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Data

Gather data from institutions:
Collect data respecting privacy

Adopt homogeneous representations to make the data comparable

Choose a model able to represent links between data

Rely on external data:
DataTourism, tourist office data on places and events

OpenAgenda, and other event calendar

Joconde database, and other cultural data

General knowledge bases: DBPedia, Wikidata, ...

Geographical knowledge bases: geonames, data on data.gouv.fr ...
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A simple example of links generation
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Objectives

Questions:
How to collect, integrate and enrich this complex and large amount of
data?

How to mine such type of data to extract useful information?

Hypothesis:
Integrate external data source to enhance the quality of the original data;

Limit the analysis to a specified context help boosting performance.
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Approach

Represent instances as a set of n-dimensional numerical feature vectors

Use representation with different ML tasks

1 Adapt neural language model : Word2vec
2 Transform RDF graph into sequences of entities and relations

(sentences)
3 Train the model and generate entity vectors

+ Conserve the information in the original graph

+ Semantically similar/related entities have close vectors in the embedded
space

+ Generate a reusable model, that could be enriched with new entities
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Knowledge graph embedding process
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Extract entities (2)

Identify entities’ URIs from input data
1 URI exist: read and identify URI from data files
2 URI ! exist: use entity name to build URI (dbpedia, frdbpedia, wikidata)
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Build context graph (3)

For each entity URI:

Build context from a generalized data source, ’around’ the entity

Data source: e.g. DBpedia
’around’: get neighbours in the graph within α hops

Consider the undirected graph
α = 1 or 2

Define a black-list to ignore predicates and objects:
very general, e.g. <http://www.w3.org/2002/07/owl#Thing>
non-informative, e.g.
<http://fr.dbpedia.org/resource/Modèle:P.>
noisy, e.g. <http://www.w3.org/2000/01/rdf-schema#comment>
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Merge context graphs (3)
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Generate walks (4)
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Random walk (4)

Intuition: all neighbours are equally important for an entity

Specify walk parameters
nb-walks: number of walks (example: 500 walk)
depth: number of hops in the graph (2, 4, 8)
example: d=4⇒ e→ p1→ e1→ p2→ e2

Specify the list of entities (all entities in the global context graph / a
predefined list)
For each entity:

1 get a random list of direct neighbours
2 calculate the corresponding number of walks for each neighbour
3 recursively..

Adjust the number of walks according to specific cases:
if (nb-neighbours < nb-walks) : divide, get the entire part of the division,
sum-up the rest and add it to a randomly selected neighbour
if (nb-neighbours == 0) : transfer its nb-walks to another randomly selected
neighbour
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Tf-Idf graph walk (4)

Intuition:
Some neighbours are more important for an entity.
Prioritize important neighbours by weighting their predicates.

Calculate tf-idf weights for predicates

tf : evaluate the importance of a predicate p for an entity e
to(p, e) = number of p occurrences for entity e
tp(e) = number of predicates associated with e
tf (p, e) = to(p, e)/tp(e)

idf : evaluate the importance of a predicate p on the whole graph
D = number of entities in the graph
d(p) = number of entities using predicate p
idf (p) = log(D/d(p))

tfidf (p, e) = tf (p, e) ∗ idf (p)
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Black-list walk (4)

Intuition: some predicates are noisy (less important) for an entity

Put weights on predicates:
predicate in the black-list: weight = 0 (to ignore)
other predicate: weight = 1 (to consider in the walk)

Example:
{http://dbpedia.org/ontology/wikiPageWikiLink}
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Weisfeiler-Lehman kernel (4)

Intuition: Weisfeiler-Lehman subtree RDF graph kernels capture
(richer) information of an entire subtree in a single node.

de Vries, Gerben K. D., ”A Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data”, ECML PKDD 2013.
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Weisfeiler-Lehman kernel (4)

For each iteration, for each entity in the graph, get random walks of
depth d

After 1 iteration, graph G sequences:

1− > 6− > 11; 1− > 6− > 11− > 13; 1− > 6− > 11− > 10; ...

4− > 11− > 6; 4− > 11− > 13; 4− > 11− > 10;
4− > 11− > 10− > 8; ...

Ristoski, Paulheim, ”RDF2Vec: RDF Graph Embeddings for Data Mining”, ISWC 2016.
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Neural language model (5,6)
Word2vec
A two-layer neural net that processes text
Input: a text corpus (sentences)
Output: a set of vectors (feature vectors for words in that corpus)
Create neural embeddings for any group of discrete and co-occurring
states→ RDF data
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Neural language model (5,6)
+ Similar words cluster together in the embedding space
+ Operations on vectors:

Madrid - Spain = Beijing - China
Madrid - Spain + China = Beijing

Mikolov,Tomas et al., ”Distributed Representations of Words and Phrases and their Compositionality”, NIPS 2013.
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Using the model (7)
N-dimensional numerical vector representation of entities
Ve = (v1, v2, ..., vi , ..., vn)
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Entity similarity and relatedness

The outcome of our first experiments:
1 We discover hidden interesting information (non-trivial things)→ can

lead to new knowledge (facts)
2 We find rather trivial things, but nothing wrong

Task
Try to understand and interpret the semantic relation behind the
similarity/relatedness measure returned by the model

For strong similarities between two entities:
find the shortest path between them
the shortest random walks used with these entities and that connect them

This path could give a form of ”explanation” of their connection
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Similarity examples

Get top similar entities to ’dbr:Abbaye-de-Charroux’
1 ’dbr:Benest’ (0.9997649192810059)

in fact, ’Benest’ is close to ’Abbaye-de-Charroux’
a ’general’ direct link exist: ’dbo:wikiPageWikiLink’
could be found by another walk : ’long’ and ’lat’
specify this general type of link : e.g. ’Benest − > is-close-to − >
Abbaye-de-Charroux’

2 ’dbr:Abbaye-Saint-Sauveur-de-Charroux’
(0.9994720816612244)

a ’general’ direct link exist: ’dbo:wikiPageRedirects’
’Abbaye-Saint-Sauveur-de-Charroux − > same-as − >
Abbaye-de-Charroux’

3 ’dbr:Baudri-de-Bourgueil’ (0.9998940825462341)
Charroux is a Benedictine abbey
Baudri is a religious of the order of benediction that has greatly changed the
monastic practice
A non-trivial link to analyse...

27 / 34
Knowledge Graph Embedding for Mining Cultural Heritage Data



Project Data Method Experiments Conclusion

Similarity examples

An event about ’Beethoven’ is organised in ’Musée Bourdelle’ →
Transpose this event to other museums ?

???? is to ’Musée Balzac’ what ’Beethoven’ is to ’Musée Bourdelle’

1 ’Romeo-Void’, 0.8273534774780273
2 ’Era-(musical-project)’, 0.8242164850234985,
3 ’Spectrum-(band)’, 0.8137580156326294,
4 ’Oladad’, 0.8116711378097534,
5 ’Time-Crash-(band)’, 0.8114833831787109,
6 ’Ellegarden’, 0.810987114906311,
7 ’John-Mayer-Trio’, 0.8100252151489258,
8 ’Motion-Trio’, 0.8094779253005981,
9 ’The-Bala-Brothers’, 0.8068113923072815
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Entity matching: Joconde data

Joconde: ≈ 600000 artworks, ≈ 10000 techniques, ≈ 1000 places
(museums...), ≈ 60000 creators
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Entity matching: idea
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Entity matching: idea

* Some artworks are in several domains or relatives to several techniques

Manual linking is a starting point to enrich the links between data from
Joconde and our Context Graph

Hypothesis: helps to get better walks between entities in Joconde and
the Context Graph
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Conclusion

Integrate cultural data from different heterogeneous sources

Use an adaptation of a neural language model for entity embedding

Build numerical model that can serve to calculate similarities

The output of the model can be used with different ML tasks
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Thank you
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