Dealing with Similarity in Argumentation and

Temporal Parametric Semantics in Temporal Markov Logic Network

Victor David

Seminar March 8, 2022

Argumentation: Stakes

- A reasoning model based on the need to justify. Indispensable for deciding, convincing, explaining, ...
- A multidisciplinary theme (Artificial Intelligence, Psychology, Linguistics, Philosophy)
- Examples of applications
 - Medical field: argumentative diagnostic support system
 - Legal field: argued decisions based on law
 - Online debate systems (e.g. DebateGraph, Debatepedia)
 - Online conflict resolution systems (e.g. CyberSettle)

Argumentation: Process

Given a problem (making a decision, classifying an object, ...)

Should taxes be increased?

A: Taxes must be increased because this would improve the quality of life of the citizens, and reduce the country's debt.

Ana

B₁: Increasing taxes decreases the quality of life because it reduces the entertainment of citizens.

B₂: Increased taxes reduce the quality of life because citizens may have less leisure activities.

Tom

B₃: Increasing taxes reduces the quality of life since citizens may be less able to afford health care.

Jane

B₄: Increasing taxes does not solve the country's debt because the government's economic management is uncontrolled.

Dan

Inconsistency handling by argumentation

 (\mathcal{L}, \vdash) is propositional logic

Introduction

000000000

 $\Sigma \subseteq_f \mathcal{L}$, i.e. Σ is a finite subset of \mathcal{L}

For $\Phi \subseteq \mathcal{L}$; $CN(\Phi) = \{ \psi \in \mathcal{L} \text{ s.t. } \phi \vdash \psi \}$

Definition (Besnard and Hunter (2001))

An argument is a pair $\langle \Phi, \phi \rangle$, where $\Phi \subseteq \Sigma$ and $\phi \in \mathcal{L}$, such that:

- Φ ⊬ ⊥ (Consistency)
- $\phi \in CN(\Phi)$ (Validity)
- $\not\exists \Phi' \subset \Phi$ such that $\Phi' \vdash \phi$ (Minimality)

Example $(\Sigma = \{p, q, \neg p, \neg p \rightarrow r\})$

A:
$$\langle \{p\}, p\rangle$$
 B: $\langle \{p, q\}, p \wedge q\rangle$

$$\mathbf{B}:\langle\{p,a\},p\wedge a\rangle$$

$$\mathbf{C}:\langle\{\neg p,\neg p\to r\},r\rangle$$

Inconsistency handling by argumentation

Definition (Besnard and Hunter (2001))

An argument $\langle \Phi, \phi \rangle$ defeats an argument $\langle \Psi, \psi \rangle$ iff $\phi \vdash \neg (\psi_1 \land \cdots \land \psi_n)$ for some $\{\psi_1, \cdots, \psi_n\} \subseteq \Psi$

Example

I) Introduction

000000000

 $A:\langle\{p\},p\rangle$

 $\mathbf{B}:\langle\{p,q\},p\wedge q\rangle$ $\mathbf{C}:\langle\{\neg p,\neg p\rightarrow r\},r\rangle$

Abstract Argumentation Framework

Definition

Introduction

000000000

An argumentation framework (AF) is a tuple $\langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \rangle$ s.t.

- $\mathcal{A} \subseteq_f \operatorname{Arg}^i$ (Arguments)
- **w** : $A \to [0,1]$ (Weights of arguments)
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ (Attack relation)
- \bullet $\sigma: \mathcal{R} \to [0,1]$ (Weights of attack relations)

Notation: Let $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \rangle$ be an AF, If $\sigma \equiv 1$, then AF is called semi-weighted

^{&#}x27;Arg is the universe of all possible arguments

Semantics

I) Introduction

000000000

A semantics is a function **S** that assigns to every AF $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \rangle$,

- a set $\operatorname{Ext}_{\mathbf{G}}^{\mathbf{S}} \in 2^{2^{\mathcal{A}}}$ (Extension-based Semantics) look for sets of acceptable arguments, called extensions
- a weighting Str_G^S : $A \rightarrow [0,1]$ focus on individual arguments

(Gradual Semantics)

ullet a preorder $\succeq_{\mathbf{G}}^{\mathbf{S}} \subseteq \mathcal{A} \times \mathcal{A}$ (Ranking-based semantics) rank-order arguments from the strongest to the weakest

Semantics

I) Introduction

000000000

Notation: Let $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \rangle$ be an AF, for $A \in \mathcal{A}$: Att $(A) = \{ B \in \mathcal{A} \mid (B, A) \in \mathcal{R} \}$

Definition (Amgoud & Doder 2019)

semi-Weighted h-Categoriser is a function $\mathbf{S}_{\mathtt{wh}}$ transforming any AF $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \equiv 1 \rangle$ into a weighting $\mathtt{Str}_{\mathbf{G}}^{\mathbf{S}_{\mathtt{wh}}}$ on \mathcal{A} such that $\forall \mathcal{A} \in \mathcal{A}$,

$$\operatorname{\mathtt{Str}}_{\mathbf{G}}^{\mathbf{S}_{\mathtt{wh}}}(A) = \left\{ egin{array}{ll} \mathbf{w}(A) & ext{iff } \operatorname{\mathtt{Att}}(A) = \emptyset \\ rac{\mathbf{w}(A)}{1 + \sum\limits_{B \in \operatorname{\mathtt{Att}}(A)} \operatorname{\mathtt{Str}}_{\mathbf{G}}^{\mathbf{S}_{\mathtt{wh}}}(B)} & ext{else} \end{array}
ight.$$

Semantics

Limits of existing frameworks

Should taxes be increased?

A: Taxes must be increased because this would reduce the country's debt and improve the quality of life of the citizens.

Ana

B₁: Increasing taxes decreases the quality of life because it reduces the entertainment of citizens.

B₂: Increased taxes reduce the quality of life because citizens may have less leisure activities. B₃: Increasing taxes reduces the quality of life since citizens may be less able to afford health care.

B₄: Increasing taxes does not solve the country's debt because the government's economic management is uncontrolled.

 $sim(B_1,B_2) = 1$

Tom

 $sim(B_2,B_3) = \alpha$

* H

 $sim(B_3, B_4) = 0$

Dan

Limits of existing frameworks

I) Introduction

000000000

$$A: \langle \{p\}, p\rangle$$
 $B: \langle \{p, q\}, p \wedge q\rangle$ $C: \langle \{\neg p, \neg p \rightarrow r\}, r\rangle$

$$sim(A,B) = \alpha$$

The **similarity** between the **attackers** should be considered in the evaluation of the attacked argument

Our Contributions

I) Introduction

óoooooo•o

Two research questions:

- How to measure similarity between two arguments?
- 4 How to define semantics that are able to deal with similarity?

ó00000000 Outline

I) Introduction

- 1) Introduction
- 2) Similarity Measures for Logical Arguments
- 3) Gradual Semantics dealing with Similarity

Similarity Measures for Logical Arguments

- Axiomatic Foundations of Similarity Measures [KR18]+ [ECSQARU21]
- Similarity Measures
 - 7 Syntactic Similarity Measures [KR18]
 - 1 Mixed Similarity Measure [ECSQARU19] + [ECSQARU21]

III) Gradual Semantics

 2 Similarity Measures for Non-Concise Arguments [ECSQARU19] + [ECSQARU21]

- Evaluation Methods for Gradual Semantics [COMMA20] + [AAAI21]
- Principles for Gradual Semantics [AAAI21]
- Novel Family of Semantics [AAAI21]
- Adjustment Functions [COMMA20] + [AAAI21]

- Assess the strength of the group of attacks on A, $\alpha = g(0.6, 0.6, 0.4, 0.5)$
- 2 Evaluate the impact of attacks on the initial weight of A, $\beta = \mathbf{f}(0.9, \alpha)$

I) Introduction

Definition (Amgoud & Doder, 2018)

An evaluation method (EM) is a tuple $M = \langle f, g \rangle$ such that:

- $\mathbf{g}: \bigcup_{k=0}^{+\infty} [0,1]^k \to [0,+\infty[$, such that \mathbf{g} is symmetric
- $\mathbf{f}: [0,1] \times \text{Range}(\mathbf{g}) \xrightarrow{a} [0,1]$

^aRange(g) denotes the co-domain of g

Definition (Amgoud & Doder, 2018)

A gradual semantics **S** based on an evaluation method $\mathbf{M} = \langle \mathbf{f}, \mathbf{g} \rangle$ assign to every AF $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \equiv 1 \rangle$ a weighting Str^S s.t.

III) Gradual Semantics

000000000000

$$\forall A \in \mathcal{A}$$
,

$$Str_{\mathbf{G}}^{\mathbf{S}}(A) =$$

$$f(w(A), g(Str_G^S(B_1), \cdots, Str_G^S(B_k)))$$

where
$$\{B_1, \cdots, B_k\} = \text{Att}(A)$$

Definition (semi-Weighted h-Categoriser)

For any argument A,

$$\mathtt{Str}^{\mathbf{S}_{\mathtt{wh}}}_{\mathbf{G}}(A) = \left\{ egin{array}{ll} \mathbf{w}(A) & \mathsf{iff} \ \mathtt{Att}(A) = \emptyset \ & \dfrac{\mathbf{w}(A)}{1 + \sum\limits_{B \in \mathtt{Att}(A)} \mathtt{Str}^{\mathbf{S}_{\mathtt{wh}}}_{\mathbf{G}}(B)} & \mathsf{else} \end{array}
ight.$$

Example (semi-Weighted h-Categoriser)

 $S_{\rm wh}$ is based on $M = \langle f_{\rm frac}, g_{\rm sum} \rangle$ such that:

$$\begin{cases} \mathbf{f}_{\texttt{frac}}(x_1, x_2) = \frac{x_1}{1 + x_2} \\ \mathbf{g}_{\texttt{sum}}(x_1, \dots, x_n) = \sum_{i=1}^{n} x_i \end{cases}$$

1.a) New Argumentation Framework

[AAAI21]

Definition (SSWAF)

A semi-weighted argumentation framework extended by a similarity measure (SSWAF) is a tuple $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \equiv 1, \text{sim} \rangle$, where

- $A \subseteq_f Arg$
- ullet w : $\mathcal{A}
 ightarrow [0,1]$
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$
- \bullet $\sigma: \mathcal{R} \to 1$
- ullet sim : $(\mathcal{A} \times \mathcal{A}) \rightarrow [0,1]$

(Similarity measure)

1.b) Extended Evaluation Methods

III) Gradual Semantics

000000000000

- Adjust the strength of every attack w.r.t. similarity, $\mathbf{n}((\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_1), B_1), (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_2), B_2), (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_3), B_3), (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_4), B_4)) =$ $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$
- Assess the strength of the group of attacks on A, $\beta = \mathbf{g}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$
- Evaluate the impact of attacks on the initial weight of A, $\delta = \mathbf{f}(0.9, \beta)$

1.b) Extended Evaluation Methods

[AAAI21]

Definition (EM)

1) Introduction

An evaluation method (EM) is a tuple $\mathbf{M} = \langle \mathbf{f}, \mathbf{g}, \mathbf{n} \rangle$ such that:

• $\mathbf{f}: [0,1] \times \text{Range}(\mathbf{g}) \rightarrow [0,1]$

(influence function)

• **g**: $\bigcup_{k=0}^{+\infty} [0,1]^k \to [0,+\infty[$

- (aggregation function)
- $n: \bigcup_{k=0}^{+\infty} ([0,1] \times Arg)^k \to [0,1]^k$
- (adjustment function)

Definition (S based on M)

A gradual semantics S based on an evaluation method

 $\mathbf{M} = \langle \mathbf{f}, \mathbf{g}, \mathbf{n} \rangle$ is a function transforming every SSWAF

 $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \equiv 1, \operatorname{sim} \rangle$ into a weighting $\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}} : \mathcal{A} \rightarrow [0, 1]$ such that for every $A \in \mathcal{A}$.

$$Str_{\mathbf{G}}^{\mathbf{S}}(A) =$$

1) Introduction

$$f\left(\mathbf{w}(A), \mathbf{g}\left(\mathbf{n}\left((\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_1), B_1), \cdots, (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_k), B_k)\right)\right)\right),$$

where
$$\{B_1, \cdots, B_k\} = \text{Att}(A)$$

1.c) Well-behaved Adjustment Function **n**

Let $x_i, y_i \in \mathbb{R}$ and $A_i, B_i \in Arg$, **n** is well-behaved iff:

- (a) n() = (),
- (b) $\mathbf{n}((x,A)) = (x),$
- (c) $g(\mathbf{n}((x_1, A_1), \dots, (x_k, A_k))) < g(\mathbf{n}((x_1, B_1), \dots, (x_k, B_k)))$ if $\forall i, j \in \{1, \dots, k\} \ i \neq j$, $sim(A_i, A_i) \geq sim(B_i, B_i)$,
- (d) If $\exists i \in \{1, \dots, k\}$ s.t. $x_i > 0$ then $g(n((x_1, A_1), \cdots, (x_k, A_k))) > 0.$
- (e) $g(n((x_1, A_1), \dots, (x_k, A_k))) < g(n((y_1, A_1), \dots, (y_k, A_k)))$ if $\forall i \in \{1, \dots, k\}, x_i < v_i$
- (f) **n** is symmetric,
- (g) $\mathbf{n}((x_1, A_1), \cdots, (x_{k+1}, A_{k+1})) =$ $(\mathbf{n}((x_1,A_1),\cdots,(x_k,A_k)),x_{k+1})$ if $\forall i \in \{1, ..., k\}$, $sim(A_i, A_{k+1}) = 0$.

1.c) Well-behaved Adjustment Function n

Only one semantics based on an EM

$\mathsf{Theorem}$

Let M* be the set of all well-behaved evaluation methods $\mathbf{M} = \langle \mathbf{f}, \mathbf{g}, \mathbf{n} \rangle$ such that:

- $\lim_{x_2 \to x_0} \mathbf{f}(x_1, x_2) = \mathbf{f}(x_1, x_0), \ \forall x_0 \neq 0.$
- $\bullet \lim_{x\to x_0} \mathbf{g}(x_1,\cdots,x_k,x) = \mathbf{g}(x_1,\cdots,x_k,x_0), \ \forall x_0\neq 0.$
- n is continuous on each numerical variable.
- $\lambda \mathbf{f}(x_1, \lambda x_2) < \mathbf{f}(x_1, x_2), \ \forall \lambda \in [0, 1], \ x_1 \neq 0.$
- $g(n(\lambda x_1, \dots, \lambda x_k, B_1, \dots, B_k)) >$ $\lambda \mathbf{g}(\mathbf{n}(x_1,\cdots,x_k,B_1,\cdots,B_k)), \forall \lambda \in [0,1].$

For any $M \in M^*$, for all gradual semantics S, S',

if S, S' are based on M, then $S \equiv S'$

2) Principles

[AAAI21]

Principles for gradual semantics dealing with similarity:

- Neutrality
- (Strict) Monotony
- (Strict) Reinforcement
- (Strict) Sensitivity to Similarity
- ...

(Strict) Sensitivity to Similarity: the greater the similarities between attackers of an argument, the stronger the argument; if $\alpha_1 \geq \alpha_3$ then $\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(A_1) \geq \operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(A_2)$

I) Introduction

Theorem

Let ${\bf S}$ be a gradual semantics based on an EM ${\bf M}$. If ${\bf M}$ is well-behaved, then ${\bf S}$ satisfies Reinforcement, Monotony, Neutrality and Sensitivity to Similarity

3 additional constraints ensure the satisfaction of the strict versions.

For instance, Strict Monotony is satisfied when:

$$\mathbf{g}(x_1, \cdots, x_k, y) < \mathbf{g}(x_1, \cdots, x_k, z)$$
 if $y < z$ (C3)

3) Novel Family of Semantics

[AAAI21]

Definition (S*)

We define by S^* the set of all semantics that are based on an evaluation method from M^*

Theorem

Any gradual semantics $\mathbf{S} \in \mathbf{S}^*$ satisfies Reinforcement, Monotony, Neutrality and Sensitivity to Similarity

4) Adjustment Functions

1) Introduction

[COMMA20] + [AAAI21]

- Conjunctive: **n** removes the redundancy from the weakest argument (B_1)
- Disjunctive: **n** removes the redundancy from the strongest argument (B_2)
- Compensative: **n** distributes the burden to both

4.a) Adjustment Function \mathbf{n}_{\max}^{ρ}

Definition (Parameterised Function $\mathbf{n}_{\max}^{ ho}$)

```
Let A_1, \cdots, A_k \in \operatorname{Arg}, x_1, \cdots, x_k \in [0,1], and \rho a fixed permutation on the set \{1,\cdots,k\} such that if x_{\rho(i)}=0 then x_{\rho(i+1)}=0 \ \forall i < k, or i=k. \mathbf{n}_{\max}^{\rho}()=(), otherwise: \mathbf{n}_{\max}^{\rho}((x_1,A_1),\cdots,(x_k,A_k))=\begin{pmatrix} x_{\rho(1)}, & & \\ & x_{\rho(2)}\times(1-\max(\sin(A_{\rho(1)},A_{\rho(k)}))), & & \\ & & x_{\rho(k)}\times(1-\max(\sin(A_{\rho(1)},A_{\rho(k)}),\cdots,\sin(A_{\rho(k-1)},A_{\rho(k)}))) \end{pmatrix}
```

$\sin(B_1, B_2) = 1$ $\sin(B_1, B_3) = \sin(B_2, B_3) = 0.25$ $\forall i \in \{1, 2, 3\}, \sin(B_i, B_4) = 0$ B_1 0.6 B_2 0.6 B_3 0.4 B_4 0.5

Let ρ_{dec} rank arguments in a decreasing and unique order based on their strength, and **S** s.t. $Str_G^S(B_i) = \mathbf{w}(B_i)$ for $i \in \{1, 2, 3, 4\}$

Then $\mathbf{n}_{\max}^{\rho_{dec}}$ is a conjunctive adjustment function and $\mathbf{n}_{\max}^{\rho_{dec}}((\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_1), B_1), (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_2), B_2), (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_3), B_3), (\operatorname{Str}_{\mathbf{G}}^{\mathbf{S}}(B_4), B_4)) = (0.6, 0.6 \times (1-1), 0.5 \times (1-0), 0.4 \times (1-0.25)) = (0.6, 0, 0.5, 0.3)$

1) Introduction

Proposition

Let \mathbf{f} , \mathbf{g} be well-behaved functions and \mathbf{g} satisfies the following property:

let
$$\lambda \in [0,1], x_1, \dots, x_k \in [0,1]$$
, then $\mathbf{g}(\lambda x_1, \dots, \lambda x_k) \ge \lambda \mathbf{g}(x_1, \dots, x_k)$.

The following properties hold:

- \mathbf{n}_{\max}^{ρ} and \mathbf{n}_{wh} are well-behaved
- for all functions \mathbf{f}, \mathbf{g} that are well-behaved, it holds that $\langle \mathbf{f}, \mathbf{g}, \mathbf{n}_{\max}^{\rho} \rangle, \langle \mathbf{f}, \mathbf{g}, \mathbf{n}_{\text{wh}} \rangle \in \mathbf{M}^*$

Definition (Sⁿ)

1) Introduction

Semantics S^n based on $\langle f_{frac}, g_{sum}, n \rangle$ is a function transforming any SSWAF $\mathbf{G} = \langle \mathcal{A}, \mathbf{w}, \mathcal{R}, \sigma \equiv 1, \sin \rangle$ into a function $\operatorname{Str}^{\mathbf{n}}$ from \mathcal{A} to [0,1] s.t. $\forall A \in \mathcal{A}, \operatorname{Str}^{\mathbf{n}}(A) =$

$$\frac{\mathbf{w}(A)}{1+\sum\limits_{i=1}^{k}\left(\mathbf{n}\Big((\mathtt{Str}^{\mathbf{n}}(B_1),B_1),\cdots,(\mathtt{Str}^{\mathbf{n}}(B_k),B_k)\Big)\right)}$$

where $\operatorname{Att}(A)=\{B_1,\cdots,B_k\}$. If $\operatorname{Att}(A)=\emptyset$, then $\sum_{i=1}^{\kappa}(.)=0$.

5) Illustration of Gradual Semantics

 $[\mathsf{COMMA20}] + [\mathsf{AAAI21}]$

[COMMA20] + [AAAI21]

5) Illustration of Gradual Semantics

Without similarity:

$$\operatorname{Str}^{S_{\operatorname{Wh}}}(A) = 0.29$$

With similarity:

$$\begin{split} \mathtt{Str}^{\frac{\rho^{\prime} \mathrm{dec}}{\mathrm{max}}}(A) &= \frac{0.9}{1 + 0.6 + 0 + 0.5 + 0.3} = \frac{0.9}{2.4} = 0.375 \\ \mathtt{Str}^{\mathbf{n}_{\mathrm{wh}}}(A) &= \frac{0.9}{1 + 0.404 + 0.404 + 0.5 + 0.333} = \frac{0.9}{2.641} = 0.341 \end{split}$$

Theorem

1) Introduction

For any ρ , it holds that $S^{n_{max}^{\rho}} \in S^*$ and $S^{n_{max}^{\rho}}$ satisfies:

- Neutrality
- (Strict) Monotony
- Reinforcement
- Sensitivity to Similarity

The semantics $S^{n_{\text{wh}}}$ satisfies all the principles and $S^{n_{\text{wh}}} \in S^*$

Conclusion

1) Introduction

Two research questions with almost no work in the literature:

- How to measure similarity between two arguments?
 - Proposition of principles for similarity measures
 - Proposition of various similarity measures
- When to define semantics that deal with similarity?
 - Extension of evaluation methods with a novel adjustment function
 - Proposition of principles for evaluation methods and semantics dealing with similarity
 - Proposition of a broad family of gradual semantics encompassing almost all the existing gradual semantics
 - Proposition of different adjustment functions

References & Questions

Thank you for your attention

References:

- ✓ KR-2018: L. Amgoud, V. David, Measuring Similarity between Logical Arguments
- ✓ ECSQARU-2019: L. Amgoud, V. David, D. Doder, Similarity Measures between Arguments Revisited
- ✓ COMMA-2020: L. Amgoud, V. David, An Adjustment Function for Dealing with Similarities
- ✓ AAAI-2021: L. Amgoud, V. David, A General Setting for Gradual Semantics Dealing with Similarities
- ✓ ECSQARU-2021: L. Amgoud, V. David, Similarity measures based on compiled arguments

Ouestions?

Context of the Daphne Project

MAP Inferences are useful for answering historical queries, such as validating historical assumptions

First Order Logic

1) Introduction

Definition (FOL)

FOL is a set of formulae built up from :

- constants $(\{a, b, c, \cdots\} \in \mathbf{C})$,
- variables $(\{x, y, z, \cdots\} \in \mathbf{V})$,
- functions $(\{f,g,h,\cdots\} \in \mathbf{F})$,
- predicates $(\{P, Q, R, \cdots\} \in \mathbf{P})$,
- connectives $(\neg, \lor, \land, \rightarrow, \leftrightarrow)$,
- quantifier symbols (\forall, \exists) .

Where $\{\phi, \psi, \dots\} \in FOL$ are formula and $\{\Phi, \Psi, \dots\} \subseteq FOL$ are subset of formulae.

A grounded formula is a formula without any variable.

Temporal Predicate and Formula

Definition (TP an TF)

1) Introduction

Let a set of first order formulae FOL and a time interval $\mathcal{T} \subset \mathbf{C}$, a temporal predicate $TP \in \mathbf{P}$ is an extension of a simple predicate $P \in \mathbf{P}$ iff $P(x_1, \dots, x_n)$ and $TP(x_1, \dots, x_n, T)$, where $T = [t, t'] \subseteq \mathcal{T}$.

Notation: TP (resp. TF) is the set of *temporal predicates* (resp. the set of temporal formulae).

Definition (TMLN)

1) Introduction

A Temporal Markov Logic Network $\mathbf{M} = (\mathbf{F}, \mathbf{R})$ is a set of weighted temporal facts and rules where F and R are sets of pairs such that:

- $\mathbf{F} = \{(\phi_1, w_1), \dots, (\phi_n, w_n)\}\$ with $\forall i \in \{1, \dots, n\}, \ \phi_i \in$ TF such that it is grounded and $w_i \in [0, 1]$.
- $\mathbf{R} = \{(\phi'_1, w'_1), \cdots, (\phi'_k, w'_k)\}\$ with $\forall i \in \{1, \cdots, k\}, \ \phi'_i \in TF$ such that it is not grounded and in the form (premises, conclusion), i.e. $(\psi_1 \wedge \cdots \wedge \psi_l) \rightarrow \psi_{l+1}$ where $\forall i \in \{1, \dots, l+1\}, \ \psi_i \in \text{TF, and } w_i \in [0, 1].$

The universe of all TMLNs is denoted by TMLN.

1) Introduction

Example of TMLN for *Nicole Oresme*: F_1 : (Person(NO, [1320, 1382]) F_2 : (Philosopher (NO, [1320, 1382]) F_3 : (LivePeriod(NO, MiddleAges, [1320, 1382]) F₄: (Studied(NO, CollegeOfNavarre, [1340, 1356]) , 0.7) F_5 : ($\neg Studied(NO, CollegeOfNavarre, [1350, 1360])$, 0.3) F_6 : ($\neg Studied(NO, CollegeOfNavarre, [1350, 1355])$, 0.4) $R_1: (\forall x, T, (Person(x, T) \land LivePeriod(x, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, M$ $Studied(x, CollegeOfNavarre, T)) \rightarrow PeasantFamily(x, T)$, 0.8) $R_2: \forall x, T, (Philosopher(x, T) \land LivePeriod(x, MiddleAges, T))$ $\rightarrow \neg PeasantFamily(x, T)$, 0.6)

1) Introduction

```
Example of TMLN for Nicole Oresme:
F_1: (Person(NO, [1320, 1382])
F_2: (Philosopher (NO, [1320, 1382])
F_3: (LivePeriod(NO, MiddleAges, [1320, 1382])
F_4: (Studied(NO, CollegeOfNavarre, [1340, 1356])
                                                                         , 0.7)
F_5: (\neg Studied(NO, CollegeOfNavarre, [1350, 1360])
                                                                         , 0.3)
F_6: (\neg Studied(NO, CollegeOfNavarre, [1350, 1355])
                                                                         , 0.4)
R_1: (\forall x, T, (Person(x, T) \land LivePeriod(x, MiddleAges, T) \land
      Studied(x, CollegeOfNavarre, T)) \rightarrow PeasantFamily(x, T)
                                                                         , 0.8)
R_2: \forall x, T, (Philosopher(x, T) \land LivePeriod(x, MiddleAges, T))
      \rightarrow \neg PeasantFamily(x, T)
                                                                       , 0.6)
```

1) Introduction

```
Example of TMLN for Nicole Oresme:
F_1: (Person(NO, [1320, 1382])
F_2: (Philosopher (NO, [1320, 1382])
F_3: (LivePeriod(NO, MiddleAges, [1320, 1382])
F<sub>4</sub>: (Studied(NO, CollegeOfNavarre, [1340, 1356])
                                                                                                                                                                                                                                                                                                                                                              , 0.7)
F_5: (\neg Studied(NO, CollegeOfNavarre, [1350, 1360])
                                                                                                                                                                                                                                                                                                                                                             , 0.3)
F_6: (\neg Studied(NO, CollegeOfNavarre, [1350, 1355])
                                                                                                                                                                                                                                                                                                                                                              , 0.4)
R_1: (\forall x, T, (Person(x, T) \land LivePeriod(x, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, MiddleAges, M
                                Studied(x, CollegeOfNavarre, T)) \rightarrow PeasantFamily(x, T)
                                                                                                                                                                                                                                                                                                                                                              , 0.8)
R_2: \forall x, T, (Philosopher(x, T) \land LivePeriod(x, MiddleAges, T))
                               \rightarrow \neg PeasantFamily(x, T)
                                                                                                                                                                                                                                                                                                                                                     , 0.6)
```

Temporal Maximum A-Posteriori Inference

Definition

I) Introduction

Temporal MAP inference in TMLN corresponds to obtaining the most probable, temporally consistent, and expanded state.

Given $\mathbf{M} \in \mathtt{TMLN}$ and $S \in \mathtt{Sem}$ computing the score of an interpretation I, a method solving a MAP problem is denoted by "map: TMLN \times Sem $\rightarrow \mathcal{P}^a(\texttt{TMLN}^*)$ ", s.t.:

$$\begin{split} \operatorname{map}(\mathbf{M},S) &= \{I \mid I \in \underset{I \subseteq \operatorname{MB}(\mathbf{M})}{\operatorname{argmax}} \; S(I) \text{ and } \\ & \sharp I' \in \underset{I' \subseteq \operatorname{MB}(\mathbf{M})}{\operatorname{argmax}} \; S(I') \text{ s.t. } I \subset I' \} \end{split}$$

 $^{{}^{}a}\mathcal{P}(X)$ denote the powerset of X

Temporal In/Consistency

Definition (Temporal Parametric Semantics)

A temporal parametric semantics is a tuple TPS = $\langle \Delta, \sigma, \Theta \rangle$, s.t.:

 \bullet Δ : TMLN* \to {0, 1},

1) Introduction

- $\sigma: TMLN^* \to \bigcup_{k=0}^{+\infty} [0,1]^k$.
- $\Theta: \bigcup_{k=0}^{+\infty} [0,1]^k \to [0,+\infty[,$

For any $\mathbf{M} \in \text{TMLN}$, $I \subseteq \text{MB}(\mathbf{M})$, the strength of a temporal parametric semantics TPS = $\langle \Delta, \sigma, \Theta \rangle$ is computed by:

$$TPS(I) = \Delta(I) \cdot \Theta(\sigma(I)).$$

$\mathsf{Theorem}$

1) Introduction

Let $\mathbf{M} \in \text{TMLN}$, for any σ and Θ , we denote by:

- $TPS_{tCon} = \langle \Delta_{tCon}, \sigma, \Theta \rangle$, $TPS_{pInc} = \langle \Delta_{pInc}, \sigma, \Theta \rangle$,
- $TPS_{pCon} = \langle \Delta_{pCon}, \sigma, \Theta \rangle$, $TPS_{tInc} = \langle \Delta_{tInc}, \sigma, \Theta \rangle$.

Hence: $\forall I_{tc} \in \text{map}(\mathbf{M}, \text{TPS}_{tCon}), \ \forall I_{pi} \in \text{map}(\mathbf{M}, \text{TPS}_{pInc}),$ $\forall I_{DC} \in \text{map}(\mathbf{M}, \text{TPS}_{pCon}), \ \forall I_{ti} \in \text{map}(\mathbf{M}, \text{TPS}_{tInc}),$

$$\mathtt{TPS}_{\mathtt{tCon}}(I_{tc}) = \mathtt{TPS}_{\mathtt{pInc}}(I_{pi}) \leq \mathtt{TPS}_{\mathtt{pCon}}(I_{pc}) \leq \mathtt{TPS}_{\mathtt{tInc}}(I_{ti}).$$

Definition (Selective Functions)

Let $\mathbf{M} \in \text{TMLN}$, $\{(\phi_1, w_1), \cdots, (\phi_n, w_n)\} \subseteq \text{MB}(\mathbf{M})$:

- $\sigma_{id}(\{(\phi_1, w_1), \cdots, (\phi_n, w_n)\}) = (w_1, \cdots, w_n)$
- $\sigma_{thresh,\alpha}(\{(\phi_1, w_1), \cdots, (\phi_n, w_n)\}) =$ $(\max(w_1 - \alpha, 0), \cdots, \max(w_n - \alpha, 0))$ s.t. $\alpha \in [0, 1]$
- let $\phi = (\psi_1 \wedge \cdots \wedge \psi_k) \rightarrow \psi_{k+1}$ a rule. $prem(\phi) = \{\psi_1, \cdots, \psi_k\}.$
 - $imp((\phi, w), \{(\phi_1, w_1), \cdots, (\phi_n, w_n)\}) =$ $\begin{cases} 0 & \text{if } \phi \text{ is a grounded rule s.t. } \exists \psi_i \in \texttt{prem}(\phi) \\ & \text{s.t. } \psi_i \notin \texttt{CN}(\{\phi_1, \cdots, \phi_n\}) \\ w & \text{otherwise} \end{cases}$
 - $\sigma_{rule}(\{(\phi_1, w_1), \cdots, (\phi_n, w_n)\}) =$ $(imp((\phi_1, w_1), \{(\phi_2, w_2), \cdots, (\phi_n, w_n)\}), \cdots,$ $imp((\phi_n, w_n), \{(\phi_1, w_1), \cdots, (\phi_{n-1}, w_{n-1})\}))$

Definition (Aggregate Functions)

Let $\{w_1, \dots, w_n\}$ such that $n \in [0, +\infty[$ and $\forall i \in [0, n],$ $w_i \in [0, 1].$

- $\bullet \ \Theta_{sum}(w_1,\cdots,w_n)=\sum_{i=1}^n w_i,$ if n=0 then $\Theta_{sum}()=0$.
- $\Theta_{sum,\alpha}(w_1,\cdots,w_n) = \left(\sum_{i=1}^n (w_i)^{\alpha}\right)^{\frac{1}{\alpha}}$ s.t. $\alpha \geq 1$, if n = 0 then $\Theta_{sum \alpha}() = 0$.
- \bullet $\Theta_{psum}(w_1, \cdots, w_n) = w_1 \ominus \cdots \ominus w_n$, where $w_1 \ominus w_2 = w_1 + w_2 - w_1 \cdot w_2$, if n = 0 then $\Theta_{psum}() = 0$ and if n=1 then $\Theta_{psum}(w)=w$.

TPS	Temporal MAP Inferences	Interpretations Strength
$\langle \Delta_{ t tCon}, \sigma_{id}, \Theta_{sum} angle$	$\{\{F_1, F_2, F_3, F_5, F_6, GR_1, GR_2\}\}$	5
$\langle \Delta_{ t pCon}, \sigma_{id}, \Theta_{sum} \rangle$	$\{\{F_1, F_2, F_3, F_5, F_6, GR_1, GR_2\}\}$	5
$\langle \Delta_{ t t Inc}, \sigma_{\it id}, \Theta_{\it sum} angle$	$\{\{F_1, F_2, F_3, F_4, F_5, F_6, GR_1\}\}$	5.1
$\langle \Delta_{ t tCon}, \sigma_{id}, \Theta_{sum,3} \rangle$	$\{\{F_1, F_2, F_3, F_4, GR_1\}\}$	1.545
$\langle \Delta_{\mathrm{pCon}}, \sigma_{id}, \Theta_{sum,3} \rangle$	$\{\{F_1, F_2, F_3, F_4, F_5, GR_1\}\}$	1.548
$\langle \Delta_{ t lnc}, \sigma_{id}, \Theta_{sum,3} angle$	$\{\{F_1, F_2, F_3, F_4, F_5, F_6, GR_1\}\}$	1.557
$\langle \Delta_{ t t Con}, \sigma_{ t rule}, \Theta_{ t sum} angle$	$\{\{F_1, F_2, F_3, F_4, GR_1\}\}$	4.4
$\langle \Delta_{ t pCon}, \sigma_{ t rule}, \Theta_{ t sum} angle$	$\{\{F_1, F_2, F_3, F_4, F_5, GR_1\}\}$	4.7
$\langle \Delta_{ t t Inc}, \sigma_{ t rule}, \Theta_{ t sum} angle$	$\{\{F_1, F_2, F_3, F_4, F_5, F_6, GR_1\}\}$	5.1
$\langle \Delta_{ exttt{tCon}}, \sigma_{\textit{rule}}, \Theta_{\textit{sum},3} \rangle$	$\{\{F_1, F_2, F_3, F_4, GR_1\}\}$	1.545
$\langle \Delta_{ t pCon}, \sigma_{ t rule}, \Theta_{ t sum, 3} \rangle$	$\{\{F_1, F_2, F_3, F_4, F_5, GR_1\}\}$	1.548
$\langle \Delta_{ t tInc}, \sigma_{ t rule}, \Theta_{ t sum, 3} angle$	$\{\{F_1, F_2, F_3, F_4, F_5, F_6, GR_1\}\}$	1.557

Table: Temporal Parametric Semantics

Conclusion and Perspectives

Conclusion

1) Introduction

- Extension of TMLN with temporal predicates and uncertain rules
- Study of different temporal consistencies
- Proposition of parameterizable semantics for MAP inferences

Perspectives

- Implementing this model with NEO4J and semantics in Python
- Add some uncertainty to the time interval
- Extending the model to the argumentation framework