The Possibility Problem for Probabilistic XML

Antoine Amarilli

Télécom ParisTech, Paris, France

$$
\text { June 5, } 2014
$$

Probabilistic XML

We are unsure about the exact contents of an XML document.

Semantics: probability distribution over deterministic documents.

Local formalisms: possible worlds semantics

Local formalisms: possible worlds semantics

r		$(1-\alpha)(1-\beta)$	$\alpha(1-\beta)$	$(1-\alpha) \beta$	$\alpha \beta$
I		r	r	r	r
ind	\Rightarrow				,
$\alpha \wedge \beta$					1
a b			a	b	
r		$1-\alpha-\beta$	α	β	
\|		r	r	r	
mux	\Rightarrow				
$\alpha \wedge \beta$					
$a \mathrm{~b}$			a	b	

Local formalisms: possible worlds semantics

$\left.\begin{array}{c}r \\ 1 \\ \text { ind } \\ \alpha \\ a_{a} \\ a\end{array}\right]$

$(1-\alpha) \beta$
r
\mathbf{b}

Caution: we impose $\alpha<1, \beta<1$ in ind.

Event formalisms

- Probability distribution on events

x	0.7
y	0.4

- Draw events independently
- Edges annotated with formulae on the events
- Edges with false formulae are removed
\Rightarrow mie: multivalued events (see later)
\Rightarrow cie: conjunctions of Boolean events
\Rightarrow fie: formulae of Boolean events

Possibility problem (Poss)

- Given:
- a probabilistic document D
- a deterministic document W
- Is W a possible world of D ?
- If yes, with which probability?
- Diverse probabilistic formalisms, ordered and unordered
- Like query evaluation but:
\Rightarrow Need inequality: "don't collapse nodes"
\Rightarrow Need negation: "no additional things"
\Rightarrow Query depends on input W
\Rightarrow Specific bounds for this Poss problem?

Table of contents

(1) Introduction

(2) Known results
(3) Unordered documents

4 Unambiguous labels
(5) Conclusion

- Guess a valuation of the events
- Guess a match of W in D
- Check that the match is realized by the valuation
\Rightarrow Likewise, probability computation is in FP\#P
\Rightarrow Of course Poss is NP-hard for fie

Tractable for ordered local documents

- Local choices and ordered documents
- Possibility decision and computation are in PTIME
- Intuitively:
- match each possible subsequences of siblings
- dynamic algorithm for match at each level
\Rightarrow Implied by determininstic tree automata on probabilistic XML:
Cohen, Kimelfeld, and Sagiv 2009
\Rightarrow Assumption of order is crucial

Table of contents

(1) Introduction
(2) Known results

3 Unordered documents

4 Unambiguous labels
(5) Conclusion

Computation is \#P-hard for ind or mux

\Rightarrow Probability of match times 2^{n} : number of perfect matchings
\Rightarrow Computation is \#P-hard for unordered and ind or mux

Decision is in PTIME for ind or mux

- Compute bottom-up if a node has the empty possible world
- Check dynamically between all nodes of D and W
\Rightarrow Build bipartite graph based on child compatibility
\Rightarrow Add dummy nodes for deletions of nodes that can be deleted
\Rightarrow Check in PTIME if graph has a perfect matching

Decision is NP-hard for any two of ind, mux, det

- With det, reduction from exact cover
- $S=\left\{S_{i}\right\}, S_{i}=\left\{s_{j}^{i}\right\}$
- Is there $T \subseteq S$ such that $\bigcup T=\bigcup S$ with no dupes?

$$
\begin{aligned}
S=\{ & \{a, b\}, \\
& \{a, c\}, \\
& \{b\}\}
\end{aligned}
$$

Decision is NP-hard for any two of ind, mux, det (cont'd)

- With ind and mux, reduction from SAT
- $F=(a \vee b \vee \neg c) \wedge(a \vee c) \wedge(\neg a)$

Table of contents

(1) Introduction

(2) Known results
(3) Unordered documents
4. Unambiguous labels
(5) Conclusion

Unambiguity

- D is unambiguous if node labels are unique
- Possible refinements (unique among siblings, etc.)
\Rightarrow There is at most one way to match W !
- All local models tractable (can impose order)
\Rightarrow Can we have correlations?

Still NP-hard for cie

- $F=\bigwedge_{i} \bigvee_{j} \pm x_{j}^{i}$ in CNF
- Equivalently: $\Lambda_{i} \neg \Lambda_{j} \mp x_{j}^{i}$

$\Rightarrow W$ is a possible world of D iff F is satisfiable
\Rightarrow Decision for Poss is NP-hard

The mie class

Var	Val	Prob
x	1	0.6
x	2	0.2
x	3	0.1
x	4	0.1
y	1	0.5
y	2	0.5

- mie: Multivalued independent events
- No conjunctions allowed
- Captures mux
- Doesn't capture det or ind hierarchies
- Intractable if ambiguous
\Rightarrow If non-ambiguous, do we have tractability?
mie tractable on non-ambiguous documents

Var	Val	Prob
x	1	0.6
x	2	0.2
x	3	0.1
x	4	0.1
y	1	0.5
y	2	0.5

- $x \neq 2, x \neq 1, y=2, y \neq 1$
- $x \in\{3,4\}, y \in\{2\}$.
\Rightarrow Probability 0.1.

Table of contents

(1) Introduction

(2) Known results
(3) Unordered documents

4 Unambiguous labels
(5) Conclusion

Conclusion

- Ordered local models are tractable
- Unordered local models are tractable
\Rightarrow For decision only, and
\Rightarrow With only mux or only ind
- mie is tractable on unambiguous documents
- Other cases are hard

Conclusion

- Ordered local models are tractable
- Unordered local models are tractable
\Rightarrow For decision only, and
\Rightarrow With only mux or only ind
- mie is tractable on unambiguous documents
- Other cases are hard
\Rightarrow Height does not matter
\Rightarrow Probabilities do not matter
\Rightarrow Can we refine mie, unambiguity, mux-ind interaction?
\Rightarrow What if D is partially ordered?

Conclusion

- Ordered local models are tractable
- Unordered local models are tractable
\Rightarrow For decision only, and
\Rightarrow With only mux or only ind
- mie is tractable on unambiguous documents
- Other cases are hard
\Rightarrow Height does not matter
\Rightarrow Probabilities do not matter
\Rightarrow Can we refine mie, unambiguity, mux-ind interaction?
\Rightarrow What if D is partially ordered?

Thanks for your attention!

References

(1) Cohen, Sara, Benny Kimelfeld, and Yehoshua Sagiv (2009). "Running tree automata on probabilistic XML". In: Proc. PODS. ACM, pp. 227-236.

