDs are finitely controllable [Rosati, 2006]
 - \Rightarrow Construction: finite chase (chase with distant reuses)
- Generalizes to the guarded fragment [Barany et al., 2010]
 ⇒ (Guarded means that ∀/∃ must be covered by an atom)
 ⇒ Intuition: query acyclification and cycle blowup
- Generalises to IDs/FDs with foreign keys condition [Rosati, 2006]

- Finite controllability means that finite and infinite QA coincide
- IDs are finitely controllable [Rosati, 2006]
 - \Rightarrow Construction: finite chase (chase with distant reuses)
- Generalizes to the guarded fragment [Barany et al., 2010]
 ⇒ (Guarded means that ∀/∃ must be covered by an atom)
 ⇒ Intuition: query acyclification and cycle blowup
- Generalises to IDs/FDs with foreign keys condition [Rosati, 2006]
- \Rightarrow FDs are not expressible in the guarded fragment.
- \Rightarrow IDs/FDs are **not** finitely controllable!

- Finite and unrestricted QA decidable in arity-two for the two-variable guarded fragment and counting constraints [Pratt-Hartmann, 2009]
 - Intuition: again, encode the acyclic part of the query
 - Satisfiability decidable by reduction to an inequation system
- Explicit construction for DLs [Ibáñez-García et al., 2014]

- Finite and unrestricted QA decidable in arity-two for the two-variable guarded fragment and counting constraints [Pratt-Hartmann, 2009]
 - Intuition: again, encode the acyclic part of the query
 - Satisfiability decidable by reduction to an inequation system
- Explicit construction for DLs [Ibáñez-García et al., 2014]
- ⇒ Only for arity-two signatures
- \Rightarrow No clear way to generalize to higher arity

Introduction 0	Existing approaches	Result	Proof ideas	Conclusion O
Table of (Contents			

Introduction

2 Existing approaches

5 Conclusion

Introduction O	Existing approaches	Result •0000	Proof ideas	Conclusion O
Our setting				

• So:

- Finite QA
- TGDs and EGDs with interaction (not FC)
- High-arity signatures
- \Rightarrow Can we have all three?

Introduction O	Existing approaches	Result •0000	Proof ideas	Conclusion O
Our setting				

• So:

- Finite QA
- TGDs and EGDs with interaction (not FC)
- High-arity signatures
- \Rightarrow Can we have all three?

\Rightarrow What if we restrict the language to UIDs and FDs?

Introduction O	Existing approaches	Result •0000	Proof ideas	Conclusion O
Our setting				

• So:

- Finite QA
- TGDs and EGDs with interaction (not FC)
- High-arity signatures
- \Rightarrow Can we have all three?
- \Rightarrow What if we restrict the language to UIDs and FDs?
 - No direct encoding to arity-two (unlike UIDs/UKDs...)
 - UIDs are important IDs in practice
 - UIDs match the DL intuition
 - UIDs are less expressive than BIDs
 - and...

Introduction O	Existing approaches	Result 0●000	Proof ideas	Conclusion O
Finite closure	e for UIDs and F	Ds		

- Implication of UIDs/FDs is decidable and PTIME [Cosmadakis et al., 1990]
- Unrestricted and finite do not coincide

Introduction O	Existing approaches	Result 0●000	Proof ideas	Conclusion O
Finite closure	e for UIDs and F	Ds		

- Implication of UIDs/FDs is decidable and PTIME [Cosmadakis et al., 1990]
- Unrestricted and finite do not coincide
- For unrestricted: implication of FDs and UIDs in isolation

- Implication of UIDs/FDs is decidable and PTIME [Cosmadakis et al., 1990]
- Unrestricted and finite do not coincide
- For unrestricted: implication of FDs and UIDs in isolation
- For finite: add cycle reversal:
 - Consider only unary FDs: $R[i] \rightarrow S[j]$
 - When $R[i] \subseteq S[j]$ we have $|R[i]| \le |S[j]|$
 - When $R[i] \rightarrow S[j]$ we have $|R[i]| \ge |S[j]|$
 - Inequality cycles with this encoding

- Implication of UIDs/FDs is decidable and PTIME [Cosmadakis et al., 1990]
- Unrestricted and finite do not coincide
- For unrestricted: implication of FDs and UIDs in isolation
- For finite: add cycle reversal:
 - Consider only unary FDs: $R[i] \rightarrow S[j]$
 - When $R[i] \subseteq S[j]$ we have $|R[i]| \le |S[j]|$
 - When $R[i] \rightarrow S[j]$ we have $|R[i]| \ge |S[j]|$
 - Inequality cycles with this encoding
 - \Rightarrow In the finite, such cycles must be reversed

Introduction O	Existing approaches	Result 00●00	Proof ideas	Conclusion O
Finite closur	e example			

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00●00	00000000	O
Finite clo	sure example			

Introduction O	Existing approaches	Result 00●00	Proof ideas	Conclusion O
Finite closure	e example			

Introduction O	Existing approaches	Result 00●00	Proof ideas	Conclusion O
Finite closure	e example			

Introduction O	Existing approaches

Result 00●00 Proof ideas

Conclusion O

- $R[2] \subseteq R[1]$
- $R[2] \rightarrow R[1]$
- $\Rightarrow |R[2]| \le |R[1]|$
- $\Rightarrow |R[1]| \le |R[2]|$

Introduction	
0	

Existing approaches

Result 00●00 Proof ideas

Conclusion O

- $R[2] \subseteq R[1]$
- $R[2] \rightarrow R[1]$
- $\Rightarrow |R[2]| \le |R[1]|$
- $\Rightarrow |R[1]| \le |R[2]|$
- $\Rightarrow |R[2]| = |R[1]|$

Introduction	
0	

Existing approaches

Result 00●00 Proof ideas

Conclusion O

- $R[2] \subseteq R[1]$
- $R[2] \rightarrow R[1]$
- $\Rightarrow |R[2]| \le |R[1]|$
- $\Rightarrow |R[1]| \le |R[2]|$
- $\Rightarrow |R[2]| = |R[1]|$
 - Add $R[1] \subseteq R[2]$
 - Add $R[1] \rightarrow R[2]$

Introduction	
0	

Existing approaches

Result 00●00 Proof ideas

Conclusion O

- $R[2] \subseteq R[1]$
- $R[2] \rightarrow R[1]$
- $\Rightarrow |R[2]| \le |R[1]|$
- $\Rightarrow |R[1]| \le |R[2]|$
- $\Rightarrow |R[2]| = |R[1]|$
 - Add $R[1] \subseteq R[2]$
 - Add $R[1] \rightarrow R[2]$
- \Rightarrow No finite model!

Finite controllability up to closure

- In arity-two, UIDs/UFDs finitely controllable up to finite closure [Rosati, 2008, Ibáñez-García et al., 2014]
- \Rightarrow To perform finite QA on instance *I*, UIDs/UFDs Σ :
 - Compute Σ^* the finite closure of Σ
 - Check if I satisfies the UFDs of Σ^{\ast}
 - Perform unrestricted QA with I and Σ^{*}
 - Easy because UIDs/UFDs are non-conflicting so separable

Finite controllability up to closure

 In arity-two, UIDs/UFDs finitely controllable up to finite closure [Rosati, 2008, Ibáñez-García et al., 2014]

 \Rightarrow To perform finite QA on instance *I*, UIDs/UFDs Σ :

- Compute Σ^* the finite closure of Σ
- Check if I satisfies the UFDs of Σ^{\ast}
- Perform unrestricted QA with I and Σ^{*}
- Easy because UIDs/UFDs are non-conflicting so separable
- \Rightarrow Does this also hold with higher-arity relations and FDs?

Introduction O	Existing approaches	Result 0000	Proof ideas	Conclusion O
The result				

Theorem

UIDs and FDs, though not finitely controllable, are finitely controllable up to finite closure, on arbitrary arity signatures.

Introduction O	Existing approaches	Result 0000	Proof ideas	Conclusion O
The result				

Theorem

UIDs and FDs, though not finitely controllable, are finitely controllable up to finite closure, on arbitrary arity signatures.

⇒ It suffices to show that for any k, I, and Σ^* , there is a finite completion of I by Σ^* which is universal for queries of size $\leq k$

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Table of Con	tents			

Introduction

- 2 Existing approaches
- 3 Result

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	●0000000	O
Quotienting	the chase			

$\mathsf{R}[2]\subseteq\mathsf{R}[1]$

• Consider *k*-neighborhood equivalence

$R[2] \subseteq R[1]$

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation
- May violate FDs

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation
- May violate FDs

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation
- May violate FDs
- Not universal (cycles) even for $\leq k$

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation
- May violate FDs
- Not universal (cycles) even for $\leq k$

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation
- May violate FDs
- Not universal (cycles) even for $\leq k$
- Yet universal for $\leq k$ acyclic queries

- Consider *k*-neighborhood equivalence
- Quotient the chase by this relation
- May violate FDs
- Not universal (cycles) even for $\leq k$
- Yet universal for $\leq k$ acyclic queries
- Keep a homomorphism to this quotient

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	○●○○○○○○	O
Frugal chase	steps			

• Follow the chase

Follow the chase

- Follow the chase
- Partition positions:
 - Exported position
 - Dangerous positions (determiners for an UFD)
 - Non-dangerous positions (the rest)

- Follow the chase
- Partition positions:
 - Exported position
 - Dangerous positions (determiners for an UFD)
 - Non-dangerous positions (the rest)

- Follow the chase
- Partition positions:
 - Exported position
 - Dangerous positions (determiners for an UFD)
 - Non-dangerous positions (the rest)
- Create fresh elements for dangerous

- Follow the chase
- Partition positions:
 - Exported position
 - Dangerous positions (determiners for an UFD)
 - Non-dangerous positions (the rest)
- Create fresh elements for dangerous

- Follow the chase
- Partition positions:
 - Exported position
 - Dangerous positions (determiners for an UFD)
 - Non-dangerous positions (the rest)
- Create fresh elements for dangerous
- Reuse clusters for non-dangerous created by initial chasing

- Follow the chase
- Partition positions:
 - Exported position
 - Dangerous positions (determiners for an UFD)
 - Non-dangerous positions (the rest)
- Create fresh elements for dangerous
- Reuse clusters for non-dangerous created by initial chasing

Introduction	
0	

Existing approaches

Result 00000 Proof ideas

Conclusion O

Blueprint

Introduction	
0	

Existing approaches

Result 00000 Proof ideas

Conclusion O

Blueprint

• Infinite functional paths...

Introduction	
0	

Blueprint

Existing approaches

Result 00000 Proof ideas

Conclusion O

• Infinite functional paths...

Introduction	
0	

Existing approaches

Result 00000 Proof ideas

Conclusion O

Blueprint

• Infinite functional paths...

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle
- Connect it back (match elements)

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle
- Connect it back (match elements)

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle
- Connect it back (match elements)
- More complex if many positions of many relations are involved...

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle
- Connect it back (match elements)
- More complex if many positions of many relations are involved...
- Uses cardinality along cycles...

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00●00000	O
Blueprint				

- Infinite functional paths...
- ... but only within a cycle
- Connect it back (match elements)
- More complex if many positions of many relations are involved...
- Uses cardinality along cycles...
- ... but also initial chasing to force "generic neighborhoods"

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	000●0000	O
Dependency	graph			

• Build a DAG on the dependency cycles

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Dependency	graph			

• Build a DAG on the dependency cycles

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	000●0000	O
Dependency	graph			

• Build a DAG on the dependency cycles

Introduction Existing approaches OCONCUSION OCOO CONSTRAINTS Conclusion OCOO CONSTRAINTS Conclusion OCOO CONSTRAINTS CONCUSION OCOO CONSTRAINTS CONCUSION OCOO CONSTRAINTS CONCUSION OCOO CONSTRAINTS CONSTRAINTS

- Build a DAG on the dependency cycles
- We never create fresh elements for a higher dependency in the DAG

- Build a DAG on the dependency cycles
- We never create fresh elements for a higher dependency in the DAG
- Satisfy cycles along a topological sort

Introduction Existing approaches Result 0 0000 00000 Proof ideas

Conclusion O

Dependency graph

- Build a DAG on the dependency cycles
- We never create fresh elements for a higher dependency in the DAG
- Satisfy cycles along a topological sort
- ⇒ Finite extension that satisfies UIDs/UFDs with a homomorphism to the quotient
| Introduction
O | Existing approaches | Result
00000 | Proof ideas | Conclusion
O |
|-------------------|---------------------|-----------------|-------------|-----------------|
| Higher-arity | FDs | | | |

- Ignored so far
- May only be triggered at non-dangerous reuses
- Idea: if non-dangerous but dangerous for higher-arity FD then no unary key

- Ignored so far
- May only be triggered at non-dangerous reuses
- Idea: if non-dangerous but dangerous for higher-arity FD then no unary key

- Ignored so far
- May only be triggered at non-dangerous reuses
- Idea: if non-dangerous but dangerous for higher-arity FD then no unary key

• Idea:

- create many reuse candidates
- combine them in different patterns
- \Rightarrow Lemma: if no UKD then $O(n^{>1})$ patterns for O(n) elements

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00000●00	O
Higher-arity FDs				

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	00000●00	O
Higher-arity I	=Ds			

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion O
Higher-arity I	FDs			
O(r ele	n) ments			

reuse candidates

R

R

O(n^>1)

patterns

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	000000●0	O
Blowing up of	cycles			

- Usually: product with a group of high girth [Otto, 2002]
- Ensures all non-instance cycles are large
- We cannot do it directly as it would violate the FDs

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	000000●0	O
Blowing up of	cycles			

- Usually: product with a group of high girth [Otto, 2002]
- Ensures all non-instance cycles are large
- We cannot do it directly as it would violate the FDs
- However, intuition:
 - FD violations can only appear on non-dangerous reuses...
 - ... and those facts are mapped to the same quotient fact
 - ... so cycles on them are self-homomorphic in the quotient

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	000000●0	O
Blowing up of	cycles			

- Usually: product with a group of high girth [Otto, 2002]
- Ensures all non-instance cycles are large
- We cannot do it directly as it would violate the FDs
- However, intuition:
 - FD violations can only appear on non-dangerous reuses...
 - ... and those facts are mapped to the same quotient fact
 - ... so cycles on them are self-homomorphic in the quotient

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	000000●0	O
Blowing up of	cycles			

- Usually: product with a group of high girth [Otto, 2002]
- Ensures all non-instance cycles are large
- We cannot do it directly as it would violate the FDs
- However, intuition:
 - FD violations can only appear on non-dangerous reuses...
 - ... and those facts are mapped to the same quotient fact
 - $\bullet \ \ldots$ so cycles on them are self-homomorphic in the quotient

 \Rightarrow Blow up cycles, but not those cycles

Introduction	Existing approaches	Result	Proof ideas	Conclusion
O		00000	0000000●	O
Blowing up o	cycles via the pr	oduct		

k-acyclicuniversal

chase/≡_k

Introduction	Existing approaches	Result	Proof ideas	Conclusion
0	0000	00000	0000000	0
Table of (Contents			

Introduction

- 2 Existing approaches
- 3 Result

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion •
Summarv				

- UIDs/FDs finitely controllable up to closure
- Main differences with arity-two:
 - Clusters for non-dangerous reuses
 - Combinations for higher-arity FDs
 - More complex reconnexions along cycles
 - More elaborate cycle elimination (via the quotient)
- \Rightarrow Generalize to richer unary languages for high arity?
 - Need construction for finite implication
 - Does the finite model construction adapt?

Introduction O	Existing approaches	Result 00000	Proof ideas	Conclusion •
Summary				

- UIDs/FDs finitely controllable up to closure
- Main differences with arity-two:
 - Clusters for non-dangerous reuses
 - Combinations for higher-arity FDs
 - More complex reconnexions along cycles
 - More elaborate cycle elimination (via the quotient)
- \Rightarrow Generalize to richer unary languages for high arity?
 - Need construction for finite implication
 - Does the finite model construction adapt?

Thanks for your attention!

References I

Barany, V., Gottlob, G., and Otto, M. (2010). Querying the guarded fragment. In *LICS*.

Calì, A., Lembo, D., and Rosati, R. (2003).
On the decidability and complexity of query answering over inconsistent and incomplete databases.
In *PODS*.

Cosmadakis, S. S., Kanellakis, P. C., and Vardi, M. Y. (1990). Polynomial-time implication problems for unary inclusion dependencies.

JACM, 37(1).

References II

- Ibáñez-García, Y., Lutz, C., and Schneider, T. (2014). Finite model reasoning in horn description logics. In KR.
- Mitchell, J. C. (1983).

The implication problem for functional and inclusion dependencies.

Information and Control, 56(3).

Otto, M. (2002).

Modal and guarded characterisation theorems over finite transition systems.

In LICS.

References III

Pratt-Hartmann, I. (2009).

Data-complexity of the two-variable fragment with counting quantifiers.

Inf. Comput., 207(8).

Rosati, R. (2006).

On the decidability and finite controllability of query processing in databases with incomplete information. In PODS.

🛾 Rosati, R. (2008).

Finite model reasoning in DL-Lite. In *ESWC*.