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Open-world query answering (QA)

• We are given:
Relational instance I (ground facts)

! Logical constraints Σ

? Boolean conjunctive query q
(existentially quantified conjunction of atoms)

• We ask:
• Consider all possible completions J ⊇ I
• Restrict to those that satisfy the constraints Σ

→ Is q certain among them?
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QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students
• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints
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QA tasks

Is QA decidable, and what is the complexity?

→ Depends on the language used for logical constraints

→ E.g., for arbitrary first-order constraints, QA is undecidable
(because satisfiability is undecidable)

→ Find fragments of first-order logic with decidable QA
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Tuple-generating dependencies (or existential rules)

∀x y φ(x, y)→ ∃z ψ(y, z)

where the body φ and head ψ are conjunctions of atoms

→ Guarded TGDs: body φ has an atom with all body variables x, y
∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ U(x, y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ Frontier-one TGDs: the frontier y has only one variable
∀x y S(x, y)→ ∃z S(y, z)

→ Frontier-guarded TGDs (FGTGDs):
body φ has an atom with all frontier variables y

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ QA for FGTGDs is decidable [Baget et al., 2011]
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FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors

→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!
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This talk

Can we extend frontier-guarded TGDs
to capture some unguarded constraints
while preserving the decidability of QA?

1. Combining Existential Rules and Description Logics
A. A., Michael Benedikt, IJCAI’15.
→ Extend FGTGDs with description logic constraints

on arity-two data (includes disjunction, negation, counting)

2. Query Answering with Transitive and Linear-Ordered Data
A. A., Michael Benedikt, P. Bourhis, M. Vanden Boom, IJCAI’16
→ Extend FGTGDs with transitive relations

and order relations that cannot be used as guards
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Rich Description Logics

Rich description logics (DLs) FGTGDs

Emp v CEO t (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f , v)

Arity-two only Arbitrary arity

Rich: disjunction, etc. Conjunction and implication only

Functionality
asserts
Funct(Mgr−)

! n/a
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Our problem

Can we have the best of both worlds?

• QA is decidable for frontier-guarded TGDs
• QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)

→ Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

• QA is undecidable for rich DLs and FGTGDs
• QA with rich DLs is decidable for some new FGTGD classes
• Functional dependencies can be added under some conditions
even to higher-arity relations
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Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and FGTGDs

Problem:

• DLs can express Funct (↔ functional dependencies, FDs)
• FGTGDs can express inclusion dependencies (IDs)
∀x y A(x, y)→ ∃z B(y, z) with no variable repetitions

• Implication of IDs and FDs is undecidable [Mitchell, 1983]
• Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)
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Undecidability of frontier-one plus DLs

• Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)
• QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem
QA is undecidable for rich DLs and frontier-one TGDs

Problem:

• Rule heads and bodies may contain cycles
• We have Funct assertions
→ We can build a grid and encode tiling problems
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Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,

• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:
• output: is there an infinite tiling?

. . .

. . .
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→ Undecidable for some sets of colors and configurations
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Undecidability of frontier-one plus DLs: proof, cont’d

• Functional relations D for down and R for right
• Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

! Constraints:
• DL Disjunction to color tiles: T v C t C t C

• Frontier-one TGD: ∀y T(y)⇒ ∃tzw

T(y)
R−−−−→ T(t)yD yD

T(z) R−−−−→ T(w)

? Query: ∃x y C (x)
R−−−−→ C (y) for all forbidden pairs

→ There is an extension of the instance iff there is a tiling
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Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle
• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph
• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33
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Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]
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Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one TGDs: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

Basic idea:

• If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping TGD bodies can only match on the instance part
so non-looping frontier-one TGDs can be made
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Head-non-looping frontier-one and DLs: unraveling

For every frontier-one TGD with a looping body:

• Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

• Consider all possible mappings to the instance
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y′, z) ∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping TGDs

QA for the shredded instance, treeified TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query
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Adding functional dependencies

We have shown:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

• We have functional dependencies Funct(R) on binary relations
• Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session] determines Talk[title]
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Methods for TGDs + higher-arity FDs (no DLs)

• Consider QA under TGDs Σ and FDs Φ

• Σ and Φ are separable if QA(Σ,Φ)⇔ QA(Σ) when I |= Φ

→ Separable higher-arity FDs can be ignored during QA

• Inclusion dependencies (IDs) and FDs generally not separable
• Frontier-one IDs and FDs are always separable
• [New:] Frontier-one TGDs with single-atom body and head
(i.e., IDs with variable repetitions) and FDs are not separable
and QA is undecidable for them (in our paper)
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Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ ( S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)
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Decidability for non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown before, without higher-arity FDs:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

We show that we can combine these two results:

Theorem
QA is decidable for:

• Rich DL constraints (with Funct)
• Single-head (hence, head-non-looping) frontier-one TGDs
• Non-conflicting FDs (on higher-arity predicates)
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Summary of results
Combining Existential Rules and Description Logics

• Setting: Open-world query answering (QA) under:
• Frontier-guarded TGDs (FGTGDs)
• Rich DL constraints

• Question: For which FGTGD classes is QA decidable with rich DLs?
• Answers:
→ We must restrict to frontier-one TGDs
→ We must prohibit cycles in TGD heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ We can also add non-conflicting FDs on higher-arity facts
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Query answering with distinguished relations

We separate the signature σ (set of allowed relations) into:

• σB: the base relations (e.g., Advisor)
• σD: the distinguished relations
(e.g., LocatedIn, required to be transitive)

• Distinguished relations have specific built-in requirements
(which implicitly adds unguarded logical constraints)

QAtr: QA where each distinguished relation is transitive
QAtc: QA where each distinguished relation is

the transitive closure of another relation
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Undecidability

• Problem: QAtr already known to be undecidable with FGTGDs
[Gottlob et al., 2013]

→ Solution: impose that guards are base relations

→ Base Frontier-guarded TGDs (BaseFGTGDs):
body φ has an atom with all frontier variables y
and this atom is for a base relation R ∈ σB

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)
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Results for transitive relations

Theorem
The QAtr and QAtc problems are decidable for BaseFGTGDs
in 2EXPTIME combined complexity and PTIME data complexity.

Idea: Reduce QAtr to QA for FGTGDs by “axiomatizing” transitivity:
change constraints Σ to Σ′ enforcing transitivity within facts

∀x y1 y2 F(x, y1, y2) ∧ T(y1, x) ∧ T(x, y2)→ T(y1, y2)

Lemma: Some superinstances of I0 satisfying Σ′ and violating Q
can be extended by completing transitive relations to be transitive
so that they still contain I0, satisfy Σ and violate Q
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Order relations

QAlin: QA where each distinguished relation is a total order
(antisymmetric, transitive, total)

∀xx′dd′ Advisor(x, x′) ∧GradDate(x,d) ∧GradDate(x′,d′)→ d < d′

• Problem: QAlin is undecidable for BaseFGTGDs!
→ Intuition:

• x < y ∨ y < x codes inequality x 6= y
• QA with inequalities in the query is often undecidable
[Gutiérrez-Basulto et al., 2013]
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Recovering decidability with order

→ Solution: impose that guards are base relations
and that distinguished facts in body are covered by base facts

→ Base-covered Frontier-guarded TGDs (BaseCovFGTGDs):
BaseFGTGDs (with base guard) s.t. for every body σD-atom x < y
there is a σB-atom using its variables
∀x y1 y2 x < y1 ∧ S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

Theorem
QAlin is decidable for BaseCovFGTGDs and base-covered queries
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Complexity results
Query Answering with Transitive and Linear-Ordered Data

QAtr QAtc QAlin
data combined data combined data combined

BaseFGTGD in coNP 2EXP-c coNP-c 2EXP-c undecidable
BaseCovFGTGD P-c 2EXP-c coNP-c 2EXP-c coNP-c 2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

• Only gap is BaseFGTGD and QAtr

• Data complexity for QAtc and QAlin goes from PTIME to coNP-c

→ Intuition: QAtc and QAlin can code disjunctive IDs
QAtc: In T+(a,b), is the T-path of length 1, 2, 3, ...?
QAlin: In A(a,b), does a < b or b < a or a = b?
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Summary

We have studied QA with FGTGD constraints and:

• Number restrictions:
• OK on low-arity when restricting FGTGD shapes
• OK when further imposing non-conflicting condition

• Transitivity:
• OK when not used as guards

• Orders:
• OK when not used as guards and covered

Ongoing work:

• Successor relations of linear orders:
functional in both ways, acyclic, isomorphic to Z

• General techniques for this type of problems?
• Handling finiteness of relations

Thanks for your attention!
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