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Introduction



Research avenues

e Explainability
e Integration of first-order logic and Deep Learning

e Detecting vandalism in Knowledge Bases based on correction history



Context

e Machine Learning and Deep Learning models sometimes exceed the human performance in
decision making

e Major drawback is lack of transparency and interpretability

e Bringing transparency to the ML models is a crucial step towards the Explainable Artificial

Intelligence and its use in very sensitive fields



State of the art

e Exlplainable Artificial Intelligence is the topic of great
interest in research in recent years

e Interpretability:
o  Usingvisualization techniques (mostly used in image and text
classification)
e Explainability:

o  Computing influence from inputs to outputs
o  Approximating complex model with a simpler model locally
(LIME)
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State of the art

e Attempts to combine Machine Learning and knowledge from Knowledge Bases

o  Reasoning over knowledge base embeddings to provide explainable recommendations

Mention —T>Produced by —>Purchase

Apple

..............................................

iPad




Explainability



Explainability
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1: https://arxiv.org/abs/1602.04938



Explaining predictions in streaming setting

e Ideabehind LIME is to use simple models to explain predictions
e Usealready interpretable models - Decision trees

e Build Decision tree in the neighbourhood of the example

e Usethe pathsto leaves to generate explanations

e Use Hoeffding Adaptive Tree in streaming setting and explain how predictions evolve based on
changes in the tree



Integration of First-order logic
and Deep Learning



Integration of FOL and Deep Learning

Deep Learning
°
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Ultimate goal of Artificial Intelligence: enable machines to think as humans
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Humans posses some knowledge and are able to reason on top of it
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Integration of FOL and Deep Learning

There are several questions that we want to answer through this research:

o  How can KBs be used to inject meaning into complex and uninterpretable models, especially deep neural

networks?

o  How can KBs be used more effectively as (additional) input for deep learning models?
How we can adjust all these improvements for streaming setting?
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Main Idea

e Explore symbiosis of crisp knowledge in Knowledge Bases and sub-symbolic knowledge in Deep
Neural Networks
e Approaches that combined crisp logic and soft reasoning:
o  Fuzzylogic

o  Markov logic

o Probabilistic soft logic



Fuzzy logic - Fuzzy set
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Fuzzy logic - Fuzzy relation and Fuzzy graph
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Markov Logic and Probabilistic Soft Logic

e First-order logic as template language

e Example:

o Predicates: friend, spouse, votesFor
o Rules:

friend(Bob, Ann) /N votesFor(Ann,P) — votesFor(Bob, P)
spouse(Bob, Ann) N votesFor(Ann,P) — votesFor(Bob, P)



Markov Logic

e Add weights to first-order logic rules:
friend(Bob, Ann) N votesFor(Ann,P) — votesFor(Bob, P) : [3]
spouse(Bob, Ann) )\ votesFor(Ann,P) — votesFor(Bob, P) : [8]

e Interpretation: Every atom (friend(Bob, Ann), votesFor(Ann,P), votesFor(Bob, P), spouse(Bob,
Ann)) is considered as random variable which can be: True or False
e Tocalculate probability of an interpretation:

exp( S weight)
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S exp( > weight)
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Probabilistic Soft Logic

Add weights to first-order logic rules:
friend(Bob, Ann) N votesFor(Ann,P) — votesFor(Bob, P) : [3]
spouse(Bob, Ann) )\ votesFor(Ann,P) — votesFor(Bob, P) : [8]
e Interpretation: Every atom (friend(Bob, Ann), votesFor(Ann,P), votesFor(Bob, P), spouse(Bob,

Ann)) is mapped to soft truth values in range [0, 1]
e Forevery rule we compute distance to satisfaction:

d ) =max{0, I(r, ) -1(r,, )/

e Probability density function over I:

f) = lexpl— 3 weight (d:(I)], Z = f exp[— 3 weight (dr(I))]
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Detecting vandalism in

Knowledge bases based on
correction history



Detecting vandalism in KBs based on
correction history

e Collaboration with Thomas Pellissier Tanon

e Basedon apaper: “Learning How to Correct a Knowledge Base from Edit History”
e Wikidata project

e Wikidatais a collaborative KB with more than 18000 active contributors

e Huge edit history: over 700 millions edits

e Method uses previous users corrections to infer possible new ones



Detecting vandalism in KBs based on
correction history

e Prospective work in this project:
o Release history querying system for external use
o  Trytouse external knowledge (Wikipedia articles) to learn to fix more constraints violations
o Use Machine Learning to suggest new updates

o  Usedatastream mining techniques



Thank you!

Questions, ideas... ?



Research avenues

e Explainability
e Integration of first-order logic and Deep Learning

e Detecting vandalism in Knowledge Bases based on correction history



