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Introduction (2/5): Machine learning systems classify toxic
comments online

Figure: from Pavlopoulos et al. [1]
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Introduction (3/5): Deep learning is efficient when applied
to generative transfer tasks

Figure:
Left: CycleGAN [2]
Right: Neural Machine Translation (NMT) (from
https://jalammar.github.io/)

Laugier, L. (IP Paris) Presentation October 15, 2020 6 / 42

https://jalammar.github.io/


Introduction (3/5): Deep learning is efficient when applied
to generative transfer tasks

Figure:
Left: CycleGAN [2]
Right: Neural Machine Translation (NMT) (from
https://jalammar.github.io/)

Laugier, L. (IP Paris) Presentation October 15, 2020 6 / 42

https://jalammar.github.io/


Introduction (4/5): Golden annotated pairs are more
expensive and difficult to get than monolingual corpora
annotated in attribute

Figure:
Left: Parallel (paired) corpus for supervised NMT
Right: Non-parallel (Unpaired) corpora for self-supervised NMT
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Introduction (5/5): Therefore we opted for a
self-supervised setting

Figure:
Left: Polarised Civil Comments dataset [3]
Right: Yelp Review dataset [4] (for initial experiments and fair comparison
purpose)
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Method (1/14): Formalizing the problem

Goal
Let XT and XC be the “toxic” and “civil” non-parallel copora.
Let X = XT ∪ XC .

We aim at learning in a self-supervised setting, a mapping fθ s. t.
∀(x , a) ∈ X×{“civil”, “toxic”}, y = fθ(x , a) is a text:

1 Satisfying a,
2 Fluent in English,
3 Preserving the meaning of x “as much as possible”.

There exist two related approaches
Encoder-decoder architectures work well for supervised
sequence-to-sequence (seq2seq) tasks (NMT): T5[5] 1 2 3

Language Models (LMs) are efficient for self-supervised “free”
generation: GPT-2 [6] 2 and CTRL[7] 1 2

There exist two related approaches
Encoder-decoder architectures work well for supervised
sequence-to-sequence (seq2seq) tasks (NMT): T5[5] 1 2 3

Language Models (LMs) are efficient for self-supervised “free”
generation: GPT-2 [6] 2 and CTRL[7] 1 2
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Method (2/14): Encoder-Decoder for supervised seq2seq
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Method (3/14): Encoding and decoding is modeled via
attention mechanism (see https://jalammar.github.io/)

Figure: Cross-attention heat map for NMT, from Bahdanau et al. [8] (2015)

Second Law of Robotics
A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.
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Method (4/14): Bi-transformers [9] encode the input and
decode the hidden states (see https://jalammar.github.io/)
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Method (5/14): Inference time - where the Natural
Language Generation happens (see https://jalammar.github.io/)
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Method (6/14): Transformers learn relevant features

Figure: As we encode the word “it”, one attention head is focusing most on “the
animal”, while another is focusing on ”tired”.
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Method (7/14): Transformers benefit from scaling their
size (hidden size and depth) and pre-training on massive
corpus: T5[5]

Figure: Transfer learning: Text-to-Text Transfer Transformer (T5) is
pre-trained with a self-supervised objective to learn semantic representations,
before being fine-tuned on downstream supervised tasks (NMT, sentiment
analysis, etc.)

Pre-training dataset: “Colossal Clean Crawled Corpus” (C4) ∼34 Billion
tokens (∼750 GB) of clean English text scraped from the web.
T5 sizes: Small, Base, Large (24 layers; 770 Million parameters), 3B, 11B.
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Method (8/14): Encoder-Decoder transformers had rarely
been trained in self-supervised setting but decoders had
Goal
Let XT and XC be the “toxic” and “civil” non-parallel copora.
Let X = XT ∪ XC .

We aim at learning in a self-supervised setting, a mapping fθ s. t.
∀(x , a) ∈ X×{“civil”, “toxic”}, y = fθ(x , a) is a text:

1 Satisfying a,
2 Fluent in English,
3 Preserving the meaning of x “as much as possible”.

There exist two related approaches
Encoder-decoder architectures work well for supervised
sequence-to-sequence (seq2seq) tasks (NMT): T5[5] 1 2 3

Language Models (LMs) are efficient for self-supervised “free”
generation: GPT-2 [6] 2 and CTRL[7] 1 2

There exist two related approaches
Encoder-decoder architectures work well for supervised
sequence-to-sequence (seq2seq) tasks (NMT): T5[5] 1 2 3

Language Models (LMs) are efficient for self-supervised “free”
generation: GPT-2[6] 2 and CTRL[7] 1 2
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Method (9/14): Introduction to Language Models (LM)

What is a Language Model?
A statistical Language Model is a probability distribution over sequences of
words.

Predicting the next word: p(wt |w<t)
If w<t = [“the”,“best”,“place”,“to”,“visit”,“in”,“France”,“is”] then

p(“Paris”|w<t) = 0.6
p(“Mont”|w<t) = 0.3
p(“Saclay”|w<t) = ε
p(“have”|w<t) = 0

Deep learning provides parametric architectures able to learn in a
self-supervised setting to approximate LMs: p(wt |w<t ; θ). They are
trained with maximum likelihood on massive corpora like C4.

Generating w≥t from prompt w<t : p(w≥t |w<t ; θ) =
∏n

i=t p(wi |w<i ; θ)
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Method (10/14): Class-Conditional LMs (CC-LMs)

CTRL: A Conditional Transformer Language Model for Controllable
Generation [7]
Generating a sentence sa = w1:n of length n in class a:

p(sa; θ) =
n∏

i=1
p(wi |w<i , a; θ)

If the “prompt” w<t = [“Paris”,“is”] and a ∈ { ; } then

arg max
wt:t+4

p(wt:t+4|w<t , a = ; θ) = [“such”,“a”,“beautiful”,“city”]

arg max
wt:t+4

p(wt:t+4|w<t , a = ; θ) = [“a”,“very”,“boring”,“town”]
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Method (11/14): Our approach combines both ideas
Goal
Let XT and XC be the “toxic” and “civil” non-parallel copora.
Let X = XT ∪ XC .

We aim at learning in a self-supervised setting, a mapping fθ s. t.
∀(x , a) ∈ X×{“civil”, “toxic”}, y = fθ(x , a) is a text:

1 Satisfying a,
2 Fluent in English,
3 Preserving the meaning of x “as much as possible”.

There exist two related approaches
Encoder-decoder architectures work well for supervised
sequence-to-sequence (seq2seq) tasks (e.g. NMT): T5[5] 1 2 3

Language Models (LMs) are efficient for self-supervised “free”
generation: GPT-2[6] 2 and CTRL[7] 1 2

CAE-T5:
We fine-tuned a pre-trained T5 bi-transformer 2 with a Conditional 1

Auto-Encoder objective 3 .
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Method (12/14): Training CAE-T5 is fine-tuning T5 with
a Conditional denoising Auto-Encoder objective

training example (alternate batches of and )
x = [“this”, “is”, “a”, “great”, “article” ] of attribute a = α(x) =

The noise function η masks and replace tokens randomly:
η(x) = [“this”, “〈MASK〉”, “a”, “the”, “article”] 2 3

γ(a, x) prepends to x the control code corresponding to attribute a:
γ(α(x), x) = [“civil:”, “this”, “is”, “a”, “great”, “article” ] 1
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Method (13/14): Attribute transfer at prediction time with
trained CAE-T5

→ test example
x = [“you”, “write”, “stupid”, “comments” ] of attribute α(x) =

Destination attribute a = ᾱ(x) =

γ(a, ŷ<0) = [“civil:”]

AR generation: ŷ0 =“your”; ŷ1 =“comments”; ŷ2 =“are”; ŷ3 =“great”

Laugier, L. (IP Paris) Presentation October 15, 2020 22 / 42



Method (14/14): During training, we add a
Cycle-Consistency objective to enforce 3

Final loss function
L = λDAELDAE + λCCLCC
Weighted sum of 2 negative log-likelihood (equiv. Cross-Entropy)

Optimization
θ̂ = arg min

θ
L(θ)

Optimized with Stochastic Gradient Descent on TPUs (∼90,000 steps).
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Evaluation (1/2): How to evaluate with automatic
metrics?

Goal
Let XT and XC be the “toxic” and “civil” non-parallel copora.
Let X = XT ∪ XC .

We aim at learning in a self-supervised setting, a mapping fθ s. t.
∀(x , a) ∈ X×{“civil”, “toxic”}, y = fθ(x , a) is a text:

1 Satisfying a,
2 Fluent in English,
3 Preserving the meaning of x “as much as possible”.

Automatic evaluation systems
1 Accuracy (ACC): pre-trained attribute classifier (BERT [10])
2 Perplexity (PPL): pre-trained language model (GPT-2 [6])
3 Sentence similarity (self-SIM): pre-trained encoder (USE [11]).
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Evaluation (2/2): Human evaluation through
crowdworking

Figure: Guidelines provided to annotators on Appen
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Results (1/4): Yelp ↔ quantitative automatic
evaluation
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Results (2/4): Yelp ↔ qualitative evaluation
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Results (3/4): → quantitative evaluations

Figure: Automatic evaluation of CAE-T5 applied to Civil Comments

Figure: Human evaluation of CAE-T5 applied to Civil Comments
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Results (4/4): → qualitative evaluation
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Conclusion (1/2)

CAE-T5 works well on the Yelp sentiment transfer task.
Results are still preliminary for the Civil Comments dataset, probably
due to the difficulty of the task in a self-supervised setting but it is
only the second time it is addressed.
Human and automatic evaluations are open research topics.
CAE-T5 can be applied to other attribute transfer tasks provided that
one has access to two (or more) corpora annotated in attributes.

Currently under review at EACL 2021.
Code (TF): https://github.com/LeoLaugier/
conditional-auto-encoder-text-to-text-transfer-transformer
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Conclusion (2/2): CAE-T5 learnt to transfer →
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