

Query Answering with Guarded Rules and Expressive Constraints

Antoine Amarilli^{1,2}, Michael Benedikt², Pierre Bourhis³, Michael Vanden Boom² October 20, 2016

¹Télécom ParisTech, Paris, France

²University of Oxford, Oxford, United Kingdom

³CNRS CRIStAL, Lille

Open-world query answering (QA)

- We are **given**:
 - Relational **instance** *I* (ground facts)
 - \triangle Logical **constraints** Σ
 - 😰 Boolean conjunctive query q
 - (existentially quantified conjunction of atoms)

Open-world query answering (QA)

- We are **given**:
 - Relational **instance** *I* (ground facts)
 - <u>Λ</u> Logical **constraints Σ**
 - 😰 Boolean conjunctive query q
 - (existentially quantified conjunction of atoms)
- We <mark>ask</mark>:
 - Consider all possible completions $J \supseteq I$
 - + Restrict to those that satisfy the constraints $\boldsymbol{\Sigma}$
 - \rightarrow Is *q* certain among them?

• CoSup(Jamie) – Jamie is a co-supervised student

• CoSup(Jamie) – Jamie is a co-supervised student

\bigwedge Logical constraints Σ

• $\forall x \operatorname{CoSup}(x) \rightarrow \exists y z \operatorname{Adv}(x, y) \land \operatorname{Adv}(x, z) \land \operatorname{Knows}(y, z) \land y \neq z$ A co-supervised student has two advisors that know each other

Relational instance I

• CoSup(Jamie) – Jamie is a co-supervised student

\bigwedge Logical constraints Σ

- $\forall x \operatorname{CoSup}(x) \rightarrow \exists y \, z \operatorname{Adv}(x, y) \land \operatorname{Adv}(x, z) \land \operatorname{Knows}(y, z) \land y \neq z$ A co-supervised student has two advisors that know each other
- $\forall x \ y \ Adv(x, y) \rightarrow Knows(x, y)$ Advisors know their students

Relational instance I

• CoSup(Jamie) – Jamie is a co-supervised student

- $\forall x \operatorname{CoSup}(x) \rightarrow \exists y \, z \operatorname{Adv}(x, y) \land \operatorname{Adv}(x, z) \land \operatorname{Knows}(y, z) \land y \neq z$ A co-supervised student has two advisors that know each other
- $\forall x \ y \ Adv(x, y) \to Knows(x, y)$ Advisors know their students
- $\forall x \ y \ \mathrm{Knows}(x, y) \to \mathrm{Knows}(y, x)$ "Knows" is symmetric

Relational instance I

• CoSup(Jamie) – Jamie is a co-supervised student

🕂 Logical constraints Σ

- $\forall x \operatorname{CoSup}(x) \rightarrow \exists y \, z \operatorname{Adv}(x, y) \land \operatorname{Adv}(x, z) \land \operatorname{Knows}(y, z) \land y \neq z$ A co-supervised student has two advisors that know each other
- $\forall x \, y \, \operatorname{Adv}(x, y) \to \operatorname{Knows}(x, y)$ Advisors know their students
- $\forall x \ y \ \mathrm{Knows}(x, y) \to \mathrm{Knows}(y, x)$ "Knows" is symmetric

Boolean conjunctive query q

• $\exists x \, y \, z \, \operatorname{Knows}(x, y) \land \operatorname{Knows}(y, z) \land \operatorname{Knows}(x, z)$ Is there a clique of 3 people that know each other?

Relational instance I

• CoSup(Jamie) – Jamie is a co-supervised student

🕂 Logical constraints Σ

- $\forall x \operatorname{CoSup}(x) \rightarrow \exists y \, z \operatorname{Adv}(x, y) \land \operatorname{Adv}(x, z) \land \operatorname{Knows}(y, z) \land y \neq z$ A co-supervised student has two advisors that know each other
- $\forall x \ y \ Adv(x, y) \to Knows(x, y)$ Advisors know their students
- $\forall x \ y \ \mathrm{Knows}(x, y) \to \mathrm{Knows}(y, x)$ "Knows" is symmetric

Poolean conjunctive query q

• $\exists x \, y \, z \, \operatorname{Knows}(x, y) \land \operatorname{Knows}(y, z) \land \operatorname{Knows}(x, z)$ Is there a clique of 3 people that know each other?

ightarrow The query is certain under the instance and constraints

ightarrow Depends on the language used for logical constraints

- $\rightarrow\,$ Depends on the language used for logical constraints
- → E.g., for arbitrary first-order constraints, QA is undecidable (because satisfiability is undecidable)

- $\rightarrow\,$ Depends on the language used for logical constraints
- → E.g., for arbitrary first-order constraints, QA is undecidable (because satisfiability is undecidable)
- \rightarrow Find fragments of first-order logic with decidable QA

Tuple-generating dependencies (or existential rules)

$$\forall \mathbf{x} \, \mathbf{y} \; \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \; \psi(\mathbf{y}, \mathbf{z})$$

where the body ϕ and head ψ are conjunctions of atoms

where the body ϕ and head ψ are conjunctions of atoms

→ **Guarded TGDs:** body ϕ has an atom with **all** body variables **x**, **y** $\forall x y_1 y_2 S(x, y_1) \land S(x, y_2) \land U(x, y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$

where the body ϕ and head ψ are conjunctions of atoms

→ **Guarded TGDs:** body ϕ has an atom with **all** body variables **x**, **y** $\forall x y_1 y_2 S(x, y_1) \land S(x, y_2) \land U(x, y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$

→ Frontier-one TGDs: the frontier **y** has only one variable $\forall x \ y \ S(x, y) \rightarrow \exists z \ S(y, z)$

where the body ϕ and head ψ are conjunctions of atoms

- → **Guarded TGDs:** body ϕ has an atom with **all** body variables **x**, **y** $\forall x y_1 y_2 S(x, y_1) \land S(x, y_2) \land U(x, y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$
- → Frontier-one TGDs: the frontier **y** has only one variable $\forall x \ y \ S(x, y) \rightarrow \exists z \ S(y, z)$
- \rightarrow Frontier-guarded TGDs (FGTGDs):

body ϕ has an atom with **all** frontier variables **y** $\forall x y_1 y_2 S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$

where the body ϕ and head ψ are conjunctions of atoms

- → **Guarded TGDs:** body ϕ has an atom with **all** body variables **x**, **y** $\forall x y_1 y_2 S(x, y_1) \land S(x, y_2) \land U(x, y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$
- → Frontier-one TGDs: the frontier **y** has only one variable $\forall x \ y \ S(x, y) \rightarrow \exists z \ S(y, z)$
- → Frontier-guarded TGDs (FGTGDs): body ϕ has an atom with all frontier variables **y** $\forall x y_1 y_2 S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$
- \rightarrow QA for FGTGDs is **decidable** [Baget et al., 2011]

• Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors

 Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
→ Handled by guarded logics and guarded negation logics

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \ \forall x \, y_1 \, y_2 \ \mathrm{Born}(x, y_1) \land \mathrm{Born}(x, y_2) \rightarrow y_1 = y_2$

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

• Transitivity: isLocatedIn, isPartOf, subclass...

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

• Transitivity: isLocatedIn, isPartOf, subclass...

 $\rightarrow \ \forall x \, y_1 \, y_2 \operatorname{Part}(y_1, x) \wedge \operatorname{Part}(x, y_2) \rightarrow \operatorname{Part}(y_1, y_2)$

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

• Transitivity: isLocatedIn, isPartOf, subclass...

 $\rightarrow \forall x y_1 y_2 \operatorname{Part}(y_1, x) \land \operatorname{Part}(x, y_2) \rightarrow \operatorname{Part}(y_1, y_2) \not$ unguarded frontier!

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

• Transitivity: isLocatedIn, isPartOf, subclass...

 $\rightarrow \forall x y_1 y_2 \operatorname{Part}(y_1, x) \land \operatorname{Part}(x, y_2) \rightarrow \operatorname{Part}(y_1, y_2) \not$ unguarded frontier!

• Totality: All elephants are bigger than all mice

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

• Transitivity: isLocatedIn, isPartOf, subclass...

 $\rightarrow \forall x y_1 y_2 \operatorname{Part}(y_1, x) \land \operatorname{Part}(x, y_2) \rightarrow \operatorname{Part}(y_1, y_2) \not$ unguarded frontier!

• Totality: All elephants are bigger than all mice

 $\rightarrow \ \forall y_1 \, y_2 \ \mathrm{Elephant}(y_1) \land \mathrm{Mouse}(y_2) \rightarrow y_1 < y_2$

- Disjunction: Professors must have a PhD or an equivalent title Negation: Professors without an HDR must have co-supervisors
 → Handled by guarded logics and guarded negation logics
- Number constraints: Co-supervised students have two advisors Functionality: Any person is born in exactly one place

 $\rightarrow \forall x y_1 y_2 \operatorname{Born}(x, y_1) \land \operatorname{Born}(x, y_2) \rightarrow y_1 = y_2 \quad \checkmark unguarded frontier!$

• Transitivity: isLocatedIn, isPartOf, subclass...

 $\rightarrow \forall x y_1 y_2 \operatorname{Part}(y_1, x) \land \operatorname{Part}(x, y_2) \rightarrow \operatorname{Part}(y_1, y_2) \not$ unguarded frontier!

• Totality: All elephants are bigger than all mice

 $\rightarrow \forall y_1 y_2$ Elephant $(y_1) \land Mouse(y_2) \rightarrow y_1 < y_2$ $\forall y_1 y_2$ unguarded frontier!

This talk

Can we extend frontier-guarded TGDs to capture some unguarded constraints while preserving the decidability of QA? Can we extend frontier-guarded TGDs to capture some unguarded constraints while preserving the decidability of QA?

- 1. Combining Existential Rules and Description Logics A. A., Michael Benedikt, IJCAI'15.
 - → Extend FGTGDs with **description logic** constraints on arity-two data (includes disjunction, negation, counting)

Can we extend frontier-guarded TGDs to capture some unguarded constraints while preserving the decidability of QA?

- 1. Combining Existential Rules and Description Logics A. A., Michael Benedikt, IJCAI'15.
 - → Extend FGTGDs with **description logic** constraints on arity-two data (includes disjunction, negation, counting)
- 2. Query Answering with Transitive and Linear-Ordered Data A. A., Michael Benedikt, P. Bourhis, M. Vanden Boom, IJCAI'16
 - → Extend FGTGDs with **transitive relations** and **order relations** that cannot be used as guards

Introduction

Combining Existential Rules and Description Logics

Query Answering with Transitive and Linear-Ordered Data

Conclusion

Rich description logics (DLs) FGTGDs

Rich description logics (DLs) FGTGDs

 $\mathsf{Emp} \sqsubseteq \mathsf{CEO} \sqcup (\exists \mathsf{Mgr}^-.\mathsf{Emp}) \quad \forall pwv \operatorname{Acpt}(p,w,v) \rightarrow \exists f \operatorname{Trip}(p,f,v)$

Rich description logics (DLs) FGTGDs

Emp \sqsubseteq CEO \sqcup (\exists Mgr⁻.Emp) $\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$ Arity-two only "Arbitrary arity $\textcircled{\sc{black}}$
Rich description logics (DLs) FGTGDs

Emp ⊑ CEO ⊔ (∃Mgr⁻.Emp)
Arity-two only 🍞

Rich: disjunction, etc.

 $\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$ Arbitrary arity Conjunction and implication only

Rich description logics (DLs) FGTGDs

- $Emp \sqsubseteq CEO \sqcup (\exists Mgr^-.Emp)$
- Arity-two only 🍞
- Rich: disjunction, etc.

Functionality asserts Funct(Mgr⁻)

 $\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$ Arbitrary arity

Conjunction and implication only

- QA is decidable for **frontier-guarded TGDs**
- QA is decidable for **rich DLs** (i.e., expressible in **GC**², guarded two-variable first-order logic with counting)

- QA is decidable for **frontier-guarded TGDs**
- QA is decidable for **rich DLs** (i.e., expressible in **GC**², guarded two-variable first-order logic with counting)
- \rightarrow Is QA decidable for rich DLs + some classes of FGTGDs?

- QA is decidable for **frontier-guarded TGDs**
- QA is decidable for **rich DLs** (i.e., expressible in **GC**², guarded two-variable first-order logic with counting)
- → Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

- QA is decidable for **frontier-guarded TGDs**
- QA is decidable for **rich DLs** (i.e., expressible in **GC**², guarded two-variable first-order logic with counting)
- → Is QA decidable for rich DLs + some classes of FGTGDs?

We show:

- QA is **undecidable** for rich **DLs** and **FGTGDs**
- QA with rich DLs is **decidable** for some new **FGTGD classes**
- Functional dependencies can be added under some conditions even to higher-arity relations

Theorem

QA is **undecidable** for rich DLs and FGTGDs

Theorem

QA is **undecidable** for rich DLs and FGTGDs

Problem:

- · DLs can express Funct (\leftrightarrow functional dependencies, FDs)
- FGTGDs can express inclusion dependencies (IDs) $\forall \mathbf{x} \mathbf{y} A(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} B(\mathbf{y}, \mathbf{z})$ with no variable repetitions
- Implication of IDs and FDs is undecidable [Mitchell, 1983]
- Implication reduces to QA [Calì et al., 2003]

Theorem

QA is **undecidable** for rich DLs and FGTGDs

Problem:

- · DLs can express Funct (\leftrightarrow functional dependencies, FDs)
- FGTGDs can express inclusion dependencies (IDs) $\forall \mathbf{x} \mathbf{y} A(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} B(\mathbf{y}, \mathbf{z})$ with no variable repetitions
- Implication of IDs and FDs is undecidable [Mitchell, 1983]
- Implication reduces to QA [Calì et al., 2003]
- \rightarrow Restrict to frontier-one TGDs: $\forall \mathbf{x} \, \mathbf{y} \, \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \, \psi(\mathbf{y}, \mathbf{z})$

- Restrict to frontier-one TGDs: $\forall \mathbf{x} \, \mathbf{y} \, \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \, \psi(\mathbf{y}, \mathbf{z})$
- QA for frontier-one IDs plus FDs is decidable (separability)

- Restrict to frontier-one TGDs: $\forall \mathbf{x} \, \mathbf{y} \, \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \, \psi(\mathbf{y}, \mathbf{z})$
- QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem

QA is undecidable for rich DLs and frontier-one TGDs

- Restrict to frontier-one TGDs: $\forall \mathbf{x} \, \mathbf{y} \, \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \, \psi(\mathbf{y}, \mathbf{z})$
- QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem

QA is **undecidable** for rich DLs and frontier-one TGDs

Problem:

- $\cdot\,$ Rule heads and bodies may contain $\ensuremath{\mbox{cycles}}$
- We have Funct assertions
- $\rightarrow\,$ We can build a grid and encode tiling problems

We reduce from tiling problems:

finite set of colors: ■, ■, ■

We reduce from tiling problems:

- finite set of colors: ■, ■, ■
- horizontal and vertical allowed pairs:

We reduce from tiling problems:

- finite set of colors: ■, ■,
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

We reduce from tiling problems:

- finite set of colors: ■, ■,
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

• output: is there an infinite tiling?

We reduce from tiling problems:

- finite set of colors: ■, ■,
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

• output: is there an infinite tiling?

We reduce from tiling problems:

- finite set of colors: ■, ■,
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

• output: is there an infinite tiling?

 \rightarrow **Undecidable** for some sets of colors and configurations

- Functional relations *D* for down and *R* for right
- Unary predicate T for tiles and C_{\blacksquare} for each color

- Functional relations *D* for down and *R* for right
- Unary predicate T for tiles and C_{\blacksquare} for each color

- Functional relations D for down and R for right
- Unary predicate T for tiles and C_{\blacksquare} for each color

⚠ Constraints:

• **DL Disjunction** to color tiles: $T \sqsubseteq C_{\blacksquare} \sqcup C_{\blacksquare} \sqcup C_{\blacksquare}$

- Functional relations D for down and R for right
- Unary predicate T for tiles and C_{\blacksquare} for each color

⚠ Constraints:

- **DL Disjunction** to color tiles: $T \sqsubseteq C_{\blacksquare} \sqcup C_{\blacksquare} \sqcup C_{\blacksquare}$
- Frontier-one TGD: $\forall y \ T(y) \Rightarrow \exists tzw$

 $\begin{array}{cccc} T(\mathbf{y}) & \stackrel{R}{\longrightarrow} & T(t) \\ D & & D \end{array}$

T(w)

 $T(z) \xrightarrow{R}$

- Functional relations D for down and R for right
- Unary predicate *T* for tiles and *C* for each color

 \square Initial instance: $C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare}$

\bigwedge Constraints:

- DL Disjunction to color tiles: $T \square C_{\blacksquare} \sqcup C_{\blacksquare} \sqcup C_{\blacksquare}$

• Frontier-one TGD:
$$\forall y \ T(y) \Rightarrow \exists tzw \qquad \begin{bmatrix} C & \Box & C \\ \Box & \Box & C \end{bmatrix}$$

 $T(y) \xrightarrow{R} T(t) \qquad \begin{bmatrix} D & & & \\ D & & & \\ T(z) & \xrightarrow{R} & T(w) \end{bmatrix}$

Query: $\exists x y C_{\square}(x) \xrightarrow{R} C_{\square}(y)$ for all forbidden pairs

 \rightarrow There is an extension of the instance iff there is a tiling

Idea: prohibit cycles in FGTGDs

Idea: prohibit cycles in FGTGDs

• R(x, y) S(y, z) T(z, x) is a cycle

Idea: prohibit cycles in FGTGDs

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

Idea: prohibit cycles in FGTGDs

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

Formally:

• Berge cycle: cycle in the atom-variable incidence graph

Idea: prohibit cycles in FGTGDs

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

Formally:

- Berge cycle: cycle in the atom-variable incidence graph
- Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)
- Non-looping frontier-one: non-looping body and head

Idea: prohibit cycles in FGTGDs

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

Formally:

- Berge cycle: cycle in the atom-variable incidence graph
- Non-looping conjunction: no cycle except, e.g., R(x, y) S(x, y)
- Non-looping frontier-one: non-looping body and head

Theorem

QA is **decidable** for non-looping frontier-one TGDs + rich DLs

• Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists x R_1(f, x)$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists x R_1(f, x)$

 \rightarrow QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists x R_1(f, x)$

- $\rightarrow\,$ QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - Rewrite shredded non-looping frontier-one TGDs to GC²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y})$,

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists^{=1} x R_1(f, x)$

- → QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - **Rewrite** shredded non-looping frontier-one TGDs to **GC**²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists x R_1(f, x)$

- → QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - **Rewrite** shredded non-looping frontier-one TGDs to **GC**²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$
 - Example: $\phi(\mathbf{y}) := \exists x_1 x_2 \ T(\mathbf{y}, x_1) \land \mathbf{R}(\mathbf{y}, \mathbf{y}, x_2) \land \mathbf{A}(x_2)$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists^{=1} x R_1(f, x)$

- → QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - Rewrite shredded non-looping frontier-one TGDs to GC²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$
 - Example: $\phi(y) := \exists x_1 x_2 \ T(y, x_1) \land R(y, y, x_2) \land A(x_2)$ $\rightarrow \exists x_1 x_2 \ T(y, x_1) \land R_1(f, y) \land R_2(f, y) \land R_3(f, x_2) \land A(x_2)$
- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists^{=1} x R_1(f, x)$

- → QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - Rewrite shredded non-looping frontier-one TGDs to GC²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$
 - Example: $\phi(y) := \exists x_1 x_2 T(y, x_1) \land R(y, y, x_2) \land A(x_2)$
 - $\rightarrow \exists x_1 x_2 f T(y, x_1) \land R_1(f, y) \land R_2(f, y) \land R_3(f, x_2) \land A(x_2) \\ \rightarrow (\exists x_1 T(y, x_1))$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists x R_1(f, x)$

- $\rightarrow\,$ QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - Rewrite shredded non-looping frontier-one TGDs to GC²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$
 - Example: $\phi(y) := \exists x_1 x_2 \ T(y, x_1) \land R(y, y, x_2) \land A(x_2)$

$$\rightarrow \exists x_1 x_2 f T(y, x_1) \land R_1(f, y) \land R_2(f, y) \land R_3(f, x_2) \land A(x_2) \\ \rightarrow (\exists x_1 T(y, x_1)) \land (\exists x_2 f R_1(f, y) \land R_2(f, y))$$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists^{=1} x R_1(f, x)$

- → QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - **Rewrite** shredded non-looping frontier-one TGDs to **GC**²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$
 - Example: $\phi(y) := \exists x_1 x_2 \ T(y, x_1) \land R(y, y, x_2) \land A(x_2)$

 $\begin{array}{l} \rightarrow \quad \exists x_1 \, x_2 \, f \, T(y, x_1) \wedge R_1(f, y) \wedge R_2(f, y) \wedge R_3(f, x_2) \wedge A(x_2) \\ \rightarrow \quad \left(\exists x_1 \, T(y, x_1) \right) \wedge \left(\exists x_2 \, f \, R_1(f, y) \wedge R_2(f, y) \wedge \left(\exists y_2 \, R_3(f, y_2) \wedge A(y_2) \right) \right) \end{array}$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists \exists^{=1} x R_1(f, x)$

- → QA for the **shredded** instance, TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query
 - **Rewrite** shredded non-looping frontier-one TGDs to **GC**²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z}) \text{ to } \forall \mathbf{y} \ \phi'(\mathbf{y}) \Rightarrow \psi'(\mathbf{y}),$ with $\phi'(\mathbf{y})$ and $\psi'(\mathbf{y})$ the shredding of $\exists \mathbf{x} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{y}, \mathbf{z})$
 - Example: $\phi(y) := \exists x_1 x_2 \ T(y, x_1) \land R(y, y, x_2) \land A(x_2)$

 $\rightarrow \exists x_1 x_2 f T(y, x_1) \land R_1(f, y) \land R_2(f, y) \land R_3(f, x_2) \land A(x_2)$

 $\rightarrow \left(\exists x_1 T(y, x_1)\right) \land \left(\exists x_2 f R_1(f, y) \land R_2(f, y) \land \left(\exists y_2 R_3(f, y_2) \land A(y_2)\right)\right)$

 \rightarrow Reduces to QA for GC²: decidable [Pratt-Hartmann, 2009]

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one TGDs: no cycles in head

Head-non-looping frontier-one TGDs: no cycles in head

Theorem

QA is **decidable** for head-non-looping frontier-one TGDs + rich DLs

Head-non-looping frontier-one TGDs: no cycles in head

Theorem

QA is **decidable** for head-non-looping frontier-one TGDs + rich DLs

Basic idea:

- $\cdot\,$ If there is a counterexample model to QA, we can unravel it
 - \rightarrow It is still a **counterexample**
 - $\rightarrow\,$ It has **no cycles** (except in the instance part)
- → Looping TGD bodies can only match on the instance part so non-looping frontier-one TGDs can be made head-non-looping

For every frontier-one TGD with a **looping body**:

• Consider all possible **self-homomorphisms** of the body

 \rightarrow Ex.: $R(x,y) \land S(y,z) \land T(z,x)$ gives $R(x,y) \land S(y,x) \land T(x,x)$

- Consider all possible **self-homomorphisms** of the body \rightarrow Ex.: $R(x,y) \land S(y,z) \land T(z,x)$ gives $R(x,y) \land S(y,x) \land T(x,x)$
- Consider all possible mappings to the instance

$$\rightarrow \text{ Ex.: } R(x,y) \land S(y,z) \land T(z,x) \text{ gives } R(x,y) \land S(y',z) \land T(z',x') \\ \land x = a \land x' = a \land y = b \land y' = b \land z = c \land z' = c$$

- Consider all possible **self-homomorphisms** of the body \rightarrow Ex.: $R(x,y) \land S(y,z) \land T(z,x)$ gives $R(x,y) \land S(y,x) \land T(x,x)$
- Consider all possible **mappings** to the instance

 $\rightarrow \text{ Ex:: } R(x,y) \land S(y,z) \land T(z,x) \text{ gives } R(x,y) \land S(y',z) \land T(z',x') \\ \land x = a \land x' = a \land y = b \land y' = b \land z = c \land z' = c$

 \rightarrow Keep the resulting fully non-looping TGDs

- Consider all possible **self-homomorphisms** of the body \rightarrow Ex.: $R(x,y) \land S(y,z) \land T(z,x)$ gives $R(x,y) \land S(y,x) \land T(x,x)$
- Consider all possible mappings to the instance

 $\rightarrow \text{ Ex:: } R(x,y) \land S(y,z) \land T(z,x) \text{ gives } R(x,y) \land S(y',z) \land T(z',x') \\ \land x = a \land x' = a \land y = b \land y' = b \land z = c \land z' = c$

 \rightarrow Keep the resulting fully non-looping TGDs

QA for the **shredded** instance, **treeified** TGDs, query, and axioms is **equivalent** to QA for the original instance, TGDs, query

We have shown:

Theorem

QA is **decidable** for head-non-looping frontier-one TGDs + rich DLs

We have shown:

Theorem

QA is **decidable** for head-non-looping frontier-one TGDs + rich DLs

- We have functional dependencies Funct(R) on binary relations
- Could we also allow FDs on higher-arity relations?
 Ex.: Talk[speaker, session] determines Talk[title]

Methods for TGDs + higher-arity FDs (no DLs)

- Consider QA under TGDs Σ and FDs Φ
- Σ and Φ are **separable** if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$

Methods for TGDs + higher-arity FDs (no DLs)

- Consider QA under TGDs Σ and FDs Φ
- Σ and Φ are **separable** if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- ightarrow Separable higher-arity FDs can be ignored during QA

Methods for TGDs + higher-arity FDs (no DLs)

- \cdot Consider QA under TGDs Σ and FDs Φ
- Σ and Φ are **separable** if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- \rightarrow Separable higher-arity FDs can be ignored during QA
 - Inclusion dependencies (IDs) and FDs generally not separable
 - Frontier-one IDs and FDs are always separable
 - [New:] Frontier-one TGDs with single-atom body and head (i.e., IDs with variable repetitions) and FDs are **not separable** and QA is **undecidable** for them (in our paper)

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a **frontier variable**
 - + \overline{S} := positions with an existentially quantified variable

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each **FD** $R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, fail$

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- \rightarrow if S' \subsetneq S, fail
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- \rightarrow if S' \subsetneq S, fail
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Examples: for the FD $R[1] \rightarrow R[3]$:

• $T(\mathbf{x}) \Rightarrow R(y, y, \mathbf{x})$ is...

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Examples: for the FD $R[1] \rightarrow R[3]$:

• $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(\mathbf{x}, \mathbf{y}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is...

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(\mathbf{x}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is...
Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(\mathbf{x}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{y})$ is...

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - + \overline{S} := positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(x) \Rightarrow R(x, y, y)$ is... conflicting (variable reuse)

Non-conflicting condition: sufficient condition for separability of **single-head TGDs** Σ and **FDs** Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(x) \Rightarrow R(x, y, y)$ is... conflicting (variable reuse)
- $T(\mathbf{y}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{z})U(\mathbf{z})$ is...

Non-conflicting condition: sufficient condition for separability of single-head TGDs Σ and FDs Φ ,

- For every **TGD head** $H = R(x_1, \ldots, x_n)$:
 - S := positions of *H* with a frontier variable
 - $\cdot \ \overline{S} :=$ positions with an existentially quantified variable
- For each $FD R[S'] \rightarrow R[i]$ of Φ :
- $\rightarrow \text{ if } S' \subsetneq S, \text{ fail}$
- \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(x) \Rightarrow R(x, y, y)$ is... conflicting (variable reuse)
- $T(y) \Rightarrow R(x, y, z)U(z)$ is... **not allowed** (not single-head)

Decidability for non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem

QA **decidable** for single-head frontier-guarded + non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem

QA **decidable** for single-head frontier-guarded + non-conflicting FDs

We have shown before, without higher-arity FDs:

Theorem

QA is **decidable** for head-non-looping frontier-one TGDs + rich DLs

We know from [Calì et al., 2012]:

Theorem

QA **decidable** for single-head frontier-guarded + non-conflicting FDs

We have shown before, without higher-arity FDs:

Theorem

QA is **decidable** for head-non-looping frontier-one TGDs + rich DLs

We show that we can combine these two results:

Theorem

QA is **decidable** for:

- Rich **DL** constraints (with Funct)
- Single-head (hence, head-non-looping) frontier-one TGDs
- *Non-conflicting* FDs (on higher-arity predicates)

Summary of results Combining Existential Rules and Description Logics

- Setting: Open-world query answering (QA) under:
 - Frontier-guarded TGDs (FGTGDs)
 - Rich **DL** constraints
- Question: For which FGTGD classes is QA decidable with rich DLs?
- Answers:

- Setting: Open-world query answering (QA) under:
 - Frontier-guarded TGDs (FGTGDs)
 - Rich **DL** constraints
- Question: For which FGTGD classes is QA decidable with rich DLs?
- Answers:
 - ightarrow We must restrict to frontier-one TGDs
 - \rightarrow We must prohibit cycles in TGD heads

- Setting: Open-world query answering (QA) under:
 - Frontier-guarded TGDs (FGTGDs)
 - Rich **DL** constraints
- Question: For which FGTGD classes is QA decidable with rich DLs?
- Answers:
 - \rightarrow We must restrict to **frontier-one** TGDs
 - \rightarrow We must prohibit cycles in TGD heads
 - \rightarrow QA is **decidable** for head-non-looping frontier-one + rich DLs
 - ightarrow We can also add **non-conflicting FDs** on higher-arity facts

Introduction

Combining Existential Rules and Description Logics

Query Answering with Transitive and Linear-Ordered Data

Conclusion

We separate the **signature** σ (set of allowed relations) into:

- $\sigma_{\rm B}$: the **base** relations (e.g., Advisor)
- $\sigma_{\rm D}$: the **distinguished** relations (e.g., LocatedIn, required to be transitive)

We separate the **signature** σ (set of allowed relations) into:

- $\sigma_{\rm B}$: the **base** relations (e.g., Advisor)
- $\sigma_{\rm D}$: the **distinguished** relations (e.g., LocatedIn, required to be transitive)

• Distinguished relations have **specific built-in requirements** (which implicitly adds unguarded logical constraints)

QAtr: QA where each distinguished relation is transitiveQAtc: QA where each distinguished relation is the transitive closure of another relation

• **Problem:** QAtr already known to be **undecidable** with FGTGDs [Gottlob et al., 2013]

- **Problem:** QAtr already known to be **undecidable** with FGTGDs [Gottlob et al., 2013]
- $\rightarrow~$ Solution: impose that guards are base relations

- **Problem:** QAtr already known to be **undecidable** with FGTGDs [Gottlob et al., 2013]
- $\rightarrow~$ Solution: impose that guards are base relations
- → Base Frontier-guarded TGDs (BaseFGTGDs): body ϕ has an atom with all frontier variables **y** and this atom is for a base relation $R \in \sigma_B$

 $\forall x \, y_1 \, y_2 \, S(x, y_1) \land S(x, y_2) \land \mathsf{R}(y_1, y_2) \to \exists z \, S(y_2, z) \land \mathsf{T}(y_1)$

Theorem

The QAtr and QAtc problems are **decidable** for BaseFGTGDs in 2EXPTIME combined complexity and PTIME data complexity.

Idea: Reduce QAtr to QA for FGTGDs by "axiomatizing" transitivity: change constraints Σ to Σ' enforcing transitivity within facts

 $\forall x y_1 y_2 F(x, y_1, y_2) \land T(y_1, x) \land T(x, y_2) \rightarrow T(y_1, y_2)$

Lemma: Some superinstances of I_0 satisfying Σ' and violating Q can be extended by **completing** transitive relations to be transitive so that they still contain I_0 , satisfy Σ and violate Q

QAlin: QA where each distinguished relation is a **total order** (antisymmetric, transitive, total)

QAlin: QA where each distinguished relation is a **total order** (antisymmetric, transitive, total)

 $\forall xx'dd' \; \mathrm{Advisor}(x,x') \wedge \mathrm{GradDate}(x,d) \wedge \mathrm{GradDate}(x',d') \rightarrow d < d'$

QAlin: QA where each distinguished relation is a **total order** (antisymmetric, transitive, total)

 $\forall xx'dd' \; \mathrm{Advisor}(x,x') \wedge \mathrm{GradDate}(x,d) \wedge \mathrm{GradDate}(x',d') \rightarrow d < d'$

- Problem: QAlin is undecidable for BaseFGTGDs!
- \rightarrow Intuition:
 - $x < y \lor y < x$ codes inequality $x \neq y$
 - QA with inequalities in the query is often **undecidable** [Gutiérrez-Basulto et al., 2013]

→ Solution: impose that guards are base relations and that distinguished facts in body are covered by base facts

- → Solution: impose that guards are base relations and that distinguished facts in body are covered by base facts
- → **Base-covered** Frontier-guarded TGDs (BaseCovFGTGDs): BaseFGTGDs (with base guard) s.t. for every body σ_D -atom x < ythere is a σ_B -atom using its variables

 $\forall x y_1 y_2 x < y_1 \land S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$

- → Solution: impose that guards are base relations and that distinguished facts in body are covered by base facts
- → **Base-covered** Frontier-guarded TGDs (BaseCovFGTGDs): BaseFGTGDs (with base guard) s.t. for every body σ_D -atom x < ythere is a σ_B -atom using its variables

 $\forall x y_1 y_2 x < y_1 \land S(x, y_1) \land S(x, y_2) \land R(y_1, y_2) \rightarrow \exists z S(y_2, z) \land T(y_1)$

Theorem

QAlin is **decidable** for BaseCovFGTGDs and base-covered queries

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGD	in coNF	2EXP-c	coNP-c	2EXP-c	undeo	cidable
BaseCovFGTGD	P-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGD	in coNP	2EXP-c	coNP-c	2EXP-c	undeo	cidable
BaseCovFGTGD	P-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c

• Combined complexity no worse than vanilla QA for FGTGDs

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGD	in coNF	2EXP-c	coNP-c	2EXP-c	undeo	cidable
BaseCovFGTGD	P-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c

- Combined complexity no worse than vanilla QA for FGTGDs
- Only **gap** is BaseFGTGD and QAtr

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGD	in coNF	2EXP-c	coNP-c	2EXP-c	undeo	cidable
BaseCovFGTGD	P-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c

- Combined complexity no worse than vanilla QA for FGTGDs
- Only gap is BaseFGTGD and QAtr
- Data complexity for QAtc and QAlin goes from PTIME to coNP-c

	QAtr		QAtc		QAlin	
	data	combined	data	combined	data	combined
BaseFGTGD	in coNF	2EXP-c	coNP-c	2EXP-c	unde	cidable
BaseCovFGTGD	P-c	2EXP-c	coNP-c	2EXP-c	coNP-c	2EXP-c

- Combined complexity no worse than vanilla QA for FGTGDs
- Only gap is BaseFGTGD and QAtr
- Data complexity for QAtc and QAlin goes from PTIME to coNP-c
- → Intuition: QAtc and QAlin can code disjunctive IDs QAtc: In $T^+(a, b)$, is the *T*-path of length 1, 2, 3, ...? QAlin: In A(a, b), does a < b or b < a or a = b?

Introduction

Combining Existential Rules and Description Logics

Query Answering with Transitive and Linear-Ordered Data

Conclusion

Summary

We have studied QA with FGTGD constraints and:

- Number restrictions:
 - OK on **low-arity** when restricting FGTGD shapes
 - OK when further imposing non-conflicting condition
- Transitivity:
 - OK when not used as guards
- Orders:
 - OK when not used as guards and covered

Ongoing work:

- Successor relations of linear orders: functional in both ways, acyclic, isomorphic to Z
- General techniques for this type of problems?
- Handling finiteness of relations

Summary

We have studied QA with FGTGD constraints and:

- Number restrictions:
 - OK on **low-arity** when restricting FGTGD shapes
 - OK when further imposing non-conflicting condition
- Transitivity:
 - OK when not used as guards
- Orders:
 - OK when not used as guards and covered

Ongoing work:

- Successor relations of linear orders: functional in both ways, acyclic, isomorphic to Z
- General techniques for this type of problems?
- Handling finiteness of relations

References I

Baget, J., Mugnier, M., Rudolph, S., and Thomazo, M. (2011). Walking the complexity lines for generalized guarded existential rules.

In IJCAI.

Calì, A., Gottlob, G., and Pieris, A. (2012).

Towards more expressive ontology languages: The query answering problem.

Artif. Intel., 193.

🔋 Calì, A., Lembo, D., and Rosati, R. (2003).

Query rewriting and answering under constraints in data integration systems.

In IJCAI.

References II

Gottlob, G., Pieris, A., and Tendera, L. (2013). **Querying the guarded fragment with transitivity.** In *ICALP*.

Gutiérrez-Basulto, V., Ibañez Garcia, Y., Kontchakov, R., and Kostylev, E. V. (2013).

Conjunctive queries with negation over DL-Lite: A closer look. In Web Reasoning and Rule Systems.

Mitchell, J. C. (1983).

The implication problem for functional and inclusion dependencies.

Information and Control, 56(3).

Pratt-Hartmann, I. (2009). Data-complexity of the two-variable fragment with counting quantifiers.

Inf. Comput., 207(8).