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The Importance of (Data) Privacy

Universal declaration of human rights 

Article 12. No one shall be subjected to arbitrary 
interference with his privacy, family, home or 

correspondence, nor to attacks upon his honour
and reputation. Everyone has the right to the 

protection of the law against such interference 
or attacks.

#DeleteFacebook
I 

(Legislative acts) 

REGULATIONS 

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL 

of 27 April 2016 

on the protection of natural persons with regard to the processing of personal data and on the free 
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) 

(Text with EEA relevance) 

THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION, 

Having regard to the Treaty on the Functioning of the European Union, and in particular Article 16 thereof, 

Having regard to the proposal from the European Commission, 

After transmission of the draft legislative act to the national parliaments, 

Having regard to the opinion of the European Economic and Social Committee (1), 

Having regard to the opinion of the Committee of the Regions (2), 

Acting in accordance with the ordinary legislative procedure (3), 

Whereas: 

(1)  The protection of natural persons in relation to the processing of personal data is a fundamental right. 
Article 8(1) of the Charter of Fundamental Rights of the European Union (the ‘Charter’) and Article 16(1) of the 
Treaty on the Functioning of the European Union (TFEU) provide that everyone has the right to the protection of 
personal data concerning him or her. 

(2)  The principles of, and rules on the protection of natural persons with regard to the processing of their personal 
data should, whatever their nationality or residence, respect their fundamental rights and freedoms, in particular 
their right to the protection of personal data. This Regulation is intended to contribute to the accomplishment of 
an area of freedom, security and justice and of an economic union, to economic and social progress, to the 
strengthening and the convergence of the economies within the internal market, and to the well-being of natural 
persons. 

(3)  Directive 95/46/EC of the European Parliament and of the Council (4) seeks to harmonise the protection of 
fundamental rights and freedoms of natural persons in respect of processing activities and to ensure the free flow 
of personal data between Member States. 

4.5.2016 L 119/1 Official Journal of the European Union EN     

(1) OJ C 229, 31.7.2012, p. 90. 
(2) OJ C 391, 18.12.2012, p. 127. 
(3) Position of the European Parliament of 12 March 2014 (not yet published in the Official Journal) and position of the Council at first 

reading of 8 April 2016 (not yet published in the Official Journal). Position of the European Parliament of 14 April 2016. 
(4) Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to 

the processing of personal data and on the free movement of such data (OJ L 281, 23.11.1995, p. 31). 



“Only You, Your Doctor, and Many Others May Know”
L. Sweeney. Technology Science, 2015

“Robust De-anonymization of Large Datasets (How to Break 
Anonymity of the Netflix Prize Dataset)”
A. Narayanan & V. Shmatikov. Security and Privacy, 2008
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Abstract—We quantitatively investigate how machine learning
models leak information about the individual data records on
which they were trained. We focus on the basic membership
inference attack: given a data record and black-box access to
a model, determine if the record was in the model’s training
dataset. To perform membership inference against a target model,
we make adversarial use of machine learning and train our own
inference model to recognize differences in the target model’s
predictions on the inputs that it trained on versus the inputs
that it did not train on.

We empirically evaluate our inference techniques on classi-
fication models trained by commercial “machine learning as a
service” providers such as Google and Amazon. Using realistic
datasets and classification tasks, including a hospital discharge
dataset whose membership is sensitive from the privacy perspec-
tive, we show that these models can be vulnerable to membership
inference attacks. We then investigate the factors that influence
this leakage and evaluate mitigation strategies.

I. INTRODUCTION

Machine learning is the foundation of popular Internet
services such as image and speech recognition and natural lan-
guage translation. Many companies also use machine learning
internally, to improve marketing and advertising, recommend
products and services to users, or better understand the data
generated by their operations. In all of these scenarios, ac-
tivities of individual users—their purchases and preferences,
health data, online and offline transactions, photos they take,
commands they speak into their mobile phones, locations they
travel to—are used as the training data.

Internet giants such as Google and Amazon are already
offering “machine learning as a service.” Any customer in
possession of a dataset and a data classification task can upload
this dataset to the service and pay it to construct a model.
The service then makes the model available to the customer,
typically as a black-box API. For example, a mobile-app maker
can use such a service to analyze users’ activities and query
the resulting model inside the app to promote in-app purchases
to users when they are most likely to respond. Some machine-
learning services also let data owners expose their models to
external users for querying or even sell them.
Our contributions. We focus on the fundamental question
known as membership inference: given a machine learning
model and a record, determine whether this record was used as

⇤This research was performed while the author was at Cornell Tech.

part of the model’s training dataset or not. We investigate this
question in the most difficult setting, where the adversary’s
access to the model is limited to black-box queries that
return the model’s output on a given input. In summary,
we quantify membership information leakage through the
prediction outputs of machine learning models.

To answer the membership inference question, we turn
machine learning against itself and train an attack model
whose purpose is to distinguish the target model’s behavior
on the training inputs from its behavior on the inputs that it
did not encounter during training. In other words, we turn the
membership inference problem into a classification problem.

Attacking black-box models such as those built by com-
mercial “machine learning as a service” providers requires
more sophistication than attacking white-box models whose
structure and parameters are known to the adversary. To
construct our attack models, we invented a shadow training
technique. First, we create multiple “shadow models” that
imitate the behavior of the target model, but for which we
know the training datasets and thus the ground truth about
membership in these datasets. We then train the attack model
on the labeled inputs and outputs of the shadow models.

We developed several effective methods to generate training
data for the shadow models. The first method uses black-box
access to the target model to synthesize this data. The second
method uses statistics about the population from which the
target’s training dataset was drawn. The third method assumes
that the adversary has access to a potentially noisy version
of the target’s training dataset. The first method does not
assume any prior knowledge about the distribution of the target
model’s training data, while the second and third methods
allow the attacker to query the target model only once before
inferring whether a given record was in its training dataset.

Our inference techniques are generic and not based on any
particular dataset or model type. We evaluate them against
neural networks, as well as black-box models trained using
Amazon ML and Google Prediction API. All of our experi-
ments on Amazon’s and Google’s platforms were done without
knowing the learning algorithms used by these services, nor
the architecture of the resulting models, since Amazon and
Google don’t reveal this information to the customers. For our
evaluation, we use realistic classification tasks and standard
model-training procedures on concrete datasets of images,
retail purchases, location traces, and hospital inpatient stays. In
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part of the model’s training dataset or not. We investigate this
question in the most difficult setting, where the adversary’s
access to the model is limited to black-box queries that
return the model’s output on a given input. In summary,
we quantify membership information leakage through the
prediction outputs of machine learning models.

To answer the membership inference question, we turn
machine learning against itself and train an attack model
whose purpose is to distinguish the target model’s behavior
on the training inputs from its behavior on the inputs that it
did not encounter during training. In other words, we turn the
membership inference problem into a classification problem.

Attacking black-box models such as those built by com-
mercial “machine learning as a service” providers requires
more sophistication than attacking white-box models whose
structure and parameters are known to the adversary. To
construct our attack models, we invented a shadow training
technique. First, we create multiple “shadow models” that
imitate the behavior of the target model, but for which we
know the training datasets and thus the ground truth about
membership in these datasets. We then train the attack model
on the labeled inputs and outputs of the shadow models.

We developed several effective methods to generate training
data for the shadow models. The first method uses black-box
access to the target model to synthesize this data. The second
method uses statistics about the population from which the
target’s training dataset was drawn. The third method assumes
that the adversary has access to a potentially noisy version
of the target’s training dataset. The first method does not
assume any prior knowledge about the distribution of the target
model’s training data, while the second and third methods
allow the attacker to query the target model only once before
inferring whether a given record was in its training dataset.

Our inference techniques are generic and not based on any
particular dataset or model type. We evaluate them against
neural networks, as well as black-box models trained using
Amazon ML and Google Prediction API. All of our experi-
ments on Amazon’s and Google’s platforms were done without
knowing the learning algorithms used by these services, nor
the architecture of the resulting models, since Amazon and
Google don’t reveal this information to the customers. For our
evaluation, we use realistic classification tasks and standard
model-training procedures on concrete datasets of images,
retail purchases, location traces, and hospital inpatient stays. In

Security and Privacy, 2017

The Secret Sharer:
Measuring Unintended Neural Network Memorization & Extracting Secrets

Nicholas Carlini
University of California, Berkeley

Chang Liu
University of California, Berkeley

Jernej Kos
National University of Singapore
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Abstract
Machine learning models based on neural networks and
deep learning are being rapidly adopted for many pur-
poses. What those models learn, and what they may
share, is a significant concern when the training data may
contain secrets and the models are public—e.g., when a
model helps users compose text messages using models
trained on all users’ messages.

This paper presents exposure, a simple-to-compute
metric that can be applied to any deep learning model
for measuring the memorization of secrets. Using this
metric, we show how to extract those secrets efficiently
using black-box API access. Further, we show that un-
intended memorization occurs early, is not due to over-
fitting, and is a persistent issue across different types of
models, hyperparameters, and training strategies. We ex-
periment with both real-world models (e.g., a state-of-
the-art translation model) and datasets (e.g., the Enron
email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
and the ability to extract secrets.

Finally, we consider many defenses, finding some in-
effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.

1 Introduction

Once a secret has been learned, it can be difficult not to
share it more widely—whether it is revealed indirectly,
by our actions, by accident, or directly—as artfully ex-
plored in Joseph Conrad’s The Secret Sharer [9].

This issue also arises in the domain of machine learn-
ing: whenever training data contains sensitive informa-
tion, a natural concern is whether the trained model has
learned any secrets, and whether the model may possibly
share those secrets, whether directly or indirectly.

In the machine-learning domain, such unintended
sharing of secrets is a real-world concern of pressing im-
portance. Machine learning is seeing rapid adoption and
it is increasingly common for models to be trained on
data very likely to contain secrets, such as people’s per-
sonal messages, location histories, or medical informa-
tion [4, 37, 49]. We must worry about sharing of se-
crets, since the currently popular deep-learning methods
are prone to both memorizing details about their training
data and inadvertently revealing aspects of those details
in their behavior [44, 57]. Most worryingly, secrets may
be shared widely: models are commonly made available
to third parties, or even the public, through black-box
prediction services on the network, or as white-box pre-
trained models [8, 24].

Contributions. We introduce the entropy-based met-
ric exposure for measuring a models memorization of a
given secret, and show how this metric can be efficiently
estimated using numerical methods. We focus our study
specifically on deep-learning generative sequence mod-
els trained on text data (as used in, e.g., language models
and translation) where the secrets may be, for example,
social-security or credit card numbers. We empirically
establish that secrets are memorized early and quickly
during training, with models often fully memorizing
them in fewer than a dozen epochs, long before train-
ing completes. Furthermore, for a given training data
corpus we show that memorization occurs even when se-
crets are very rare (one in a million) and when models are
small (the number of parameters are a fraction of the cor-
pus size). While common techniques for regularization
(like weight decay, dropout, or early-stopping) may im-
prove generalization, they do not inhibit memorization.
Further, we leverage our exposure metric to provide ad-
ditional evidence for prior results [26, 28, 32, 45, 57].

Building on the above, we develop the first mech-
anisms for efficiently extracting secrets from deep-
learning models, given only black-box access. To
demonstrate their practicality we apply them to real-
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metric that can be applied to any deep learning model
for measuring the memorization of secrets. Using this
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periment with both real-world models (e.g., a state-of-
the-art translation model) and datasets (e.g., the Enron
email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
and the ability to extract secrets.

Finally, we consider many defenses, finding some in-
effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.

1 Introduction

Once a secret has been learned, it can be difficult not to
share it more widely—whether it is revealed indirectly,
by our actions, by accident, or directly—as artfully ex-
plored in Joseph Conrad’s The Secret Sharer [9].

This issue also arises in the domain of machine learn-
ing: whenever training data contains sensitive informa-
tion, a natural concern is whether the trained model has
learned any secrets, and whether the model may possibly
share those secrets, whether directly or indirectly.

In the machine-learning domain, such unintended
sharing of secrets is a real-world concern of pressing im-
portance. Machine learning is seeing rapid adoption and
it is increasingly common for models to be trained on
data very likely to contain secrets, such as people’s per-
sonal messages, location histories, or medical informa-
tion [4, 37, 49]. We must worry about sharing of se-
crets, since the currently popular deep-learning methods
are prone to both memorizing details about their training
data and inadvertently revealing aspects of those details
in their behavior [44, 57]. Most worryingly, secrets may
be shared widely: models are commonly made available
to third parties, or even the public, through black-box
prediction services on the network, or as white-box pre-
trained models [8, 24].

Contributions. We introduce the entropy-based met-
ric exposure for measuring a models memorization of a
given secret, and show how this metric can be efficiently
estimated using numerical methods. We focus our study
specifically on deep-learning generative sequence mod-
els trained on text data (as used in, e.g., language models
and translation) where the secrets may be, for example,
social-security or credit card numbers. We empirically
establish that secrets are memorized early and quickly
during training, with models often fully memorizing
them in fewer than a dozen epochs, long before train-
ing completes. Furthermore, for a given training data
corpus we show that memorization occurs even when se-
crets are very rare (one in a million) and when models are
small (the number of parameters are a fraction of the cor-
pus size). While common techniques for regularization
(like weight decay, dropout, or early-stopping) may im-
prove generalization, they do not inhibit memorization.
Further, we leverage our exposure metric to provide ad-
ditional evidence for prior results [26, 28, 32, 45, 57].

Building on the above, we develop the first mech-
anisms for efficiently extracting secrets from deep-
learning models, given only black-box access. To
demonstrate their practicality we apply them to real-
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What Makes Privacy Difficult?

High-dimensional data Side information



Privacy Enhancing Technologies (PETS)

• Initially a sub-field of applied cryptography
– Now percolating into databases, machine learning, statistics, etc.

• Privacy-preserving release (eg. differential privacy)
– Release statistics/models/datasets while preventing reverse-engineering of 

the original data

• Privacy-preserving computation (eg. secure multi-party 
computation)
– Perform computations on multi-party data without ever exchanging the 

inputs in plaintext



Privacy-Preserving Release

Trusted Curator

Privacy 
Barrier



Differential Privacy: Informal Definition

Data 
Analysis 

Algorithm
?

Randomized

Bart or
Milhouse?



A randomized algorithm ! ∶ #$ → & satisfies differential privacy
with parameter ' if for any pair of datasets ( and (’ differing in a 
single row and for any possible output *, the following inequality 
is satisfied:

ℙ ! ( = * ≤ ./ℙ ! (′ = *

Differential Privacy
[DMNS’06; Godel Prize 2017]

... approximate differential privacy with 
parameters (', 2) ... set of outputs E ...

ℙ ! ( ∈ 4 ≤ ./ℙ ! (′ ∈ 4 + 2

'
2



Fundamental Properties of Differential Privacy

• Compositionality
– Enables rigorous engineering through modularity

• Quantifiable
– Amenable to mathematical analysis, continuous 

instead of black-or-white
• Robust to side knowledge
– Protects even in the event of collusions and side 

information



Multi-Party Data Analysis

Treatment 
Outcome

Medical Data Census Data Financial Data

Attr. 1 Attr. 2 … Attr. 4 Attr. 5 … Attr. 7 Attr. 8 …
-1.0 0 54.3 … North 34 … 5 1 …
1.5 1 0.6 … South 12 … 10 0 …
-0.3 1 16.0 … East 56 … 2 0 …
0.7 0 35.0 … Centre 67 … 15 1 …
3.1 1 20.2 … West 29 … 7 1 …



The Trusted Party “Solution”

(secure channel)

(se
cure channel)

(secure channel)

Trusted

Party

Receives plain-text data, runs 
algorithm, returns result to parties

The Trusted Party assumption:

• Introduces a single point of failure (with disastrous consequences)

• Relies on weak incentives (especially when private data is valuable)

• Requires agreement between all data providers

=> Useful but unrealistic. Maybe can be simulated?



Secure Multi-Party Computation (MPC)

f(x1, x2, . . . , xp) = y

Public:

xi
Private: 

(party i)

Goal: Compute f in a way that each party 
learns y (and nothing else!)

Tools: Oblivious Transfers (OT), Garbled Circuits (GC), 
Homomorphic Encryption (HE), etc

Guarantees: Honest but curious adversaries, malicious adversaries, 
computationally bounded adversaries, collusions



Challenges and Trade-offs

• Protocols: out of the box vs. tailored

• Threat models: semi-honest vs. malicious

• Interaction: off-line vs. on-line

• Trusted external parties: speed vs. privacy

• Scalability: amount of data, dimensions, # parties



In This Talk…

Part I: Privacy-Preserving Distributed Linear 
Regression on High-Dimensional Data

Part II: Private Nearest Neighbors Classification 
in Federated Databases

PETS 2017, with Adria Gascon, Phillipp Schoppmann, Mariana Raykova, Jack Doerner, 
Samee Zahur, and David Evans

Preprint, with Adria Gascon and Phillipp Schoppmann



Linear Regression - Overview
Features:
• Vertically partitioned data
• Scalable to millions of records and hundreds of dimensions
• Open source implementation 
https://github.com/schoppmp/linreg-mpc

Tools:
• Several standard MPC constructions (GC, OT, SS, …)
• Efficient private inner product protocols
• Conjugate gradient descent robust to fixed-point encodings



Functionality: Multi-Party Linear Regression

Y 2 Rn

X = [X1 X2] 2 Rn⇥d

Training Data Private Inputs

Party 1:
X2Party 2:
X1, Y

min
✓2Rd

kY �X✓k2 + �k✓k2

(X>X + �I)✓ = X>Y
Linear

Regression
(optimization)

(closed-form solution)



So
lv

in
g

Aggregation and Solving Phases

O(nd2)

O(d3)

A = X>X + �I

b = X>Y

Ag
gr

eg
at

io
n

✓ = A�1b

X>X =

"
X>

1 X1 X>
1 X2

X>
2 X1 X>

2 X2

#

(cross-party products)

(eg. Cholesky)

O(kd2)
(eg. k-CGD)

Approximate 
iterative solver



Protocol Overview

Data

Provider

Data

Provider

Data

Provider

Crypto

Provider

Computing

Provider 1. CrP distributes correlated 

randomness

2. DPs run multiple inner 

product protocols to get 

additive share of (A,b)

3. CoP get GC for solving 

linear system from CrP

4. DPs send garbled shares of 

(A,b) to CoP

5. CoP executes GC and 

returns solution to DPs

Aggregation Phase

Solving Phase

Alternative: CrP and CoP simulated by 

non-colluding parties



Aggregation Phase – Arithmetic Secret Sharing

X>
1 X2

(matrix product)

f(x1, x2) = hx1, x2i
(inner product b/w columns)

Party 1
x1

x2 − b
s1 = x1 · (x2 − b) − c

a, c

Party 2
x2

x1 + a
s2 = (x1 + a) · b − d

b, d

s1 + s2 = x1 · x2

a · b = c + d
oblivious transfer / 3rd party



Solving Phase – Garbled Circuits

(PSD linear system)

A✓ = b

A =
X

i

Ai b =
X

i

bi

(Ai, bi)
(party i’s input: arithmetic share)

Solved with
Conjugate Gradient Descent (CGD)

AND
Gate

b1 = 0

b2 = 1
bout = 0

Truth table

Working with Real Numbers

Year Device / Paper
32 bit floating point 

multiplication
(ms)

1961 IBM 1620E 17.7
1980 Intel 8086 CPU (software) 1.6
1980 Intel 8087 FPU 0.019
2015 Pullonen et al. @ FC&DS 38.2
2015 Demmler et al. @ CCS 9.2 } MPC

Garbled
Gate

Key1

Key2
Keyout
(or fail)

Encrypted truth table



Fixed-point + Conjugate Gradient Descent

Total number of bits = bi + bf + 1
bi = number of integer bits

bf = number of fractional bits

20 40
CGD Iteration t

10≠18

10≠15

10≠12

10≠9

10≠6

10≠3

Re
sid

ua
lÎ

A
◊ t
≠
bÎ

bi = 8
bi = 9
bi = 10
bi = 11
Float

20 40
CGD Iteration t

10≠18

10≠15

10≠12

10≠9

10≠6

10≠3
Re

sid
ua

lÎ
A
◊ t
≠
bÎ

Textbook CGD Normalized CGD



Experimental Results

Privacy-Preserving Distributed Linear Regression on High-Dimensional Data 249

Name d n
Optimal FP-CGD (32 bits) Cholesky (32 bits)
RMSE time RMSE time RMSE

Student Performance 30 395 4.65 19s 4.65 (-0.0%) 5s 4.65 (-0.0%)
Auto MPG 7 398 3.45 2s 3.45 (-0.0%) 0s 3.45 (-0.0%)
Communities and Crime 122 1994 0.14 4m27s 0.14 (0.3%) 4m35s 0.14 (-0.0%)
Wine Quality 11 4898 0.76 3s 0.76 (-0.0%) 0s 0.80 (4.2%)
Bike Sharing Dataset 12 17379 145.06 4s 145.07 (0.0%) 1s 145.07 (0.0%)
Blog Feedback 280 52397 31.89 24m5s 31.90 (0.0%) 53m24s 32.19 (0.9%)
CT slices 384 53500 8.31 44m46s 8.34 (0.4%) 2h13m31s 8.87 (6.7%)
Year Prediction MSD 90 515345 9.56 4m16s 9.56 (0.0%) 3m50s 9.56 (0.0%)
Gas sensor array 16 4208261 90.33 48s 95.05 (5.2%) 42s 95.06 (5.2%)

id Name Reference d n ⁄ Ÿ(A) bf (b = 32) bf (b = 64)

1 Student Performance [11, 14] 30 395 1.4 · 10�2 5.5 · 100 30 62
2 Auto MPG [76] 7 398 2.2 · 10�3 9.0 · 101 28 61
3 Communities and Crime [63, 64] 122 1994 2.0 · 10�4 1.1 · 103 24 53
4 Wine Quality [12, 13] 11 4898 2.9 · 10�3 6.8 · 101 29 60
5 Bike Sharing Dataset [25, 26] 12 17 379 8.2 · 10�7 2.2 · 102 28 60
6 Blog Feedback [8, 9] 280 52 397 1.1 · 10�5 1.3 · 104 25 54
7 CT slices [34] 384 53 500 9.3 · 10�6 1.6 · 104 25 51
8 Year Prediction MSD [4] 90 515 345 1.1 · 10�5 1.7 · 102 26 58
9 Gas sensor array [27, 28] 16 4 208 261 4.1 · 10�7 1.2 · 105 26 53

Table 1. Specifications of UCI datasets considered in our evaluation. The number of samples n is split randomly into training (70%)
and test sets (30%). For each dataset, the regularization parameter ⁄ and the number of fractional bits bf were chosen as described in
Section ??. The condition number Ÿ was computed after data standardization and scaling (Section ??).

id
Optimal FP-CGD (32 bits) Cholesky (32 bits) FP-CGD (64 bits) Cholesky (64 bits)

RMSE time RMSE time RMSE time RMSE time RMSE

1 4.65 19s 4.65 (-0.0%) 5s 4.65 (-0.0%) 1m53s 4.65 (-0.0%) 35s 4.65 (-0.0%)
2 3.45 2s 3.45 (-0.0%) 0s 3.45 (-0.0%) 13s 3.45 (0.0%) 1s 3.45 (0.0%)
3 0.14 4m27s 0.14 (0.3%) 4m35s 0.14 (-0.0%) 24m24s 0.14 (0.2%) 26m31s 0.14 (-0.0%)
4 0.76 3s 0.76 (-0.0%) 0s 0.80 (4.2%) 23s 0.76 (-0.0%) 4s 0.76 (-0.0%)
5 145.06 4s 145.07 (0.0%) 1s 145.07 (0.0%) 26s 145.06 (0.0%) 4s 145.06 (0.0%)
6 31.89 24m5s 31.90 (0.0%) 53m24s 32.19 (0.9%) 2h3m39s 31.90 (0.0%) 4h40m23s 31.89 (-0.0%)
7 8.31 44m46s 8.34 (0.4%) 2h13m31s 8.87 (6.7%) 3h51m51s 8.32 (0.1%) 11h49m40s 8.31 (-0.0%)
8 9.56 4m16s 9.56 (0.0%) 3m50s 9.56 (0.0%) 16m43s 9.56 (0.0%) 13m28s 9.56 (0.0%)
9 90.33 48s 95.05 (5.2%) 42s 95.06 (5.2%) 1m41s 90.35 (0.0%) 1m9s 90.35 (0.0%)

Table 2. Results of the evaluation of our system on UCI datasets. For each choice of algorithm and bit width, running time is reported,
and the root mean squared error (RMSE) of the solution obtained by our system and an insecure implementation of ridge regression
using floating point are compared.
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Fig. 6. (Left) Comparison between different methods for solving linear systems: Running time (seconds) of Cholesky and FP-CGD (with
5, 10, 15, and 20 iterations) as a function of input dimension. (Middle) Accuracy of Cholesky and CGD depending on the condition num-
ber of the input matrix A with d = 20. (Right) Accuracy of Cholesky and CGD, as a function of the input dimensionality d. (Top) Fixed-
point numbers with b = 64 bits, with bf = 60 in the fractional part. (Bottom) b = 32, bf = 28.

Cholesky increases with higher d, as is shown in Figure 6
(right). For both the 32-bit and 64-bit versions, FP-CGD is
more accurate than Cholesky as soon as d > 50.

6.3 Aggregation Phase

Table 1 shows a comparison between the running times of
the 64-bit versions of our two aggregation protocols: OT is
the protocol using the OT-based inner product protocol, and
TI is the protocol that leverages a Trusted Initializer for the
inner product protocol. We vary the number of records, n,
from 50,000 up to one million, and the number of features,
d, from 20 to 200. As expected, the protocol that takes advan-
tage of the Trusted Initializer performs significantly better in
all cases. However, since the TI’s resources are the bottleneck
in this setting, the protocol does not scale well to multiple data
providers, as the fraction of the coefficient matrix A that can
be computed locally shrinks as the number of parties increases.
The OT-based version, on the other hand, handles many par-
ties very well, due to the fact that OTs between different pairs
of parties can be performed in parallel. Timing results our pro-
tocols for the aggregation phase for a more extensive set of
configurations can be found in Tables 4 and 5 of Appendix B.

As a baseline, we implemented a garbled circuit protocol
for performing a single inner product in Obliv-C. The running
time for n = 10

6 was over 90 minutes. This implies that our
protocol outperforms this naïve approach by several orders of
magnitude.

n d
Number of parties

2 3 5

OT TI OT TI OT TI

5 · 10

4

20 1m50s 1s 1m32s 2s 1m7s 2s
5 · 10

4

100 42m12s 25s 34m39s 32s 24m58s 37s
5 · 10

5

20 18m18s 15s 14m29s 18s 12m10s 21s
5 · 10

5

100 7h3m56s 4m47s 5h20m52s 6m1s 4h17m8s 6m58s
1 · 10

6

100 - 10m1s - 12m42s - 14m48s
1 · 10

6

200 - 39m16s - 49m56s - 59m22s

Table 1. Comparison of running times between OT-based (left)
and TI-based (right) aggregation protocols using 64 bit numbers.
The running time of the Trusted Initializer, which is an offline pre-
processing phase, is included. The complete results with addi-
tional parameter values can be found in Appendix B.

6.4 Experiments on Real Datasets

Although we have discussed the accuracy of our aggregation
and solving protocols independently, we still have to evaluate
our protocol in the task of building a ridge regression model.
We evaluate our secure multi-party ridge regression system on
9 different regression problems selected from the UCI repos-
itory [46]. Each problem comes with a set of n examples
of some dimension d which are randomly split into training
(70%) and test sets (30%). Details about the names, original
references where the dataset appeared, dimensions and num-
ber of examples in each task are given in Table 2. The dimen-
sions of the problems range from 7 to 384, and the number of
training examples ranges from over 200 to almost 3 million.

Aggregation
Phase

Solving
Phase
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Ref Crypto Solver n (max) d (max) Iterative Bottleneck

[1] HE Newton 50K 22 Local (40) Computation

[2] HE+GC Cholesky 10M 14 No Both

[3] SS CGD 10K 10 Network (10) Network

* SS+GC CGD 1M 500 Local (20) Computation

[4] HE GD-VWT 97 8 Local (4) Computation

[5] SS SGD 1M 784 Network (100-1000) Network

[4] Esperanca et al. (2017). Encrypted Accelerated Least Squares Regression. In AISTATS.

[5] Mohassel et al. (2017). SecureML: A System for Scalable Privacy-Preserving Machine Learning. In Security and Privacy (SP).



Linear Regression - Conclusion

• Full system is accurate and fast, available as open source
• Scalability requires hybrid MPC protocols and non-trivial engineering
• Robust fixed-point CGD inside GC has many other applications

• Security against malicious adversaries
• Classification with quadratic loss
• Kernel ridge regression
• Differential privacy on the covariance / at the output

• Models without a closed-form solution (eg. logistic regression, DNN)
• Library of re-usable ML components, complete data science pipeline

Summary

Extensions

Future Work
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Document Classification - Overview

Private
Computation

Party 3Party 2

Party 1
?
Client

Setup:
• Federated database held by multiple 

(untrusting) parties
• Database and client’s document should be 

kept private
• k-NN classification with TF-IDF features and 

cosine similarity
Contributions:
• Multi-party computational DP protocol
• DP computation of IDFs
• MPC protocol for sparse inner products

• Privacy against arbitrary collusions



Document Classification with Nearest Neighbors

d

 d 2 R|V |

 d(v) = tfd(v) · idfZ(v) idfZ(v) ⇡ log

|Z|
|Zv|

v Z document dataset

V vocabulary

score(d, x) =

h 
d

, 

x

i
k 

d

kk 
x

k

1. For each x in Z compute the score

2. Label d by majority on top k scores



Secret Sharing Baseline

= +

Plaintext TF-IDF2 for Z Additively shared TF-IDF2 between owners of Z

Party 1 Party 2

Pros: Shares can pre-computed, inner product protocol
Cons: Additive shares destroy sparsity

+

Party 1 Party 2

+ +

Client

Vector aggregation and top k selection in standard MPC (eg. SPDZ)

Plaintext 
TF for d



Sparse Protocol

1.Compute IDFs on dataset Z using differential privacy
• Implement Laplace and Exponential mechanism inside MPC protocol (eg. 

SPDZ). Yields Computational Differential Privacy guarantees.
2.Use custom sparse matrix-vector multiplication protocol
• Run between client and each data provider
• Produce arithmetic shares as output

3.Aggregate shares to get scores and select top k
• Same as in baseline protocol



Computing IDFs with Differential Privacy
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Private Nearest Neighbors Classification in Federated Databases

Theorem 1. If A is (", �
DP

)-DP with respect to Z ' Z 0,
then an MPC implementation of A where is Z distributed
among n parties is (", �

DP

+�
MPC

)-MPC-DP, where �
MPC

is a negligible function of m obtained from standard crypto-
graphic assumptions.

Algorithm 1: DP IDFs
Input: Public: n, V , c

0

, L, "
0

Input: Private: Counts {|Z
i

|
v

}
v2V for i 2 [n]

Output: Privatized values {c̃
v

}
v2V

foreach v 2 V do
Compute c

v

=

P

n

i=1

|Z
i

|
v

end
for ` = 1, . . . , L do

Sample v 2 V with probability / exp("
0

c
v

)

Sample ⌘ from Lap(1/"
0

)

Release c̃
v

= c
v

+ ⌘
Remove v from V

end
For each v 2 V release c̃

v

= c
0

Differentially Private IDF Computation. To compute
IDFs with differential privacy we combine the exponential
mechanism (McSherry & Talwar, 2007) and the Laplace
mechanism (Dwork et al., 2006b). The mechanism takes as
input the absolute frequencies of each word in each party’s
dataset Z

i

. It then proceeds to aggregate these into frequen-
cies across the whole dataset Z, yielding c

v

= |Z|
v

for each
v 2 V . The counts are used in a private top-L selection
step to find L words with the largest frequencies; this is a
standard construction based on the exponential mechanism
(Bafna & Ullman, 2017). The mechanism then releases
privatized counts c̃

v

for each of the selected words using the
Laplace mechanism. For unselected words the mechanism
outputs a default public value c̃

v

= c
0

which is independent
of the true word count. The pseudocode of our mechanism
is given in Algorithm 1.
Theorem 2. For any "

0

2 (0, 0.9] and � 2 [0, 1] the Algo-
rithm 1 is (", �)-DP with

" = min

⇢

2L"
0

, 2L"2
0

+

q

4L"2
0

log(1/�)

�

.

We prove Theorem 2 in Appendix C.1. By Theorem 1, we
can obtain an MPC-DP protocol from Algorithm 1 by im-
plementing it inside MPC. Computing the counts c

v

only
involves arithmetic operations which are simple to imple-
ment in MPC. Thus, all we need is a way for the parties to
sample from the Laplace and the exponential distribution
inside an MPC protocol. This requires a private distributed
noise generation protocol so that parties can jointly sample
from the specified distributions in a way that no coalition of

n� 1 parties can recover ⌘ from c̃
v

. Dwork et al. (2006a)
propose a very efficient procedure to generate noise in MPC
in exactly this way. Their protocol takes a small number of
random bits from each party and performs operations which
are efficient in MPC, such as bitwise manipulations and ad-
ditions. This results in an efficient method for implementing
Algorithm 1 in MPC.

Utility Analysis. A key observation about the utility of
Algorithm 1 is that in a corpus of documents Z the distribu-
tion of the values of |Z|

v

for all v 2 V typically follows a
power-law distribution (Powers, 1998). This means there
are few very frequent words and lots of infrequent words,
which justifies assigning a default value c

0

to the words
which are not selected by the top-L selection provided by
the exponential mechanism. Our experimental evaluation
(Section 5) shows that this leads to a small accuracy loss
when the privatized IDFs are used for k-NN document clas-
sification.

The following result illustrates the effect of the different
parameters of Algorithm 1 in the accuracy of the computed
IDFs. Our analysis assumes the documents in Z are sam-
pled i.i.d. from some unknown distribution over documents.
Here we present only an informal statement of our result. A
more concrete statement together with the relevant proofs
are provided in Appendix C.2. The result bounds the rel-
ative error between the true vectors of IDFs �

idf

and the
privatized vector ˜�

idf

computed using the counts released
by Algorithm 1.

Theorem 3. Let c
0
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p
m). If m is large enough, then

with high probability we have
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Note how this result highlights an essential accuracy-privacy
trade-off in the choice of L. Indeed, from Theorem 2 we
see that increasing L reduces the privacy provided by the
mechanism, while from Theorem 3 we see that taking a
L = V (1�O(1/ log(m))) ensures the mechanism provides
a constant-factor approximation to the true IDFs.

4. Private Scoring
We will now describe how to privately compute similarity
scores between two feature vectors. As before, we focus on
text documents with TF-IDF features, where cosine similar-
ity is the measure commonly used (Manning et al., 2008).
Since this essentially corresponds to a secure inner product
computation between two parties, the protocol described
in this section can be adapted to other similarity measures
that can be reduced to inner products, such as the euclidean
distance. Our solution is especially efficient if the feature
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graphic assumptions.
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Differentially Private IDF Computation. To compute
IDFs with differential privacy we combine the exponential
mechanism (McSherry & Talwar, 2007) and the Laplace
mechanism (Dwork et al., 2006b). The mechanism takes as
input the absolute frequencies of each word in each party’s
dataset Z

i

. It then proceeds to aggregate these into frequen-
cies across the whole dataset Z, yielding c

v

= |Z|
v

for each
v 2 V . The counts are used in a private top-L selection
step to find L words with the largest frequencies; this is a
standard construction based on the exponential mechanism
(Bafna & Ullman, 2017). The mechanism then releases
privatized counts c̃

v

for each of the selected words using the
Laplace mechanism. For unselected words the mechanism
outputs a default public value c̃
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which is independent
of the true word count. The pseudocode of our mechanism
is given in Algorithm 1.
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We prove Theorem 2 in Appendix C.1. By Theorem 1, we
can obtain an MPC-DP protocol from Algorithm 1 by im-
plementing it inside MPC. Computing the counts c

v

only
involves arithmetic operations which are simple to imple-
ment in MPC. Thus, all we need is a way for the parties to
sample from the Laplace and the exponential distribution
inside an MPC protocol. This requires a private distributed
noise generation protocol so that parties can jointly sample
from the specified distributions in a way that no coalition of

n� 1 parties can recover ⌘ from c̃
v

. Dwork et al. (2006a)
propose a very efficient procedure to generate noise in MPC
in exactly this way. Their protocol takes a small number of
random bits from each party and performs operations which
are efficient in MPC, such as bitwise manipulations and ad-
ditions. This results in an efficient method for implementing
Algorithm 1 in MPC.

Utility Analysis. A key observation about the utility of
Algorithm 1 is that in a corpus of documents Z the distribu-
tion of the values of |Z|

v

for all v 2 V typically follows a
power-law distribution (Powers, 1998). This means there
are few very frequent words and lots of infrequent words,
which justifies assigning a default value c

0

to the words
which are not selected by the top-L selection provided by
the exponential mechanism. Our experimental evaluation
(Section 5) shows that this leads to a small accuracy loss
when the privatized IDFs are used for k-NN document clas-
sification.

The following result illustrates the effect of the different
parameters of Algorithm 1 in the accuracy of the computed
IDFs. Our analysis assumes the documents in Z are sam-
pled i.i.d. from some unknown distribution over documents.
Here we present only an informal statement of our result. A
more concrete statement together with the relevant proofs
are provided in Appendix C.2. The result bounds the rel-
ative error between the true vectors of IDFs �

idf

and the
privatized vector ˜�

idf

computed using the counts released
by Algorithm 1.
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Note how this result highlights an essential accuracy-privacy
trade-off in the choice of L. Indeed, from Theorem 2 we
see that increasing L reduces the privacy provided by the
mechanism, while from Theorem 3 we see that taking a
L = V (1�O(1/ log(m))) ensures the mechanism provides
a constant-factor approximation to the true IDFs.

4. Private Scoring
We will now describe how to privately compute similarity
scores between two feature vectors. As before, we focus on
text documents with TF-IDF features, where cosine similar-
ity is the measure commonly used (Manning et al., 2008).
Since this essentially corresponds to a secure inner product
computation between two parties, the protocol described
in this section can be adapted to other similarity measures
that can be reduced to inner products, such as the euclidean
distance. Our solution is especially efficient if the feature
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Differentially Private IDF Computation. To compute
IDFs with differential privacy we combine the exponential
mechanism (McSherry & Talwar, 2007) and the Laplace
mechanism (Dwork et al., 2006b). The mechanism takes as
input the absolute frequencies of each word in each party’s
dataset Z

i

. It then proceeds to aggregate these into frequen-
cies across the whole dataset Z, yielding c

v

= |Z|
v

for each
v 2 V . The counts are used in a private top-L selection
step to find L words with the largest frequencies; this is a
standard construction based on the exponential mechanism
(Bafna & Ullman, 2017). The mechanism then releases
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We prove Theorem 2 in Appendix C.1. By Theorem 1, we
can obtain an MPC-DP protocol from Algorithm 1 by im-
plementing it inside MPC. Computing the counts c

v

only
involves arithmetic operations which are simple to imple-
ment in MPC. Thus, all we need is a way for the parties to
sample from the Laplace and the exponential distribution
inside an MPC protocol. This requires a private distributed
noise generation protocol so that parties can jointly sample
from the specified distributions in a way that no coalition of

n� 1 parties can recover ⌘ from c̃
v

. Dwork et al. (2006a)
propose a very efficient procedure to generate noise in MPC
in exactly this way. Their protocol takes a small number of
random bits from each party and performs operations which
are efficient in MPC, such as bitwise manipulations and ad-
ditions. This results in an efficient method for implementing
Algorithm 1 in MPC.

Utility Analysis. A key observation about the utility of
Algorithm 1 is that in a corpus of documents Z the distribu-
tion of the values of |Z|

v

for all v 2 V typically follows a
power-law distribution (Powers, 1998). This means there
are few very frequent words and lots of infrequent words,
which justifies assigning a default value c

0

to the words
which are not selected by the top-L selection provided by
the exponential mechanism. Our experimental evaluation
(Section 5) shows that this leads to a small accuracy loss
when the privatized IDFs are used for k-NN document clas-
sification.

The following result illustrates the effect of the different
parameters of Algorithm 1 in the accuracy of the computed
IDFs. Our analysis assumes the documents in Z are sam-
pled i.i.d. from some unknown distribution over documents.
Here we present only an informal statement of our result. A
more concrete statement together with the relevant proofs
are provided in Appendix C.2. The result bounds the rel-
ative error between the true vectors of IDFs �
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and the
privatized vector ˜�

idf
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by Algorithm 1.
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Note how this result highlights an essential accuracy-privacy
trade-off in the choice of L. Indeed, from Theorem 2 we
see that increasing L reduces the privacy provided by the
mechanism, while from Theorem 3 we see that taking a
L = V (1�O(1/ log(m))) ensures the mechanism provides
a constant-factor approximation to the true IDFs.

4. Private Scoring
We will now describe how to privately compute similarity
scores between two feature vectors. As before, we focus on
text documents with TF-IDF features, where cosine similar-
ity is the measure commonly used (Manning et al., 2008).
Since this essentially corresponds to a secure inner product
computation between two parties, the protocol described
in this section can be adapted to other similarity measures
that can be reduced to inner products, such as the euclidean
distance. Our solution is especially efficient if the feature
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Fig. 2: Graphical representation of our differentially private IDF computation functionality FDP-IDF. Term counts following a
power law distribution are depicted in form of a histogram, and the corresponding IDF values are drawn as a solid line. It can be
seen that as c

t

decreases, the IDF values quickly converge towards IDF

max

= log(|Z| + 1) + 1. Steps 1 and 2 are repeated L
times in a loop (cf. Functionality 1).

Functionality 1: Differentially Private IDFs
(FDP-IDF)

Input: Public: n, V , c
0

, L, "
0

Input: Private: Counts {|Z
i

|
v

}
v2V for i 2 [n]

Output: Privatized values {c̃
v

}
v2V

foreach v 2 V do
Compute c

v

=

P

n

i=1

|Z
i

|
v

end
for ` = 1, . . . , L do

Sample v 2 V with probability / exp("
0

c
v

)

Sample ⌘ from Lap(1/"
0

)

Release c̃
v

= c
v

+ ⌘
Remove v from V

end
For each v 2 V release c̃

v

= c
0

Theorem 2. For any "
0

2 (0, 0.9] and � 2 [0, 1], FDP-IDF

(Functionality 1) is (", �)-DP with

" = min

⇢

2L"
0

, 2L"2
0

+

q

4L"2
0

log(1/�)

�

.

Proof: Note that for any pair of neighboring datasets
Z ' Z 0 and any word v 2 V we have |c

v

� c0
v

|  1. Thus, the
analysis of the exponential mechanism implies that releasing
each selected word v is "

0

-DP. Furthermore, the analysis of
the Laplace mechanism implies that releasing each c̃

v

for each
selected word is "

0

-DP. Note also that the values released
for the words which are not selected are independent of the
dataset Z. Thus, the result follows by applying the classical
and advanced composition theorems with 2L queries [16]. This
is a standard argument in DP: we use mechanisms that are
"
0

-DP on the same dataset 2L times, thus, from the classical
composition theorem, the resulting mechanism is 2L"

0

-DP. The
advanced composition applies in the same setting but reduces

the resulting " at the price of obtaining a non-zero �. Since
both analyses yield different bounds, we take the minimum.

D. Implementing FDP-IDF

By Theorem 1, we can obtain an MPC-DP protocol from
Functionality 1 that will be executed by all n data providers. We
propose a circuit-base implementation of FDP-IDF, which can be
implemented using any generic circuit-based MPC framework.

The main challenge lies in securely generating noise for the
Laplace mechanism, and sampling words for the exponential
mechanism. The following two paragraphs give details on how
to implement both in a circuit.

1) Laplace Mechanism: Here, we rely on the works of
Dwork et al. [18]. First, observe that any sample from the
exponential distribution can be directly translated into a Laplace
sample using only one additional uniformly random bit. Now,
the main observation of Dwork et al. is that for obtaining an `-
bit exponential sample, each bit can be sampled independently
by flipping a biased coin. The authors also show that computing
n
c

biased coin flips with `-bit probabilities can be done using
a circuit of size ⇥(n

c

` log(n
c

+ `)) and depth ⇥(log(n
c

+

`)). Thus, all L Laplace samples needed for implementing
Functionality 1 can be sampled using a circuit of size O(L`2 ·
log(L + `)).

2) Exponential Mechanism: Implementing the exponential
mechanism proves a bit more challenging, since we need to
sample words without replacement. However, we will see that
this can be done in the same asymptotic time as sampling
with replacement, using a Bernoulli tree that gets refreshed
after each sample. First, we compute the sampling probability
p
v

/ exp("
0

c
v

) of each word v 2 V once and write them to
the leaves of a balanced binary tree. Next, we traverse this tree
bottom-up, labeling each inner node with the sum of the labels
of its children. Now, to sample a word v 2 V , we traverse
the tree starting from the root. At each node, we perform a
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Private Nearest Neighbors Classification in Federated Databases

Party 1 MPC Party 2

ICol

A  {i | Coli(A) 6= 0}
Broadcast lA  

���ICol

A

���

Input: A 2 Zl⇥m
q

IRow

B  {j | Rowj(B) 6= 0}
Broadcast lB  

���IRow

B

���

Input: B 2 Zm⇥n
q

ICol

A IRow

B

Compute ICol

A \ IRow

B . Then, choose random pair of
permutations ⇡1,⇡2 of {1, . . . , lA+lB} such that
for all k1 2 {1, . . . , lA}, k2 2 {1, . . . , lB}:

�
ICol

A

�
k1

=

�
IRow

B

�
k2
, ⇡1(k1) = ⇡2(k2).

FPERM

⇡1 ⇡2

Â 0l⇥(lA+lB)

For i = 1 to lA:
i

0  
�
ICol

A

�
i

Coli(Â) Coli0 (A)

Ã permuteCols(Â,⇡1)

B̂ 0(lA+lB)⇥n

For j = 1 to lB:
j

0  
�
IRow

B

�
j

Rowj(B̂) Rowj0 (B)

B̃ permuteRows(B̂,⇡2)

Choose random C1,C2 2 Zl⇥n
q such that

C1 + C2 = Ã · B̃

FMULTÃ B̃

C1 C2

Figure 1. Secure sparse matrix multiplication. For details on the
implementations of FMULTand F PERM, see Appendices B.3 and D.1,
respectively.

The protocol described in Section 4.1 can be adapted to
this kind of matrix inputs. To compute matrices Ã, B̃ with
fewer dimensions, we have to retain all features that are
non-zero in at least one document. To that end, Player 1
locally computes ICol

A := {i | Col
i

(A) 6= 0}, and Player 2
computes IRow

B := {j | Row
j

(B) 6= 0}. These index sets
are then used as inputs to the functionality for generating
correlated permutations, FPERM. This functionality is imple-
mented using Yao’s Garbled Circuit Protocol (Yao, 1986). It
performs a PSI (Huang et al., 2012) to compute ICol

A \ IRow

B
and then generates two correlated permutations ⇡

1

,⇡
2

that
map elements of ICol

A \ IRow

B to the same indexes. Ã and B̃
are then computed by first padding non-zero columns/rows
with zeroes, and then applying ⇡

1

and ⇡
2

, just like ã and b̃
in Section 4.1. The result is again obtained by using a stan-
dard MPC protocol for secure matrix multiplication with
Ã and B̃ as inputs. The entire sparse matrix multiplication
protocol is depicted in Figure 1.

Theorem 4 (Correctness). For any A 2 Zl⇥m
q

, B 2 Zm⇥n
q

,
let Ã, B̃ be constructed according to the protocol described
in Figure 1. Then AB = ÃB̃.

We prove Theorem 4 in Appendix D.2. To prove security of
our sparse matrix multiplication protocol, we require that
the sub-protocols for FPERM and FMULT are secure. For the
former, we use an existing protocol for Private Set Inter-
section (Huang et al., 2012), which we extend so that it
maps indexes in ICol

A \ IRow

B to the same value, while mak-
ing sure non-matching indexes get mapped to zeros. The
details can be found in Appendix D.1. Our implementa-
tion is based on Yao’s Garbled Circuit protocol, which was
proven secure in the semi-honest adversary model (Lindell
& Pinkas, 2009). For FMULT, we use the protocol of Mohas-
sel & Zhang (2017), a simple extension of Beaver’s protocol
(Beaver, 1991), which is also secure in the semi-honest
model. We prove the following theorem using a standard
hybrid argument in Appendix D.3.

Theorem 5 (Security). Given public sparsity values lA, lB
and implementations of FMULT and FPERM that are secure
against semi-honest adversaries, the protocol in Figure 1
implements FMULT with security against semi-honest adver-
saries.

5. Experiments
This section provides experimental evaluation of our text
classification system. First, we report on the accuracy loss
introduced by the computation of differentially private IDF
values as part of the Private Feature Extraction described in
Section 3. Next, we analyze the running time of the Private
Scoring protocol from Section 4 and compare it against two
different baselines. We also implement the top-k selection
phase and measure its running time, but since it is negligible
compared to the scoring protocol (less than one minute in
all cases), we omit a detailed evaluation.

5.1. Accuracy

To evaluate the accuracy of our classification protocol, we
used a publicly available repository of Amazon product re-
views spanning May 1996 to July 2014 (He & McAuley,
2016; dat). We used the 5-core version of the dataset con-
taining only products with at least five reviews. From the
entire dataset we extracted reviews for products in four dif-
ferent categories: “Clothing, Shoes and Jewelry” (clothes),
“Toys and Games” (games), “Tools and Home Improvement”
(diy), and “Grocery and Gourmet Food” (food). We use
these product categorizations to set up a document classifi-
cation problem with four classes. To construct the dataset
we randomly selected 28K reviews from the four classes
with a uniform class distribution. Statistics about the se-
lected data are reported in Table 1. In order to tune the
hyper-parameters of the algorithm and assess the predictive
performance of the resulting models we further split the
data into 70% for training, 15% for validation, and 15%
for testing while maintaining the class proportions in each

• Idea: Reduce sparse multiplication to 
non-sparse multiplication

• How: Find common non-zero coefficients 
and restrict to these coordinates

• In MPC: Private set intersection
• Leakage: Upper bound on number of 

non-zeros



Illustrative Experiments

Speed (vs. sparsity) Accuracy (vs. privacy)



Document Classification - Conclusion

• Non-parametric models are challenging from the privacy point of view
• Changes in privacy assumptions enable different solutions
• Protocols with different speed/privacy/accuracy trade-offs
• Sparse matrix-vector multiplication is an important primitive for PMPML

• Better DP algorithms for feature extraction
• Other features instead of TF-IDF
• Full open source implementation

Conclusions

Future Work



Take Home Points

• Re-visiting basic ML algorithms from an MPC+DP 
perspective yields important insights for tackling more 
complex problems
• ML can motivate the development of new MPC 

primitives (eg. linear algebra)
• Rich toolbox, plenty of unexplored combinations
• Trade-offs: privacy/speed/accuracy
• Genuine interdisciplinary effort


