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Open-world query answering

Evaluate query q over instance I, open-world assumption:
The instance I is correct but incomplete
Consider all possible completions J satisfying constraints Σ
Certain answers to query q among those completions

⇒ Formally: I,Σ |= q if J |= q for all J ⊇ I s.t. J |= Σ

Constraints:
TGDs, especially inclusion dependencies (ID)
⇒ Unary inclusion dependencies (UID): R[A] ⊆ S[B]

Number restrictions, especially functional dependencies (FD)

Finite vs unrestricted QA
Instance: List of employees

Constraint 1: Each employee reviews some employee (UID)
Constraint 2: At most one reviewer per employee (FD)

Query: Are all employees reviewed?
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Undecidability barrier

Entailment of IDs and FDs is undecidable [Mitchell, 1983]
Already for binary IDs and unary FDs:
R[A,B] ⊆ S[C,D], R[A] → R[B]

⇒ QA (finite or not) is also undecidable [Calì et al., 2003]
(Remark: this proof requires constants in the query)

⇒ We can’t have everything
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Idea 1: Separability

The chase for IDs: universal model
Intuition: apply all IDs with fresh elements
FDs are separable from IDs if they do not impact the chase
Sufficient conditions for separability, e.g., non-conflicting:
⇒ exported positions must not be a strict superset of a key

When separable, we can ignore FDs (just check them on I)

⇒ The chase is infinite in general so it doesn’t work in the finite
⇒ Finite QA undecidable for separable IDs/FDs [Rosati, 2006]

(intuition: their finite consequences may not be separable)
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Idea 2: Finite controllability

Finite controllability means that finite and infinite QA coincide
IDs are finitely controllable [Rosati, 2006]
⇒ Construction: finite chase (chase with distant reuses)

Generalizes to the guarded fragment [Barany et al., 2010]
⇒ (Guarded means that ∀/∃ must be covered by an atom)
⇒ Intuition: query acyclification and cycle blowup

Generalises to IDs/FDs with foreign keys condition
[Rosati, 2006]

⇒ FDs are not expressible in the guarded fragment.
⇒ IDs/FDs are not finitely controllable!
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Idea 3: Arity-two

Finite and unrestricted QA decidable in arity-two for the
two-variable guarded fragment and counting constraints
[Pratt-Hartmann, 2009]

Intuition: again, encode the acyclic part of the query
Satisfiability decidable by reduction to an inequation system

Explicit construction for DLs [Ibáñez-García et al., 2014]

⇒ Only for arity-two signatures
⇒ No clear way to generalize to higher arity
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Our setting

So:
Finite QA
TGDs and EGDs with interaction (not FC)
High-arity signatures

⇒ Can we have all three?

⇒ What if we restrict the language to UIDs and FDs?
No direct encoding to arity-two (unlike UIDs/UKDs...)
UIDs are important IDs in practice
UIDs match the DL intuition
UIDs are less expressive than BIDs
and...
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Finite closure for UIDs and FDs

Implication of UIDs/FDs is decidable and PTIME
[Cosmadakis et al., 1990]
Unrestricted and finite do not coincide

For unrestricted: implication of FDs and UIDs in isolation
For finite: add cycle reversal:

Consider only unary FDs: R[i] → S[j]
When R[i] ⊆ S[j] we have |R[i]| ≤ |S[j]|
When R[i] → S[j] we have |R[i]| ≥ |S[j]|
Inequality cycles with this encoding

⇒ In the finite, such cycles must be reversed
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Finite closure example

I

R(       )
R(       ) R[2] ⊆ R[1]

R[2] → R[1]

⇒ |R[2]| ≤ |R[1]|
⇒ |R[1]| ≤ |R[2]|
⇒ |R[2]| = |R[1]|

Add R[1] ⊆ R[2]
Add

⇒ No finite model!
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Finite controllability up to closure

In arity-two, UIDs/UFDs finitely controllable up to finite
closure [Rosati, 2008, Ibáñez-García et al., 2014]

⇒ To perform finite QA on instance I, UIDs/UFDs Σ:
Compute Σ∗ the finite closure of Σ
Check if I satisfies the UFDs of Σ∗

Perform unrestricted QA with I and Σ∗

Easy because UIDs/UFDs are non-conflicting so separable

⇒ Does this also hold with higher-arity relations and FDs?
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The result

Theorem
UIDs and FDs, though not finitely controllable, are finitely
controllable up to finite closure, on arbitrary arity signatures.

⇒ It suffices to show that for any k, I, and Σ∗, there is a finite
completion of I by Σ∗ which is universal for queries of size ≤ k
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Quotienting the chase

R[2] ⊆ R[1]

R(       )
chase

R(       )
R(       )
R(       )

Consider k-neighborhood equivalence

Quotient the chase by this relation
May violate FDs
Not universal (cycles) even for ≤ k
Yet universal for ≤ k acyclic queries
Keep a homomorphism to this quotient
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Frugal chase steps

R(           )

Follow the chase

Partition positions:

Exported position
Dangerous positions
(determiners for an UFD)
Non-dangerous positions
(the rest)

Create fresh elements for dangerous
Reuse clusters for non-dangerous
created by initial chasing
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Blueprint

Infinite functional paths...
... but only within a cycle
Connect it back (match elements)
More complex if many positions of
many relations are involved...
Uses cardinality along cycles...
... but also initial chasing
to force “generic neighborhoods”

I R(       )
A( )

R[2] ⊆ R[1] R[2] → R[1]
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for a higher dependency in the DAG
Satisfy cycles along a topological sort

⇒ Finite extension that satisfies UIDs/UFDs
with a homomorphism to the quotient
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Higher-arity FDs

Ignored so far
May only be triggered at non-dangerous reuses
Idea: if non-dangerous but dangerous for higher-arity FD
then no unary key

R(           )
exportnon-danger

Idea:
create many reuse candidates
combine them in different patterns

⇒ Lemma: if no UKD then O(n>1) patterns for O(n) elements
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Blowing up cycles

Usually: product with a group of high girth [Otto, 2002]
Ensures all non-instance cycles are large
We cannot do it directly as it would violate the FDs

However, intuition:
FD violations can only appear on non-dangerous reuses...
... and those facts are mapped to the same quotient fact
... so cycles on them are self-homomorphic in the quotient

R(           )
R(           )

model M

non-danger reuses

⇒ Blow up cycles, but not those cycles
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Summary

UIDs/FDs finitely controllable up to closure
Main differences with arity-two:

Clusters for non-dangerous reuses
Combinations for higher-arity FDs
More complex reconnexions along cycles
More elaborate cycle elimination (via the quotient)

⇒ Generalize to richer unary languages for high arity?
Need construction for finite implication
Does the finite model construction adapt?

Thanks for your attention!
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