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Data is the New Oil

The Economist, May 2017
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The Importance of (Data) Privacy

Universal declaration of human rights

Article 12. No one shall be subjected to arbitrary
interference with his privacy, family, home or
correspondence, nor to attacks upon his honour
and reputation. Everyone has the right to the
protection of the law against such interference
or attacks.

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
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Anonymization Fiascos

Becosd
Boapital

| MAN AN OTORCYCLE
[*A 60-year-old 'Soap Lake man lwas hospitalized
purcay afternoonjafter he was thrown from his
metorcycle.| Ronald Jameson was riding his 2003
' Harley-bavid;on’nor"th on Highway 25, when he

e e e to the left. His
ve ¢ - mot(}e% e became airborne|before landing in a

Wooded area. Janieson was thrown from the bike;
he-was wearing a helmet_during the 12:24 nm.
Ancident. He was taken to Sacred Heart Hospital. |
| The police cited speed as the cause of the crash. '

| [News Review 10/18/2011]

“Robust De-anonymization of Large Datasets (How to Break
Anonymity of the Netflix Prize Dataset)”
A. Narayanan & V. Shmatikov. Security and Privacy, 2008

)

. “Only You, Your Doctor, and Many Others May Know”
cambrldge L. Sweeney. Technology Science, 2015
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Privacy Risks in Machine Learning

Membership Inference Attacks Against
Machine Learning Models

Reza Shokri Marco Stronati* Congzheng Song Vitaly Shmatikov
Cornell Tech INRIA Cornell Cornell Tech

Abstract—We quantitatively investigate how machine learning
models leak information about the individual data records on
which they were trained. We focus on the basic membership
inference attack: given a data record and black-box access to
a model, determine if the record was in the model’s training
dataset. To perform membership inference against a target model,
we make adversarial use of machine learning and train our own
inference model to recognize differences in the target model’s
predictions on the inputs that it trained on versus the inputs
that it did not train on.

We empirically evaluate our inference techniques on classi-
fication models trained by commercial “machine learning as a
service” providers such as Google and Amazon. Using realistic
datasets and classification tasks, including a hospital discharge
dataset whose membership is sensitive from the privacy perspec-
tive, we show that these models can be vulnerable to membership
inference attacks. We then investigate the factors that influence
this leakage and evaluate mitigation strategies.

The Secret Sharer:

Measuring Unintended Neural Network Memorization & Extracting Secrets

Nicholas Carlini Chang Liu
University of California, Berkeley University of California, Berkeley
Jernej Kos Ulfar Erlingsson Dawn Song
National University of Singapore Google Brain University of California, Berkeley

This paper presents exposure, a simple-to-compute
metric that can be applied to any deep learning model
for measuring the memorization of secrets. Using this
metric, we show how to extract those secrets efficiently
using black-box API access. Further, we show that un-
intended memorization occurs early, is not due to over-
fitting, and is a persistent issue across different types of
models, hyperparameters, and training strategies. We ex-
periment with both real-world models (e.g., a state-of-
the-art translation model) and datasets (e.g., the Enron
email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
and the ability to extract secrets.

Finally, we consider many defenses, finding some in-
effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.



What Makes Privacy Difficult?

High-dimensional data Side information

17 BIGGEST DATA BREACHES EVER

[91 ENTE SONY [WERg

JPrganChase S

Source: www.paymentsnext.com
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Privacy Enhancing Technologies (PETS)

Initially a sub-field of applied cryptography

— Now percolating into databases, machine learning, statistics, etc.

Privacy-preserving release (eg. differential privacy)

— Release statistics/models/datasets while preventing reverse-engineering of
the original data

Privacy-preserving computation (eg. secure multi-party
computation)

— Perform computations on multi-party data without ever exchanging the
inputs in plaintext
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Privacy-Preserving Release

Trusted Curator

Privacy
Barrier
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Differential Privacy: Informal Definition

Data
Analysis
Algorithm
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Differential Privacy
[DMINS’06; Godel Prize 2017]

A randomized algorithm M : X™ — Y satisfies

with parameter ¢ if for any pair of datasets x and x’ differing in a
single row and for any possible output y, the following inequality
is satisfied:

P[M(x) =yl < e P[M(x) = y]

Pr(1) with
‘4 parameters ... set of outputsE ...
e— P[M(x) € E] < e'P[M(x) € E] +
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Fundamental Properties of Differential Privacy

 Compositionality
— Enables rigorous engineering through modularity

e Quantifiable

— Amenable to mathematical analysis, continuous
instead of black-or-white

e Robust to side knowledge

— Protects even in the event of collusions and side
information
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Multi-Party Data Analysis
Treatment
@)

-1.0 54.3
1.5 1 0.6
-0.3 1 16.0
0.7 0 35.0
3.1 1 20.2
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The Trusted Party “Solution”

The assumption:

* Introduces a (with disastrous consequences)

* Relies on (especially when private data is valuable)
e Requires between all data providers

=> Useful but unrealistic. Maybe

Party ¢

Receives plain-text data, runs

) algorithm, returns result to parties
research cambridge <79 g ’ p
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Secure Multi-Party Computation (MPC)

Public:  f(x1,%2,...,%p) =Y

Prlvatgz T
(party i)

Compute fin a way that each party

Goal: learns y (and nothing else!)

Tools: Oblivious Transfers (OT), Garbled Circuits (GC),
Homomorphic Encryption (HE), etc

Guarantees: Honest but curious adversaries, malicious adversaries,
computationally bounded adversaries, collusions
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Challenges and Trade-offs

* Protocols: out of the box vs. tailored

* Threat models: semi-honest vs. malicious

* Interaction: off-line vs. on-line

* Trusted external parties: speed vs. privacy

* Scalability: amount of data, dimensions, # parties
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In This Talk...

Part |: Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data

PETS 2017, with Adria Gascon, Phillipp Schoppmann, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans

Part II: Private Nearest Neighbors Classification
in Federated Databases

Preprint, with Adria Gascon and Phillipp Schoppmann
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Linear Regression - Overview

Features:

* Vertically partitioned data
e Scalable to millions of records and hundreds of dimensions

* Open source implementation
https://github.com/schoppmp/linreg-mpc

Tools:

* Several standard MPC constructions (GC, OT, SS, ...)
* Efficient private inner product protocols
* Conjugate gradient descent robust to fixed-point encodings
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Functionality: Multi-Party Linear Regression

Training Data Private Inputs
X = [Xl XQ] c R**4 Party 1: X4,Y
Y e R" Party 2: X,
min [|Y — X0 + 6]
. HcRd N
Linear (optimization)

Regression (XTX 4 )\[)6’ — X'y

i closed-form solution
research cambridge ( )
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Aggregation and Solving Phases

A=X"X 1N\

- XlTXl | XlTXgl
X X =
O (nd2 ) (cross-party products)
0=A""b
Approximate O(de)
(’)(dg) (eg. Cholesky) iterative solver (.5 1cop)
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Protocol Overview

Crypto Computing

Data
Provider

Provider Provider
‘L Data
Provider
Data 4.
Provider
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Alternative: CrP and CoP simulated by
non-colluding parties

Aggregation Phase

. CrP distributes correlated

randomness

. DPs run multiple inner

product protocols to get
additive share of (A,b)

Solving Phase

CoP get GC for solving
linear system from CrP

DPs send garbled shares of
(A,b) to CoP

CoP executes GC and
returns solution to DPs



Aggregation Phase — Arithmetic Secret Sharing

X, X,

(matrix product)

/ Party 1 \

X4

XZ_

Q=x1'(xz_b)‘y
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—>  f(x1,22) = (x1, T2)

(inner product b/w columns)

a‘b=c+d

S1+S,= X,

/

Party 2
X;

a, C %A_’\i: b, d
Vi ansfer
b X, +a

\

\sz=(x1+a)-b—d/




Solving Phase — Garbled Circuits

(A, b;)

(party i’s input: arithmetic share)

A:ZAi

b:Zbi

blK&Ylo Garbled
K Gate ._ BigYome O
b2 %YZI (or fail)
Encrigptdutaioleh table
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—>

A0 =10

(PSD linear system)

Solved with

Conjugate Gradient Descent (CGD)

Device / Paper

32 bit floating point

multiplication

IBM 1620E
Intel 8086 CPU (software)
Intel 8087 FPU




Fixed-point + Conjugate Gradient Descent

Textbook CGD Normalized CGD
10_3 n 10_3 T —_— bZ = 8
= 101 = 107°4 zlj _ ?0
| | bZ _ 11
< & —_— b =
1079 ~ 1079 ~
= = —— Float
= =
._g 10—12 _ _g 10—12 i
o o
10717 1 1071 1 :
]_0_18 1 1 ]_0_18 \ 1 1
20 40 20 40
CGD lteration t CGD lteration t

Total number of bits =b; + bs + 1
b; = number of integer bits

. b; = number of fractional bits
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Aggregation
Phase

Solving
Phase
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Experimental Results

Number of parties

n d 2 3 5
oT TI oT TI oT TI
5.10* 20 1m50s 1s 1m32s 2s 1m7s 2s
5.10* 100 42m12s 25s 34m39s 32s 24m38s 37s
5.10° 20 18m18s 15s 14m29s 18s 12m10s 21s
5.10° 100 7h3mb56s 4m47s 5h20m52s 6mis 4h17m8s 6m58s
1-10% 100 - 10m1is - 12m42s - 14m48s
1-10% 200 - 39m16s - 49m56s - 59m22s
Name d Optimal FP-CGD (32 bits) Cholesky (32 bits)
RMSE time RMSE time RMSE
Student Performance 30 395 4.65 19s 4.65 (-0.0%) 5s 4.65 (-0.0%)
Auto MPG 7 398 3.45 2s 3.45 (-0.0%) Os 3.45 (-0.0%)
Communities and Crime | 122 1994 0.14 4m27s 0.14 (0.3%) 4m35s 0.14 (-0.0%)
Wine Quality 11 4898 0.76 3s 0.76 (-0.0%) Os 0.80 (4.2%)
Bike Sharing Dataset 12 17379 145.06 4s 145.07 (0.0%) 1s  145.07 (0.0%)
Blog Feedback 280 52397 31.89 24mbs 31.90 (0.0%) 53m24s 32.19 (0.9%)
CT slices 384 53500 8.31 | 44m46s 8.34 (0.4%) | 2h13m31s 8.87 (6.7%)
Year Prediction MSD 90 515345 9.56 4m16s 9.56 (0.0%) 3m50s 9.56 (0.0%)
Gas sensor array 16 4208261 90.33 48s 95.05 (5.2%) 42s 95.06 (5.2%)




Related Work

3 Ty S ™

Newton Local (40) Computation
2] HE+GC Cholesky 10M 14 No Both
3] SS CGD 10K 10 Network (10) Network
* SS+GC CGD 1M 500 Local (20) Computation
[4] HE GD-VWT 97 8 Local (4) Computation
[5] SS SGD 1M 784  Network (100-1000) Network

[1] Hall et al. (2011). Secure multiple linear regression based on homomorphic encryption. Journal of Official Statistics.

[2] Nikolaenko et al. (2013). Privacy-preserving ridge regression on hundreds of millions of records. In Security and Privacy (SP).

[3] Bogdanov et al. (2016). Rmind: a tool for cryptographically secure statistical analysis. IEEE Transactions on Dependable and Secure Computing.
[4] Esperanca et al. (2017). Encrypted Accelerated Least Squares Regression. In AISTATS.

[5] Mohassel et al. (2017). SecureML: A System for Scalable Privacy-Preserving Machine Learning. In Security and Privacy (SP).
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Linear Regression - Conclusion

Summary

* Full system is accurate and fast, available as open source
e Scalability requires hybrid MPC protocols and non-trivial engineering
* Robust fixed-point CGD inside GC has many other applications

Extensions

e Security against malicious adversaries

* C(lassification with quadratic loss

e Kernel ridge regression

 Differential privacy on the covariance / at the output

Future Work

* Models without a closed-form solution (eg. logistic regression, DNN)
e Library of re-usable ML components, complete data science pipeline
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In This Talk...

Part |: Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data

PETS 2017, with Adria Gascon, Phillipp Schoppmann, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans

Part II: Private Nearest Neighbors Classification
in Federated Databases

Preprint, with Adria Gascon and Phillipp Schoppmann
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Document Classification - Overview

Setup:

* Federated database held by multiple
(untrusting) parties

* Database and client’s document should be
kept private

* k-NN classification with TF-IDF features and
cosine similarity . Computation

Private

Contributions:

e Multi-party computational DP protocol

* DP computation of IDFs

 MPC protocol for sparse inner products
* Privacy against arbitrary collusions

cambridge



Document Classification with Nearest Neighbors

wd(?}) — tfd(v) - 1df » (U) idf 7 (v) ~ log |‘ZZU||
v /, document dataset
]

4 N

. For each x in Z compute the score

<¢d7waﬁ>
re(d =
scoreld; 1) = 1pallel

2. Label d by majority on top k scores

>

V vocabulary

¢d - R|V|

<
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Secret Sharing Baseline

Plaintext
TF for d Party 1 Client Party 2
i

Plaintext TF-IDF?2 for Z Vector aggregdtioreanthtopck Selédtion:inistandard WIPC (eg. SPDZ)

Pros: Shares can pre-computed, inner product protocol
Cons: Additive shares destroy sparsity
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Sparse Protocol

1.Compute IDFs on dataset Z using differential privacy

* Implement Laplace and Exponential mechanism inside MPC protocol (eg.
SPDZ). Yields Computational Differential Privacy guarantees.

2.Use custom sparse matrix-vector multiplication protocol

* Run between client and each data provider
* Produce arithmetic shares as output

3.Aggregate shares to get scores and select top k
e Same as in baseline protocol
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Computing IDFs with Differential Privacy

Algorithm 1: DP IDFs
Input: Public: n, V, ¢, L, €9
Input: Private: Counts {|Z;|, },ey fori € [n]
Output: Privatized values {¢, }, ey

foreach v € V do
| Compute ¢, = > i | Zi|w

end

for/=1,...,Ldo
Sample v € V with probability o< exp(ggcy)
Sample 7 from Lap(1/¢p)
Release ¢, = ¢, + 1
Remove v from V

end

For each v € V release ¢, = ¢

Theorem 2. For any ¢y € (0,0.9] and § € [0, 1] the Algo-
rithm 1 is (g, 9)-DP with

£ = min {2L80, 2Le3 + \/4Le% log(1/6)}

research cambridge
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} ~ IDFmax

Count ¢;

2. reveal c} = ¢t + Lap(2L/¢)

1. sample L
x exp(ect/2L)

Term ¢

Theorem 3. Let cg = O(\/m). If m is large enough, then
with high probability we have

dias — diatlli _ ~ <L 1 ( L) )
<O[=—+(1=2=)log(m
| Piat |1 V eom V g(m)




Private Sparse Multiplication

Party 1 ‘ MPC ‘ Party 2

. Ix
Input: A € Z,°™

ldea: Reduce sparse multiplication to [

z,%:"<—{i|cc|i(ﬁz)l¢ 0} J [IE°W<—{j|RoijE13)¢o}]
non-sparse multiplication el N G
How: Find common non-zero coefficients ' ***** o -

Compute Z3® N ZR™. Then, choose random pair of

and restrict to these coordinates | |pomtions T w2 of {1 - La e such that

Input: B € Z;”X"

..........

In MPC: Private set intersection L@, = @), @ m) =), |
Leakage: Upper bound on numberof /@ ffffff S @\

A « o' x(atiB) . B « olatiB)xn
NoN-zZzeros ‘ } X

Forz':ltcc)llA: Forj:ltng:
-/ -/ W

v (_(IA?)»L' J <_(IBO )j
ROWj(B) <— ROWj/(B)

B « permuteRows(B, 73)

Col;(A) « Col;/ (A)
A <+ permuteCols(A, 1)

{Choose random C1,Co € Zflx ™ such that ]

Cl—f—Cz:A‘E

cambridge /@ 777777 oo @\




Illustrative Experiments

Speed (vs. sparsity) Accuracy (vs. privacy)
a O Dowe c 0.90
- e YV
- ‘-' Y o
S (W . N et
et (W ™ »
¥ o 0,80+
= . g
L
»l® . . - - - 3 ‘
i : Eon]
- | —— Without DP
- ~¥— =0l
- - =05
0.65 4 B =10
- =350
‘. ~- ‘e . e o T 2800 5000 7500 10000 12500 15000 17500 20000
Spursdy (80 Gffereny wimls w Snurenl) Number of documents
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Document Classification - Conclusion

Conclusions

* Non-parametric models are challenging from the privacy point of view
* Changes in privacy assumptions enable different solutions

* Protocols with different speed/privacy/accuracy trade-offs
* Sparse matrix-vector multiplication is an important primitive for PMPML

Future Work

e Better DP algorithms for feature extraction
e Other features instead of TF-IDF
* Full open source implementation

cambridge



Take Home Points

* Re-visiting basic ML algorithms from an MPC+DP
perspective yields important insights for tackling more
complex problems

ML can motivate the development of new MPC
primitives (eg. linear algebra)

* Rich toolbox, plenty of unexplored combinations
* Trade-offs: privacy/speed/accuracy

* Genuine interdisciplinary effort
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