
Query Answering with Guarded Rules
and Expressive Constraints

Antoine Amarilli1,2, Michael Benedikt2, Pierre Bourhis3, Michael Vanden Boom2

October 20, 2016

1Télécom ParisTech, Paris, France

2University of Oxford, Oxford, United Kingdom

3CNRS CRIStAL, Lille 1/33

Open-world query answering (QA)

• We are given:
Relational instance I (ground facts)

! Logical constraints Σ

? Boolean conjunctive query q
(existentially quantified conjunction of atoms)

• We ask:
• Consider all possible completions J ⊇ I
• Restrict to those that satisfy the constraints Σ

→ Is q certain among them?

2/33

Open-world query answering (QA)

• We are given:
Relational instance I (ground facts)

! Logical constraints Σ

? Boolean conjunctive query q
(existentially quantified conjunction of atoms)

• We ask:
• Consider all possible completions J ⊇ I
• Restrict to those that satisfy the constraints Σ

→ Is q certain among them?

2/33

QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students
• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints

3/33

QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students
• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints

3/33

QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students

• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints

3/33

QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students
• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints

3/33

QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students
• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints

3/33

QA example

Relational instance I
• CoSup(Jamie) – Jamie is a co-supervised student

! Logical constraints Σ

• ∀x CoSup(x)→ ∃y z Adv(x, y) ∧Adv(x, z) ∧Knows(y, z) ∧ y 6= z
A co-supervised student has two advisors that know each other

• ∀x y Adv(x, y)→ Knows(x, y)

Advisors know their students
• ∀x y Knows(x, y)→ Knows(y, x)

“Knows” is symmetric

? Boolean conjunctive query q
• ∃x y z Knows(x, y) ∧Knows(y, z) ∧Knows(x, z)
Is there a clique of 3 people that know each other?

→ The query is certain under the instance and constraints
3/33

QA tasks

Is QA decidable, and what is the complexity?

→ Depends on the language used for logical constraints

→ E.g., for arbitrary first-order constraints, QA is undecidable
(because satisfiability is undecidable)

→ Find fragments of first-order logic with decidable QA

4/33

QA tasks

Is QA decidable, and what is the complexity?

→ Depends on the language used for logical constraints

→ E.g., for arbitrary first-order constraints, QA is undecidable
(because satisfiability is undecidable)

→ Find fragments of first-order logic with decidable QA

4/33

QA tasks

Is QA decidable, and what is the complexity?

→ Depends on the language used for logical constraints

→ E.g., for arbitrary first-order constraints, QA is undecidable
(because satisfiability is undecidable)

→ Find fragments of first-order logic with decidable QA

4/33

QA tasks

Is QA decidable, and what is the complexity?

→ Depends on the language used for logical constraints

→ E.g., for arbitrary first-order constraints, QA is undecidable
(because satisfiability is undecidable)

→ Find fragments of first-order logic with decidable QA

4/33

Tuple-generating dependencies (or existential rules)

∀x y φ(x, y)→ ∃z ψ(y, z)

where the body φ and head ψ are conjunctions of atoms

→ Guarded TGDs: body φ has an atom with all body variables x, y
∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ U(x, y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ Frontier-one TGDs: the frontier y has only one variable
∀x y S(x, y)→ ∃z S(y, z)

→ Frontier-guarded TGDs (FGTGDs):
body φ has an atom with all frontier variables y

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ QA for FGTGDs is decidable [Baget et al., 2011]

5/33

Tuple-generating dependencies (or existential rules)

∀x y φ(x, y)→ ∃z ψ(y, z)

where the body φ and head ψ are conjunctions of atoms

→ Guarded TGDs: body φ has an atom with all body variables x, y
∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ U(x, y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ Frontier-one TGDs: the frontier y has only one variable
∀x y S(x, y)→ ∃z S(y, z)

→ Frontier-guarded TGDs (FGTGDs):
body φ has an atom with all frontier variables y

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ QA for FGTGDs is decidable [Baget et al., 2011]

5/33

Tuple-generating dependencies (or existential rules)

∀x y φ(x, y)→ ∃z ψ(y, z)

where the body φ and head ψ are conjunctions of atoms

→ Guarded TGDs: body φ has an atom with all body variables x, y
∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ U(x, y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ Frontier-one TGDs: the frontier y has only one variable
∀x y S(x, y)→ ∃z S(y, z)

→ Frontier-guarded TGDs (FGTGDs):
body φ has an atom with all frontier variables y

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ QA for FGTGDs is decidable [Baget et al., 2011]

5/33

Tuple-generating dependencies (or existential rules)

∀x y φ(x, y)→ ∃z ψ(y, z)

where the body φ and head ψ are conjunctions of atoms

→ Guarded TGDs: body φ has an atom with all body variables x, y
∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ U(x, y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ Frontier-one TGDs: the frontier y has only one variable
∀x y S(x, y)→ ∃z S(y, z)

→ Frontier-guarded TGDs (FGTGDs):
body φ has an atom with all frontier variables y

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ QA for FGTGDs is decidable [Baget et al., 2011]

5/33

Tuple-generating dependencies (or existential rules)

∀x y φ(x, y)→ ∃z ψ(y, z)

where the body φ and head ψ are conjunctions of atoms

→ Guarded TGDs: body φ has an atom with all body variables x, y
∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ U(x, y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ Frontier-one TGDs: the frontier y has only one variable
∀x y S(x, y)→ ∃z S(y, z)

→ Frontier-guarded TGDs (FGTGDs):
body φ has an atom with all frontier variables y

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

→ QA for FGTGDs is decidable [Baget et al., 2011]
5/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors

→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place

→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2

unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...

→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2)

unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice

→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2

unguarded frontier!

6/33

FGTGDs cannot express everything

• Disjunction: Professors must have a PhD or an equivalent title
Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

• Number constraints: Co-supervised students have two advisors
Functionality: Any person is born in exactly one place
→ ∀x y1 y2 Born(x, y1) ∧ Born(x, y2)→ y1 = y2 unguarded frontier!

• Transitivity: isLocatedIn, isPartOf, subclass...
→ ∀x y1 y2 Part(y1, x)∧Part(x, y2)→ Part(y1, y2) unguarded frontier!

• Totality: All elephants are bigger than all mice
→ ∀y1 y2 Elephant(y1) ∧Mouse(y2)→ y1 < y2 unguarded frontier!

6/33

This talk

Can we extend frontier-guarded TGDs
to capture some unguarded constraints
while preserving the decidability of QA?

1. Combining Existential Rules and Description Logics
A. A., Michael Benedikt, IJCAI’15.
→ Extend FGTGDs with description logic constraints

on arity-two data (includes disjunction, negation, counting)

2. Query Answering with Transitive and Linear-Ordered Data
A. A., Michael Benedikt, P. Bourhis, M. Vanden Boom, IJCAI’16
→ Extend FGTGDs with transitive relations

and order relations that cannot be used as guards

7/33

This talk

Can we extend frontier-guarded TGDs
to capture some unguarded constraints
while preserving the decidability of QA?

1. Combining Existential Rules and Description Logics
A. A., Michael Benedikt, IJCAI’15.
→ Extend FGTGDs with description logic constraints

on arity-two data (includes disjunction, negation, counting)

2. Query Answering with Transitive and Linear-Ordered Data
A. A., Michael Benedikt, P. Bourhis, M. Vanden Boom, IJCAI’16
→ Extend FGTGDs with transitive relations

and order relations that cannot be used as guards

7/33

This talk

Can we extend frontier-guarded TGDs
to capture some unguarded constraints
while preserving the decidability of QA?

1. Combining Existential Rules and Description Logics
A. A., Michael Benedikt, IJCAI’15.
→ Extend FGTGDs with description logic constraints

on arity-two data (includes disjunction, negation, counting)

2. Query Answering with Transitive and Linear-Ordered Data
A. A., Michael Benedikt, P. Bourhis, M. Vanden Boom, IJCAI’16
→ Extend FGTGDs with transitive relations

and order relations that cannot be used as guards
7/33

Table of contents

Introduction

Combining Existential Rules and Description Logics

Query Answering with Transitive and Linear-Ordered Data

Conclusion

8/33

Rich Description Logics

Rich description logics (DLs) FGTGDs

Emp v CEO t (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f , v)

Arity-two only Arbitrary arity

Rich: disjunction, etc. Conjunction and implication only

Functionality
asserts
Funct(Mgr−)

! n/a

9/33

Rich Description Logics

Rich description logics (DLs) FGTGDs

Emp v CEO t (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f , v)

Arity-two only Arbitrary arity

Rich: disjunction, etc. Conjunction and implication only

Functionality
asserts
Funct(Mgr−)

! n/a

9/33

Rich Description Logics

Rich description logics (DLs) FGTGDs

Emp v CEO t (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f , v)

Arity-two only Arbitrary arity

Rich: disjunction, etc. Conjunction and implication only

Functionality
asserts
Funct(Mgr−)

! n/a

9/33

Rich Description Logics

Rich description logics (DLs) FGTGDs

Emp v CEO t (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f , v)

Arity-two only Arbitrary arity

Rich: disjunction, etc. Conjunction and implication only

Functionality
asserts
Funct(Mgr−)

! n/a

9/33

Rich Description Logics

Rich description logics (DLs) FGTGDs

Emp v CEO t (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f , v)

Arity-two only Arbitrary arity

Rich: disjunction, etc. Conjunction and implication only

Functionality
asserts
Funct(Mgr−)

! n/a

9/33

Our problem

Can we have the best of both worlds?

• QA is decidable for frontier-guarded TGDs
• QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)

→ Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

• QA is undecidable for rich DLs and FGTGDs
• QA with rich DLs is decidable for some new FGTGD classes
• Functional dependencies can be added under some conditions
even to higher-arity relations

10/33

Our problem

Can we have the best of both worlds?

• QA is decidable for frontier-guarded TGDs
• QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)

→ Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

• QA is undecidable for rich DLs and FGTGDs
• QA with rich DLs is decidable for some new FGTGD classes
• Functional dependencies can be added under some conditions
even to higher-arity relations

10/33

Our problem

Can we have the best of both worlds?

• QA is decidable for frontier-guarded TGDs
• QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)

→ Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

• QA is undecidable for rich DLs and FGTGDs
• QA with rich DLs is decidable for some new FGTGD classes
• Functional dependencies can be added under some conditions
even to higher-arity relations

10/33

Our problem

Can we have the best of both worlds?

• QA is decidable for frontier-guarded TGDs
• QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)

→ Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

• QA is undecidable for rich DLs and FGTGDs
• QA with rich DLs is decidable for some new FGTGD classes
• Functional dependencies can be added under some conditions
even to higher-arity relations

10/33

Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and FGTGDs

Problem:

• DLs can express Funct (↔ functional dependencies, FDs)
• FGTGDs can express inclusion dependencies (IDs)
∀x y A(x, y)→ ∃z B(y, z) with no variable repetitions

• Implication of IDs and FDs is undecidable [Mitchell, 1983]
• Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)

11/33

Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and FGTGDs

Problem:

• DLs can express Funct (↔ functional dependencies, FDs)
• FGTGDs can express inclusion dependencies (IDs)
∀x y A(x, y)→ ∃z B(y, z) with no variable repetitions

• Implication of IDs and FDs is undecidable [Mitchell, 1983]
• Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)

11/33

Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and FGTGDs

Problem:

• DLs can express Funct (↔ functional dependencies, FDs)
• FGTGDs can express inclusion dependencies (IDs)
∀x y A(x, y)→ ∃z B(y, z) with no variable repetitions

• Implication of IDs and FDs is undecidable [Mitchell, 1983]
• Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)

11/33

Undecidability of frontier-one plus DLs

• Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)
• QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem
QA is undecidable for rich DLs and frontier-one TGDs

Problem:

• Rule heads and bodies may contain cycles
• We have Funct assertions
→ We can build a grid and encode tiling problems

12/33

Undecidability of frontier-one plus DLs

• Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)
• QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem
QA is undecidable for rich DLs and frontier-one TGDs

Problem:

• Rule heads and bodies may contain cycles
• We have Funct assertions
→ We can build a grid and encode tiling problems

12/33

Undecidability of frontier-one plus DLs

• Restrict to frontier-one TGDs: ∀x y φ(x, y)→ ∃z ψ(y, z)
• QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem
QA is undecidable for rich DLs and frontier-one TGDs

Problem:

• Rule heads and bodies may contain cycles
• We have Funct assertions
→ We can build a grid and encode tiling problems

12/33

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,

• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:
• output: is there an infinite tiling?

. . .

. . .

. . .
...
...
...
...
... . . .

→ Undecidable for some sets of colors and configurations

13/33

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,
• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:
• output: is there an infinite tiling?

. . .

. . .

. . .
...
...
...
...
... . . .

→ Undecidable for some sets of colors and configurations

13/33

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,
• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

• output: is there an infinite tiling?

. . .

. . .

. . .
...
...
...
...
... . . .

→ Undecidable for some sets of colors and configurations

13/33

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,
• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:
• output: is there an infinite tiling?

. . .

. . .

. . .
...
...
...
...
... . . .

→ Undecidable for some sets of colors and configurations

13/33

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,
• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:
• output: is there an infinite tiling?

. . .

. . .

. . .
...
...
...
...
... . . .

→ Undecidable for some sets of colors and configurations

13/33

Undecidability of frontier-one plus DLs: proof

We reduce from tiling problems:

• finite set of colors: , ,
• horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:
• output: is there an infinite tiling?

. . .

. . .

. . .
...
...
...
...
... . . .

→ Undecidable for some sets of colors and configurations 13/33

Undecidability of frontier-one plus DLs: proof, cont’d

• Functional relations D for down and R for right
• Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

! Constraints:
• DL Disjunction to color tiles: T v C t C t C

• Frontier-one TGD: ∀y T(y)⇒ ∃tzw

T(y)
R−−−−→ T(t)yD yD

T(z) R−−−−→ T(w)

? Query: ∃x y C (x)
R−−−−→ C (y) for all forbidden pairs

→ There is an extension of the instance iff there is a tiling

14/33

Undecidability of frontier-one plus DLs: proof, cont’d

• Functional relations D for down and R for right
• Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

! Constraints:
• DL Disjunction to color tiles: T v C t C t C

• Frontier-one TGD: ∀y T(y)⇒ ∃tzw

T(y)
R−−−−→ T(t)yD yD

T(z) R−−−−→ T(w)

? Query: ∃x y C (x)
R−−−−→ C (y) for all forbidden pairs

→ There is an extension of the instance iff there is a tiling

14/33

Undecidability of frontier-one plus DLs: proof, cont’d

• Functional relations D for down and R for right
• Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

! Constraints:
• DL Disjunction to color tiles: T v C t C t C

• Frontier-one TGD: ∀y T(y)⇒ ∃tzw

T(y)
R−−−−→ T(t)yD yD

T(z) R−−−−→ T(w)

? Query: ∃x y C (x)
R−−−−→ C (y) for all forbidden pairs

→ There is an extension of the instance iff there is a tiling

14/33

Undecidability of frontier-one plus DLs: proof, cont’d

• Functional relations D for down and R for right
• Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

! Constraints:
• DL Disjunction to color tiles: T v C t C t C

• Frontier-one TGD: ∀y T(y)⇒ ∃tzw

T(y)
R−−−−→ T(t)yD yD

T(z) R−−−−→ T(w)

? Query: ∃x y C (x)
R−−−−→ C (y) for all forbidden pairs

→ There is an extension of the instance iff there is a tiling

14/33

Undecidability of frontier-one plus DLs: proof, cont’d

• Functional relations D for down and R for right
• Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

! Constraints:
• DL Disjunction to color tiles: T v C t C t C

• Frontier-one TGD: ∀y T(y)⇒ ∃tzw

T(y)
R−−−−→ T(t)yD yD

T(z) R−−−−→ T(w)

? Query: ∃x y C (x)
R−−−−→ C (y) for all forbidden pairs

→ There is an extension of the instance iff there is a tiling
14/33

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle
• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph
• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle

• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph
• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle
• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph
• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle
• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph

• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle
• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph
• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle
• R(z, x, y) S(x, y,w) is also a cycle

Formally:

• Berge cycle: cycle in the atom–variable incidence graph
• Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)

• Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one TGDs + rich DLs

15/33

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),

with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)

→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)

→
(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)

∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y)

∧
(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))

→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of non-looping frontier-one and DLs (proof)

• Shred R(a,b, c) to R1(f ,a),R2(f ,b),R3(f , c)

• Axiomatize the Ri, e.g., ∀f ∃=1x R1(f , x)

→ QA for the shredded instance, TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

• Rewrite shredded non-looping frontier-one TGDs to GC2:

• Rewrite ∀xy φ(x, y)⇒ ∃z ψ(y, z) to ∀y φ′(y)⇒ ψ′(y),
with φ′(y) and ψ′(y) the shredding of ∃xφ(x, y) and ∃zψ(y, z)

• Example: φ(y) := ∃x1x2 T(y, x1) ∧ R(y, y, x2) ∧ A(x2)
→ ∃x1 x2 f T(y, x1) ∧ R1(f , y) ∧ R2(f , y) ∧ R3(f , x2) ∧ A(x2)
→

(
∃x1 T(y, x1)

)
∧
(
∃x2 f R1(f , y) ∧ R2(f , y) ∧

(
∃y2 R3(f , y2) ∧ A(y2)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

16/33

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one TGDs: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

Basic idea:

• If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping TGD bodies can only match on the instance part
so non-looping frontier-one TGDs can be made
head-non-looping

17/33

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one TGDs: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

Basic idea:

• If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping TGD bodies can only match on the instance part
so non-looping frontier-one TGDs can be made
head-non-looping

17/33

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one TGDs: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

Basic idea:

• If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping TGD bodies can only match on the instance part
so non-looping frontier-one TGDs can be made
head-non-looping

17/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1

e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2

e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3

b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

18/33

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one TGD with a looping body:

• Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

• Consider all possible mappings to the instance
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y′, z) ∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping TGDs

QA for the shredded instance, treeified TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

19/33

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one TGD with a looping body:

• Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

• Consider all possible mappings to the instance
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y′, z) ∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping TGDs

QA for the shredded instance, treeified TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

19/33

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one TGD with a looping body:

• Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

• Consider all possible mappings to the instance
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y′, z) ∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping TGDs

QA for the shredded instance, treeified TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

19/33

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one TGD with a looping body:

• Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

• Consider all possible mappings to the instance
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y′, z) ∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping TGDs

QA for the shredded instance, treeified TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

19/33

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one TGD with a looping body:

• Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

• Consider all possible mappings to the instance
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y′, z) ∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping TGDs

QA for the shredded instance, treeified TGDs, query, and axioms
is equivalent to QA for the original instance, TGDs, query

19/33

Adding functional dependencies

We have shown:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

• We have functional dependencies Funct(R) on binary relations
• Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session] determines Talk[title]

20/33

Adding functional dependencies

We have shown:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

• We have functional dependencies Funct(R) on binary relations
• Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session] determines Talk[title]

20/33

Methods for TGDs + higher-arity FDs (no DLs)

• Consider QA under TGDs Σ and FDs Φ

• Σ and Φ are separable if QA(Σ,Φ)⇔ QA(Σ) when I |= Φ

→ Separable higher-arity FDs can be ignored during QA

• Inclusion dependencies (IDs) and FDs generally not separable
• Frontier-one IDs and FDs are always separable
• [New:] Frontier-one TGDs with single-atom body and head
(i.e., IDs with variable repetitions) and FDs are not separable
and QA is undecidable for them (in our paper)

21/33

Methods for TGDs + higher-arity FDs (no DLs)

• Consider QA under TGDs Σ and FDs Φ

• Σ and Φ are separable if QA(Σ,Φ)⇔ QA(Σ) when I |= Φ

→ Separable higher-arity FDs can be ignored during QA

• Inclusion dependencies (IDs) and FDs generally not separable
• Frontier-one IDs and FDs are always separable
• [New:] Frontier-one TGDs with single-atom body and head
(i.e., IDs with variable repetitions) and FDs are not separable
and QA is undecidable for them (in our paper)

21/33

Methods for TGDs + higher-arity FDs (no DLs)

• Consider QA under TGDs Σ and FDs Φ

• Σ and Φ are separable if QA(Σ,Φ)⇔ QA(Σ) when I |= Φ

→ Separable higher-arity FDs can be ignored during QA

• Inclusion dependencies (IDs) and FDs generally not separable
• Frontier-one IDs and FDs are always separable
• [New:] Frontier-one TGDs with single-atom body and head
(i.e., IDs with variable repetitions) and FDs are not separable
and QA is undecidable for them (in our paper)

21/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:

→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail

→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is...

non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting

• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is...

conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)

• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is...

non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting

• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is...

conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)

• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is...

not allowed (not single-head)

22/33

Non-conflicting TGDs and FDs [Calì et al., 2012]

Non-conflicting condition: sufficient condition for separability
of single-head TGDs Σ and FDs Φ,

• For every TGD head H = R(x1, . . . , xn):
• S ··= positions of H with a frontier variable
• S ··= positions with an existentially quantified variable

• For each FD R[S′]→ R[i] of Φ:
→ if S′ (S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1]→ R[3]:

• T(x)⇒ R(y, y, x) is... non-conflicting
• T(x, y)⇒ R(x, y, z) is... conflicting (superset)
• T(x)⇒ R(x, y, z) is... non-conflicting
• T(x)⇒ R(x, y, y) is... conflicting (variable reuse)
• T(y)⇒ R(x, y, z)U(z) is... not allowed (not single-head) 22/33

Decidability for non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown before, without higher-arity FDs:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

We show that we can combine these two results:

Theorem
QA is decidable for:

• Rich DL constraints (with Funct)
• Single-head (hence, head-non-looping) frontier-one TGDs
• Non-conflicting FDs (on higher-arity predicates)

23/33

Decidability for non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown before, without higher-arity FDs:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

We show that we can combine these two results:

Theorem
QA is decidable for:

• Rich DL constraints (with Funct)
• Single-head (hence, head-non-looping) frontier-one TGDs
• Non-conflicting FDs (on higher-arity predicates)

23/33

Decidability for non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown before, without higher-arity FDs:

Theorem
QA is decidable for head-non-looping frontier-one TGDs + rich DLs

We show that we can combine these two results:

Theorem
QA is decidable for:

• Rich DL constraints (with Funct)
• Single-head (hence, head-non-looping) frontier-one TGDs
• Non-conflicting FDs (on higher-arity predicates)

23/33

Summary of results
Combining Existential Rules and Description Logics

• Setting: Open-world query answering (QA) under:
• Frontier-guarded TGDs (FGTGDs)
• Rich DL constraints

• Question: For which FGTGD classes is QA decidable with rich DLs?
• Answers:
→ We must restrict to frontier-one TGDs
→ We must prohibit cycles in TGD heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ We can also add non-conflicting FDs on higher-arity facts

24/33

Summary of results
Combining Existential Rules and Description Logics

• Setting: Open-world query answering (QA) under:
• Frontier-guarded TGDs (FGTGDs)
• Rich DL constraints

• Question: For which FGTGD classes is QA decidable with rich DLs?
• Answers:

→ We must restrict to frontier-one TGDs
→ We must prohibit cycles in TGD heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ We can also add non-conflicting FDs on higher-arity facts

24/33

Summary of results
Combining Existential Rules and Description Logics

• Setting: Open-world query answering (QA) under:
• Frontier-guarded TGDs (FGTGDs)
• Rich DL constraints

• Question: For which FGTGD classes is QA decidable with rich DLs?
• Answers:
→ We must restrict to frontier-one TGDs
→ We must prohibit cycles in TGD heads

→ QA is decidable for head-non-looping frontier-one + rich DLs
→ We can also add non-conflicting FDs on higher-arity facts

24/33

Summary of results
Combining Existential Rules and Description Logics

• Setting: Open-world query answering (QA) under:
• Frontier-guarded TGDs (FGTGDs)
• Rich DL constraints

• Question: For which FGTGD classes is QA decidable with rich DLs?
• Answers:
→ We must restrict to frontier-one TGDs
→ We must prohibit cycles in TGD heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ We can also add non-conflicting FDs on higher-arity facts

24/33

Table of contents

Introduction

Combining Existential Rules and Description Logics

Query Answering with Transitive and Linear-Ordered Data

Conclusion

25/33

Query answering with distinguished relations

We separate the signature σ (set of allowed relations) into:

• σB: the base relations (e.g., Advisor)
• σD: the distinguished relations
(e.g., LocatedIn, required to be transitive)

• Distinguished relations have specific built-in requirements
(which implicitly adds unguarded logical constraints)

QAtr: QA where each distinguished relation is transitive
QAtc: QA where each distinguished relation is

the transitive closure of another relation

26/33

Query answering with distinguished relations

We separate the signature σ (set of allowed relations) into:

• σB: the base relations (e.g., Advisor)
• σD: the distinguished relations
(e.g., LocatedIn, required to be transitive)

• Distinguished relations have specific built-in requirements
(which implicitly adds unguarded logical constraints)

QAtr: QA where each distinguished relation is transitive
QAtc: QA where each distinguished relation is

the transitive closure of another relation

26/33

Undecidability

• Problem: QAtr already known to be undecidable with FGTGDs
[Gottlob et al., 2013]

→ Solution: impose that guards are base relations

→ Base Frontier-guarded TGDs (BaseFGTGDs):
body φ has an atom with all frontier variables y
and this atom is for a base relation R ∈ σB

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

27/33

Undecidability

• Problem: QAtr already known to be undecidable with FGTGDs
[Gottlob et al., 2013]

→ Solution: impose that guards are base relations

→ Base Frontier-guarded TGDs (BaseFGTGDs):
body φ has an atom with all frontier variables y
and this atom is for a base relation R ∈ σB

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

27/33

Undecidability

• Problem: QAtr already known to be undecidable with FGTGDs
[Gottlob et al., 2013]

→ Solution: impose that guards are base relations

→ Base Frontier-guarded TGDs (BaseFGTGDs):
body φ has an atom with all frontier variables y
and this atom is for a base relation R ∈ σB

∀x y1 y2 S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

27/33

Results for transitive relations

Theorem
The QAtr and QAtc problems are decidable for BaseFGTGDs
in 2EXPTIME combined complexity and PTIME data complexity.

Idea: Reduce QAtr to QA for FGTGDs by “axiomatizing” transitivity:
change constraints Σ to Σ′ enforcing transitivity within facts

∀x y1 y2 F(x, y1, y2) ∧ T(y1, x) ∧ T(x, y2)→ T(y1, y2)

Lemma: Some superinstances of I0 satisfying Σ′ and violating Q
can be extended by completing transitive relations to be transitive
so that they still contain I0, satisfy Σ and violate Q

28/33

Order relations

QAlin: QA where each distinguished relation is a total order
(antisymmetric, transitive, total)

∀xx′dd′ Advisor(x, x′) ∧GradDate(x,d) ∧GradDate(x′,d′)→ d < d′

• Problem: QAlin is undecidable for BaseFGTGDs!
→ Intuition:

• x < y ∨ y < x codes inequality x 6= y
• QA with inequalities in the query is often undecidable
[Gutiérrez-Basulto et al., 2013]

29/33

Order relations

QAlin: QA where each distinguished relation is a total order
(antisymmetric, transitive, total)

∀xx′dd′ Advisor(x, x′) ∧GradDate(x,d) ∧GradDate(x′,d′)→ d < d′

• Problem: QAlin is undecidable for BaseFGTGDs!
→ Intuition:

• x < y ∨ y < x codes inequality x 6= y
• QA with inequalities in the query is often undecidable
[Gutiérrez-Basulto et al., 2013]

29/33

Order relations

QAlin: QA where each distinguished relation is a total order
(antisymmetric, transitive, total)

∀xx′dd′ Advisor(x, x′) ∧GradDate(x,d) ∧GradDate(x′,d′)→ d < d′

• Problem: QAlin is undecidable for BaseFGTGDs!
→ Intuition:

• x < y ∨ y < x codes inequality x 6= y
• QA with inequalities in the query is often undecidable
[Gutiérrez-Basulto et al., 2013]

29/33

Recovering decidability with order

→ Solution: impose that guards are base relations
and that distinguished facts in body are covered by base facts

→ Base-covered Frontier-guarded TGDs (BaseCovFGTGDs):
BaseFGTGDs (with base guard) s.t. for every body σD-atom x < y
there is a σB-atom using its variables
∀x y1 y2 x < y1 ∧ S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

Theorem
QAlin is decidable for BaseCovFGTGDs and base-covered queries

30/33

Recovering decidability with order

→ Solution: impose that guards are base relations
and that distinguished facts in body are covered by base facts

→ Base-covered Frontier-guarded TGDs (BaseCovFGTGDs):
BaseFGTGDs (with base guard) s.t. for every body σD-atom x < y
there is a σB-atom using its variables
∀x y1 y2 x < y1 ∧ S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

Theorem
QAlin is decidable for BaseCovFGTGDs and base-covered queries

30/33

Recovering decidability with order

→ Solution: impose that guards are base relations
and that distinguished facts in body are covered by base facts

→ Base-covered Frontier-guarded TGDs (BaseCovFGTGDs):
BaseFGTGDs (with base guard) s.t. for every body σD-atom x < y
there is a σB-atom using its variables
∀x y1 y2 x < y1 ∧ S(x, y1) ∧ S(x, y2) ∧ R(y1, y2)→ ∃z S(y2, z) ∧ T(y1)

Theorem
QAlin is decidable for BaseCovFGTGDs and base-covered queries

30/33

Complexity results
Query Answering with Transitive and Linear-Ordered Data

QAtr QAtc QAlin
data combined data combined data combined

BaseFGTGD in coNP 2EXP-c coNP-c 2EXP-c undecidable
BaseCovFGTGD P-c 2EXP-c coNP-c 2EXP-c coNP-c 2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

• Only gap is BaseFGTGD and QAtr

• Data complexity for QAtc and QAlin goes from PTIME to coNP-c

→ Intuition: QAtc and QAlin can code disjunctive IDs
QAtc: In T+(a,b), is the T-path of length 1, 2, 3, ...?
QAlin: In A(a,b), does a < b or b < a or a = b?

31/33

Complexity results
Query Answering with Transitive and Linear-Ordered Data

QAtr QAtc QAlin
data combined data combined data combined

BaseFGTGD in coNP 2EXP-c coNP-c 2EXP-c undecidable
BaseCovFGTGD P-c 2EXP-c coNP-c 2EXP-c coNP-c 2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

• Only gap is BaseFGTGD and QAtr

• Data complexity for QAtc and QAlin goes from PTIME to coNP-c

→ Intuition: QAtc and QAlin can code disjunctive IDs
QAtc: In T+(a,b), is the T-path of length 1, 2, 3, ...?
QAlin: In A(a,b), does a < b or b < a or a = b?

31/33

Complexity results
Query Answering with Transitive and Linear-Ordered Data

QAtr QAtc QAlin
data combined data combined data combined

BaseFGTGD in coNP 2EXP-c coNP-c 2EXP-c undecidable
BaseCovFGTGD P-c 2EXP-c coNP-c 2EXP-c coNP-c 2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

• Only gap is BaseFGTGD and QAtr

• Data complexity for QAtc and QAlin goes from PTIME to coNP-c

→ Intuition: QAtc and QAlin can code disjunctive IDs
QAtc: In T+(a,b), is the T-path of length 1, 2, 3, ...?
QAlin: In A(a,b), does a < b or b < a or a = b?

31/33

Complexity results
Query Answering with Transitive and Linear-Ordered Data

QAtr QAtc QAlin
data combined data combined data combined

BaseFGTGD in coNP 2EXP-c coNP-c 2EXP-c undecidable
BaseCovFGTGD P-c 2EXP-c coNP-c 2EXP-c coNP-c 2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

• Only gap is BaseFGTGD and QAtr

• Data complexity for QAtc and QAlin goes from PTIME to coNP-c

→ Intuition: QAtc and QAlin can code disjunctive IDs
QAtc: In T+(a,b), is the T-path of length 1, 2, 3, ...?
QAlin: In A(a,b), does a < b or b < a or a = b?

31/33

Complexity results
Query Answering with Transitive and Linear-Ordered Data

QAtr QAtc QAlin
data combined data combined data combined

BaseFGTGD in coNP 2EXP-c coNP-c 2EXP-c undecidable
BaseCovFGTGD P-c 2EXP-c coNP-c 2EXP-c coNP-c 2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

• Only gap is BaseFGTGD and QAtr

• Data complexity for QAtc and QAlin goes from PTIME to coNP-c

→ Intuition: QAtc and QAlin can code disjunctive IDs
QAtc: In T+(a,b), is the T-path of length 1, 2, 3, ...?
QAlin: In A(a,b), does a < b or b < a or a = b?

31/33

Table of contents

Introduction

Combining Existential Rules and Description Logics

Query Answering with Transitive and Linear-Ordered Data

Conclusion

32/33

Summary

We have studied QA with FGTGD constraints and:

• Number restrictions:
• OK on low-arity when restricting FGTGD shapes
• OK when further imposing non-conflicting condition

• Transitivity:
• OK when not used as guards

• Orders:
• OK when not used as guards and covered

Ongoing work:

• Successor relations of linear orders:
functional in both ways, acyclic, isomorphic to Z

• General techniques for this type of problems?
• Handling finiteness of relations

Thanks for your attention!

33/33

Summary

We have studied QA with FGTGD constraints and:

• Number restrictions:
• OK on low-arity when restricting FGTGD shapes
• OK when further imposing non-conflicting condition

• Transitivity:
• OK when not used as guards

• Orders:
• OK when not used as guards and covered

Ongoing work:

• Successor relations of linear orders:
functional in both ways, acyclic, isomorphic to Z

• General techniques for this type of problems?
• Handling finiteness of relations

Thanks for your attention!
33/33

References I

Baget, J., Mugnier, M., Rudolph, S., and Thomazo, M. (2011).
Walking the complexity lines for generalized guarded existential
rules.
In IJCAI.
Calì, A., Gottlob, G., and Pieris, A. (2012).
Towards more expressive ontology languages: The query
answering problem.
Artif. Intel., 193.

Calì, A., Lembo, D., and Rosati, R. (2003).
Query rewriting and answering under constraints in data
integration systems.
In IJCAI.

References II

Gottlob, G., Pieris, A., and Tendera, L. (2013).
Querying the guarded fragment with transitivity.
In ICALP.
Gutiérrez-Basulto, V., Ibañez Garcia, Y., Kontchakov, R., and
Kostylev, E. V. (2013).
Conjunctive queries with negation over DL-Lite: A closer look.
In Web Reasoning and Rule Systems.

Mitchell, J. C. (1983).
The implication problem for functional and inclusion
dependencies.
Information and Control, 56(3).

References III

Pratt-Hartmann, I. (2009).
Data-complexity of the two-variable fragment with counting
quantifiers.
Inf. Comput., 207(8).

	Introduction
	Combining Existential Rules and Description Logics
	Query Answering with Transitive and Linear-Ordered Data
	Conclusion

