Introduction	Known results	Unordered documents	Unambiguous labels	Conclusion
0000	00	0000	0000	0

The Possibility Problem for Probabilistic XML

Antoine Amarilli

Télécom ParisTech, Paris, France

June 5, 2014

Introduction •000	Known results	Unordered documents	Unambiguous labels 0000	Conclusion O
Probabilist	ic XML			

We are **unsure** about the exact contents of an XML document.

Semantics: probability distribution over deterministic documents.

Caution: we impose $\alpha < 1$, $\beta < 1$ in *ind*.

 Introduction
 Known results
 Unordered documents
 Unambiguous la

 0000
 00
 0000
 0000
 0000

Conclusion

Event formalisms

х	0.7
У	0.4
т Х /\	$\neg x \wedge y$
	\backslash
'	

- Probability distribution on events
- Draw events independently
- Edges annotated with formulae on the events
- Edges with false formulae are removed
- \Rightarrow *mie*: multivalued events (see later)
- ⇒ *cie*: conjunctions of Boolean events
- ⇒ *fie*: formulae of Boolean events

Introduction Known results Unordered documents Unambiguous labels

Possibility problem (Poss)

- Given:
 - a probabilistic document D
 - a deterministic document W
- Is W a possible world of D?
- If yes, with which probability?
- Diverse probabilistic formalisms, ordered and unordered
- Like query evaluation but:
 - ⇒ Need inequality: "don't collapse nodes"
 - ⇒ Need negation: "no additional things"
 - \Rightarrow Query depends on input W
- \Rightarrow Specific bounds for this Poss problem?

 Introduction
 Known results
 Unordered documents
 Unambiguous labels
 Conclusion

 0000
 0000
 0000
 0000
 0

1 Introduction

2 Known results

Onordered documents

🗿 Unambiguous labels

5 Conclusion

In NP, in FP^{#P}

- Guess a valuation of the events
- Guess a match of W in D
- Check that the match is realized by the valuation
- \Rightarrow Likewise, probability computation is in FP^{#P}
- \Rightarrow Of course Poss is NP-hard for *fie*

Introduction	Known results	Unordered documents	Unambiguous labels	Conclus
0000	0.	0000	0000	0

Tractable for ordered local documents

- Local choices and ordered documents
- Possibility decision and computation are in PTIME
- Intuitively:
 - match each possible subsequences of siblings
 - dynamic algorithm for match at each level
- ⇒ Implied by determininstic tree automata on probabilistic XML: Cohen, Kimelfeld, and Sagiv 2009
- ⇒ Assumption of order is crucial

Introduction Known results Unordered documents Unambiguous labels Conclusion

Table of contents

Introduction

2 Known results

Onordered documents

4 Unambiguous labels

5 Conclusion

⇒ Probability of match times 2^n : number of perfect matchings ⇒ Computation is #P-hard for unordered and *ind* or *mux*

Decision is in PTIME for *ind* or *mux*

- Compute bottom-up if a node has the empty possible world
- Check dynamically between all nodes of D and W
 - ⇒ Build bipartite graph based on child compatibility
 - \Rightarrow Add dummy nodes for deletions of nodes that can be deleted
 - ⇒ Check in PTIME if graph has a perfect matching

Introduction 0000	Known results	Unordered documents	Unambiguous labels	Conclusio O
Decision is	NP-hard for	[.] any two of <i>ind</i>	, mux, det	

• With *det*, reduction from exact cover

•
$$S = \{S_i\}, S_i = \{s_i^i\}$$

• Is there $T \subseteq S$ such that $\bigcup T = \bigcup S$ with no dupes?

Decision is NP-hard for any two of *ind*, *mux*, *det* (cont'd)

• With *ind* and *mux*, reduction from SAT

• $F = (a \lor b \lor \neg c) \land (a \lor c) \land (\neg a)$

Introduction 0000 Known results

Unordered documents

Unambiguous labels

Conclusion O

Table of contents

Introduction

- 2 Known results
- ③ Unordered documents
- Onambiguous labels

5 Conclusion

Introduction 0000	Known results	Unordered documents	Unambiguous labels ●000	Conclusion O
Unambigi	uity			

- *D* is unambiguous if node labels are unique
- Possible refinements (unique among siblings, etc.)
- \Rightarrow There is at most one way to match W!
 - All local models tractable (can impose order)
- \Rightarrow Can we have correlations?

 Introduction
 Known results
 Unordered documents
 Unambiguous labels
 Conclusion

 Still NP-hard for cie

- \Rightarrow W is a possible world of D iff F is satisfiable
- \Rightarrow Decision for Poss is NP-hard

Introduction 0000	Known results	Unordered documents	Unambiguous labels	Conclusion O
The mie c	lass			

Var	Val	Prob
x	1	0.6
x	2	0.2
x	3	0.1
x	4	0.1
y	1	0.5
у	2	0.5

- mie: Multivalued independent events
- No conjunctions allowed
- Captures *mux*
- Doesn't capture *det* or *ind* hierarchies
- Intractable if ambiguous
- \Rightarrow If non-ambiguous, do we have tractability?

Introduction	Known results	Unordered documents	Unambiguous labels	Conclusion
0000	00	0000	0000	0

mie tractable on non-ambiguous documents

Var	Val	Prob	D	W
x	1	0.6	r	r
x	2	0.2	y = 2 $x = 1$	\frown
x	3	0.1	a b c	a h
X	4	0.1	$x = 2 \wedge y = 1$ $y = 2$	
y y	1 2	0.5 0.5	d ef g	d

- $x \neq 2$, $x \neq 1$, y = 2, $y \neq 1$
- $x \in \{3, 4\}, y \in \{2\}.$

 \Rightarrow Probability 0.1.

Introduction 0000 Known results

Unordered documents

Unambiguous labels

Conclusion

Table of contents

Introduction

- 2 Known results
- 3 Unordered documents
- ④ Unambiguous labels

Introduction 0000	Known results	Unordered documents	Unambiguous labels	Conclusion •
Conclusion				

- Ordered local models are tractable
- Unordered local models are tractable
 - \Rightarrow For decision only, and
 - \Rightarrow With only *mux* or only *ind*
- mie is tractable on unambiguous documents
- Other cases are hard

Introduction 0000	Known results	Unordered documents	Unambiguous labels 0000	Conclusion •
Conclusion				

- Ordered local models are tractable
- Unordered local models are tractable
 - \Rightarrow For decision only, and
 - \Rightarrow With only *mux* or only *ind*
- *mie* is tractable on unambiguous documents
- Other cases are hard
- ⇒ Height does not matter
- ⇒ Probabilities do not matter
- ⇒ Can we refine *mie*, unambiguity, *mux*−*ind* interaction?
- \Rightarrow What if *D* is partially ordered?

Introduction 0000	Known results	Unordered documents	Unambiguous labels 0000	Conclusion •
Conclusion				

- Ordered local models are tractable
- Unordered local models are tractable
 - \Rightarrow For decision only, and
 - \Rightarrow With only *mux* or only *ind*
- *mie* is tractable on unambiguous documents
- Other cases are hard
- ⇒ Height does not matter
- ⇒ Probabilities do not matter
- ⇒ Can we refine *mie*, unambiguity, *mux*−*ind* interaction?
- \Rightarrow What if D is partially ordered?

Thanks for your attention!

References

Cohen, Sara, Benny Kimelfeld, and Yehoshua Sagiv (2009). "Running tree automata on probabilistic XML". In: Proc. PODS. ACM, pp. 227–236.