
Random Projections for Dimensionality Reduction:
Some Theory and Applications

Robert J. Durrant

University of Waikato

bobd@waikato.ac.nz

www.stats.waikato.ac.nz/˜bobd
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Motivation - Dimensionality Curse

The ‘curse of dimensionality’: A collection of pervasive, and often
counterintuitive, issues associated with working with high-dimensional
data.
Two typical problems:

Very high dimensional data (dimensionality d ∈ O (1000)) and
very many observations (sample size N ∈ O (1000)):
Computational (time and space complexity) issues.
Very high dimensional data (dimensionality d ∈ O (1000)) and
hardly any observations (sample size N ∈ O (10)): Inference a
hard problem. Bogus interactions between features.
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Curse of Dimensionality

Comment: What constitutes high-dimensional depends on the
problem setting, but data vectors with dimensionality in the thousands
very common in practice (e.g. medical images, gene activation arrays,
text, time series, ...).

Issues can start to show up when data dimensionality in the tens!

We will simply say that the observations, T , are d-dimensional and
there are N of them: T = {xi ∈ Rd}Ni=1 and we will assume that, for
whatever reason, d is too large.
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Mitigating the Curse of Dimensionality

An obvious solution: Dimensionality d is too large, so reduce d to
k � d .

How?
Dozens of methods: PCA, Factor Analysis, Projection Pursuit, ICA,
Random Projection ...

We will be focusing on Random Projection, motivated (at first) by the
following important result:
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Johnson-Lindenstrauss Lemma
The JLL is the following rather surprising fact [DG02, Ach03]:

Theorem (W.B.Johnson and J.Lindenstrauss, 1984)

Let ε ∈ (0,1). Let N, k ∈ N such that k > Cε−2 log N, for a large
enough absolute constant C. Let V ⊆ Rd be a set of N points. Then
there exists a linear mapping R : Rd → Rk , such that for all u, v ∈ V:

(1− ε)‖u − v‖22 6 ‖Ru − Rv‖22 6 (1 + ε)‖u − v‖22

Dot products are also approximately preserved by R since if JLL
holds then: uT v − ε‖u‖‖v‖ 6 (Ru)T Rv 6 uT v + ε‖u‖‖v‖. (Proof:
parallelogram law).
Scale of k is sharp even for adaptive linear R (e.g. ‘thin’ PCA):
∀N, ∃V s.t. k ∈ Ω(ε−2 log N) is required [LN14, LN16].
We shall prove shortly that with high probability random projection
(that is left-multiplying data with a wide, shallow, random matrix)
implements a suitable linear R.
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Jargon

‘With high probability’ (w.h.p) means with a probability as close to 1 as
we choose to make it.

‘Almost surely’ (a.s.) or ‘with probability 1’ (w.p. 1) means so likely we
can pretend it always happens.

‘With probability 0’ (w.p. 0) means so unlikely we can pretend it never
happens.
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Intuition

Geometry of data gets perturbed by random projection, but not too
much:
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Figure: RP data (schematic)
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Figure: RP data & Original data
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Applications

Random projections have been used for:
Classification. e.g. [BM01, FM03, GBN05, SR09, CJS09, RR08,
DK15, CS15, HWB07, BD09]
Clustering and Density estimation. e.g.
[IM98, AC06, FB03, Das99, KMV12, AV09]
Other related applications: structure-adaptive kd-trees [DF08],
low-rank matrix approximation [Rec11, Sar06], sparse signal
reconstruction (compressed sensing) [Don06, CT06], matrix
completion [CT10], data stream computations [AMS96], heuristic
optimization [KBD16].
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What is Random Projection? (1)

Canonical RP:
Construct a (wide, flat) matrix R ∈Mk×d by picking the entries
from a univariate Gaussian N (0, σ2).
Orthonormalize the rows of R, e.g. set R′ = (RRT )−1/2R.
To project a point v ∈ Rd , pre-multiply the vector v with RP matrix
R′. Then v 7→ R′v ∈ R′(Rd ) ≡ Rk is the projection of the
d-dimensional data into a random k -dimensional projection space.
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Comment (1)

If d is very large we can drop the orthonormalization in practice - the
rows of R will be nearly orthogonal to each other and all nearly the
same length.

For example, for Gaussian (N (0, σ2)) R we have [DK12]:

Pr
{

(1− ε)dσ2 6 ‖Ri‖22 6 (1 + ε)dσ2
}
> 1− δ, ∀ε ∈ (0,1]

where Ri denotes the i-th row of R and
δ = exp(−(

√
1 + ε− 1)2d/2) + exp(−(

√
1− ε− 1)2d/2).

Similarly [Led01]:

Pr{|RT
i Rj |/dσ2 6 ε} > 1− 2 exp(−ε2d/2), ∀i 6= j .
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Concentration in norms of rows of R
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Near-orthogonality of rows of R
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Figure: Normalized dot product is concentrated about zero,
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Why Random Projection?

Linear.
Cheap.
Universal – JLL holds w.h.p for any fixed finite point set.
Oblivious to data distribution.
Target dimension doesn’t depend on data dimensionality (for JLL).
Interpretable - approximates an isometry (when d is large).
Tractable to analysis.
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Proof of JLL (1)

We will prove the following randomized version of the JLL, and then
show that this implies the original theorem:

Theorem
Let ε ∈ (0,1). Let k ∈ N such that k > Cε−2 log δ−1, for a large enough
absolute constant C. Then there is a random linear mapping
P : Rd → Rk , such that for any unit vector x ∈ Rd :

Pr
{

(1− ε) 6 ‖Px‖2 6 (1 + ε)
}
> 1− δ

No loss to take ‖x‖ = 1, since P is linear.
Note that this mapping is universal and the projected dimension k
depends only on ε and δ.
Lower bound [LN14, LN16] k ∈ Ω(ε−2 log δ−1).
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Proof of JLL (2)

Consider the following simple mapping:

Px :=
1√
k

Rx

where R ∈Mk×d with entries Rij
i.i.d∼ N (0,1).

Let x ∈ Rd be an arbitrary unit vector.
We are interested in the quantity:

‖Px‖2 =

∥∥∥∥ 1√
k

Rx
∥∥∥∥2

:=

∥∥∥∥ 1√
k

(Y1,Y2, . . . ,Yk )

∥∥∥∥2

=
1
k

k∑
i=1

Y 2
i =: Z

where Yi =
∑d

j=1 Rijxj .
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Proof of JLL (3)

Recall that if Wi ∼ N (µi , σ
2
i ) and the Wi are independent, then∑

i Wi ∼ N
(∑

i µi ,
∑

i σ
2
i

)
. Hence, in our setting, we have:

Yi =
d∑

j=1

Rijxj ∼ N

 d∑
j=1

E[Rijxj ],
d∑

j=1

Var(Rijxj)

 ≡ N
0,

d∑
j=1

x2
j


and since ‖x‖2 =

∑d
j=1 x2

j = 1 we therefore have:

Yi ∼ N (0,1) , ∀i ∈ {1,2, . . . , k}

it follows that each of the Yi are standard normal RVs and therefore
kZ =

∑k
i=1 Y 2

i is χ2
k distributed.

Now we complete the proof using a standard Chernoff-bounding
approach.
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Proof of JLL (4)

Pr{Z > 1 + ε} = Pr{exp(tkZ ) > exp(tk(1 + ε))}, ∀t > 0
Markov ineq. 6 E [exp(tkZ )] /exp(tk(1 + ε)),

Yi indep. =
k∏

i=1

E
[
exp(tY 2

i )
]
/exp(tk(1 + ε)),

mgf of χ2
k =

[
exp(t)

√
1− 2t

]−k
exp(−ktε),∀t < 1/2

next slide 6 exp
(

kt2/(1− 2t)− ktε
)
,

6 e−ε
2k/8, taking t = ε/4 < 1/2.

Pr{Z < 1− ε} = Pr{−Z > ε− 1} is tackled in a similar way and we
obtain same bound. Taking RHS as δ/2 and applying union bound
completes the proof (for single x).
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Estimating (et
√

1− 2t)−1

(
et√1− 2t

)−1
= exp

(
−t − 1

2
log(1− 2t)

)
,

Maclaurin S. for log(1− x) = exp
(
−t − 1

2

(
−2t − (2t)2

2
− . . .

))
,

= exp
(

(2t)2

4
+

(2t)3

6
+ . . .

)
,

6 exp
(

t2
(

1 + 2t + (2t)2 . . .
))

,

= exp
(

t2/ (1− 2t)
)

since 0 < 2t < 1
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Randomized JLL implies Deterministic JLL

Solving δ = 2 exp(−ε2k/8) for k we obtain k = 8ε−2 log 2δ−1. i.e.
k ∈ O

(
ε−2 log δ−1).

Let V = {x1, x2, . . . , xN} an arbitrary set of N points in Rd and set
δ = 1/2N2, then k ∈ O

(
ε−2 log N

)
.

Applying union bound to the randomized JLL proof for all
(N

2

)
possible interpoint distances, for N points we see a random JLL
embedding of V into k dimensions succeeds with probability at
least 1−

(N
2

) 1
N2 >

1
2 .

We succeed with positive probability for arbitrary V . Hence we
conclude that, for any set of N points, there exists linear
P : Rd → Rk such that:

(1− ε)‖xi − xj‖2 6 ‖Pxi − Pxj‖2 6 (1 + ε)‖xi − xj‖2

which is the (deterministic) JLL.
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From Point Sets to Manifolds

From JLL we obtain high-probability guarantees that for a suitably
large k , independently of the data dimension, random projection
approximately preserves Euclidean geometry of a finite point set. In
particular Euclidean norms and dot products approximately preserved
w.h.p.

JLL approach can be extended to (compact) Riemannian manifolds:
‘Manifold JLL’ [BW09].

Key idea: Preserve ε
2 -covering of smooth manifold instead of

geometry of data points. Replace N in JLL with corresponding
covering number M and take k ∈ O

(
ε−2 log M

)
.

Wrinkle: Absent additional low-dimensional structure in data, M is
typically O

(
2d) implying trivial guarantee k = d . In practice RP works

better than this theory predicts.
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Applications of Random Projection

JLL implies that if d is large, with a suitable choice of k , we can
construct an ‘ε-approximate’ version of any algorithm which depends
only on Euclidean norms and dot products of the data, but in a much
lower-dimensional space. This includes:

Nearest-neighbour algorithms.
Clustering algorithms.
Margin-based classifiers.
Least-squares regressors.

That is, we trade off some accuracy (perhaps) for reduced algorithmic
time and space complexity.

However the matrix-matrix multiplication is still costly when d or N very
large – e.g. consider a dataset comprising many high-resolution
images.
Thus much interest in speeding up this part of process.
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Comment (2)

In the proof of the randomized JLL the only properties we used which
are specific to the Gaussian distribution were:

1 Closure under additivity.
2 Bounding squared Gaussian RV using mgf of χ2.

In particular, bounding via the mgf of χ2 gave us exponential
concentration about mean norm.
Can do similar for matrices with zero-mean sub-Gaussian entries also,
i.e. those distributions whose tails decay no slower than a Gaussian
=⇒ similar theory for sub-Gaussian RP matrices too!
One method for getting around issue of dense matrix multiplication in
dimensionality-reduction step (same time complexity, better constant).
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What is Random Projection? (2)
Different types of RP matrix easy to construct - take entries i.i.d from
nearly any zero-mean subgaussian distribution. All behave in much the
same way.
Popular variations [Ach03, AC06, Mat08]:
The entries Rij can be:

Rij =

{
+1 w.p. 1/2,
−1 w.p. 1/2.

Rij =


+1 w.p. 1/6,
−1 w.p. 1/6,
0 w.p. 2/3.

Rij =

{
N (0,1/q) w.p. q,
0 w.p. 1− q.

Rij =


+1 w.p. q,
−1 w.p. q,
0 w.p. 1− 2q.

For the RH examples, taking q too small gives high distortion of sparse
vectors [Mat08]. [AC06] get around this by using a random orthogonal
matrix to ensure w.h.p all data vectors are dense.
However even sparse×dense matrix-matrix multiplication may be too
slow. Can we do better?
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Faster Projections for Smooth Data

Proof technique for JLL is essentially to show that (squared)
norms of projected vectors are close to their expected value
w.h.p., then recover correct scale using appropriate constant.
Turning observation of [Mat08] around - plausible that for ‘smooth
enough’ data even very sparse projection could still imply JLL-type
guarantees.
In particular can we obtain JLL for random subspace (‘RS’) [Ho98]
- choosing k features from d uniformly at random without
replacement?
Comment: Clearly hopeless to attempt this for very sparse vectors
e.g. consider the canonical basis vectors. On the other hand
k = 1 will do if all features have identical absolute values.
Q: Where is the breakdown point – i.e. given dataset V of size N,
at which value of k? How to characterise ‘smoothness’? Can
suitably ‘smooth’ data be found in the wild?
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Why is RS particularly interesting?
Very widely-used randomized feature-selection scheme, e.g.
basis for random forests, but theory for it is sparse.
No matrix multiplication involved – time complexity linear in
dimension d =⇒ faster approximation algorithms.
Link to ‘dropout’ in deep neural networks – dropout essentially RS
applied to internal nodes of network =⇒ potential speedup of
training these huge models (e.g. conjecture back prop only on a
very small random sample of nodes may work well).
Potential for new theory:

Explaining effect of dropout.
For RS ensembles, e.g. explaining experimental findings in [DK15].
On learning from streaming data (streaming time series frequently
subsampled in practice).
Compressive sensing, e.g. subsampling audio files in time domain.
Geometric interpretations for sampling theory.

For many problems desirable (or essential) to work with original
features.
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JLL for Random Subspace (1)

WLOG work in Rd and instantiate RS as a projection P on to subspace
spanned by k coordinate directions.

Theorem (Basic Hoeffding Bound [LD17])

Let TN := {Xi ∈ Rd}Ni=1 be a set of N points in Rd satisfying,
∀i ∈ {1,2, . . . ,N}, ‖X 2

i ‖∞ 6 c
d ‖Xi‖22 where c ∈ R+ is a constant

1 6 c 6 d. Let ε, δ ∈ (0,1], and let k > c2

2ε2 ln N2

δ be an integer. Let P be
a random subspace projection from Rd 7→ Rk . Then with probability at
least 1− δ over the random draws of P we have, for every
i , j ∈ {1,2, . . . ,N}:

(1− ε)‖Xi − Xj‖22 6
d
k
‖P(Xi − Xj)‖22 6 (1 + ε)‖Xi − Xj‖22
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JLL for Random Subspace (2)

Theorem (Serfling Bound [LD17])

Let TN , c, ε, δ as before. Define fk := (k − 1)/d and let k such that
k/(1− fk ) > c2

2ε2 ln N2

δ be an integer. Let P be a random subspace
projection from Rd 7→ Rk . Then with probability at least 1− δ over the
random draws of P we have, for every i , j ∈ {1,2, . . . ,N}:

(1− ε)‖Xi − Xj‖22 6
d
k
‖P(Xi − Xj)‖22 6 (1 + ε)‖Xi − Xj‖22

Comment: Always sharper than Theorem 3, but brings (typically
unwanted, though benign) dependence on d in choice of k .
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Proof Sketch

View each vector as a finite population of size d . RS is then a
simple random sample of size k drawn without replacement from
it.
Sampling distribution of the mean from a finite population without
replacement has smaller variance than sampling with
replacement. . .
. . .thus Hoeffding bound for independent sampling with
replacement is also bound for sampling without replacement.
Standard Hoeffding bound argument, except for data-dependent
constant c is additionally chosen to kill the dependency on d (and
implicitly enforces ‘smoothness’).
Finer-grained approach uses Serfling bound, which exploits
martingale structure in sampling scheme. Similar proof structure.
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JLL for Random Subspace (3)

Corollary (to either bound)

Under the conditions of Theorem 3 or 4 respectively, for any
ε, δ ∈ (0,1), with probability at least 1− 2δ over the random draws of P
we have:(

X T
i Xj − ε‖Xi‖‖Xj‖

)
6

d
k

(PXi )
T (PXj ) 6

(
X T

i Xj + ε‖Xi‖‖Xj‖
)
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Empirical Corroboration:
We corroborate theory and compare RS projection with two RP
variants as well as to principal components analysis (PCA) to see
that in practice – given a suitable choice of k – RS works as well
as these alternatives.
Data are 23 grayscale images from the USC-SIPI natural image
dataset. From each image we sampled one hundred 50× 50
squares by choosing their top left corner at random, and reshaped
to give a vector in R2500.

Name Description Image Size c
5.1.09 Moon Surface 256x256 3.50
5.1.10 Aerial 256x256 2.44
5.1.11 Airplane 256x256 7.92
5.1.12 Clock 256x256 5.03
5.1.14 Chemical plant 256x256 2.92
...

...
...

...
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Representative Outcomes:

Figure: Fixed k , small c: Histograms of ‖P(Xi−Xj )‖
‖Xi−Xj‖ for k = 50 dimensions on

three representative images with overlaid normal density plots, n = 4950.
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Quantiles vs. k

Figure: Mean and 5th and 95th percentiles of ‖P(Xi−Xj )‖
‖Xi−Xj‖ for image data vs. k .

We see that for k & 80 Gaussian RP and RS are indistinguishable on these
data. Note also the 5th percentile for Sparse RP cf. Figure 9: Sparse RP
frequently seems to underestimate norms.
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Average Running Times

Figure: Comparison of the runtime on dense image data with dimensionality
d = 2500.
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Preliminary Experiments with NNs

Classification performance evaluation only (so far. . .)
Used (challenge-winning) GoogLeNet with pretrained weights
from Imagenet challenge.
Original images replaced with versions compressed using RS.
Evaluation on 100,000 full colour images of varying sizes and
resolutions from ILSVRC 2012 Imagenet challenge - 1000
classes.
Classification error using one RS example marginally worse than
state-of-art, RS ‘voting’ ensemble approach (sum of scores) better
than state-of-art.
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Example Image Inputs and Outcomes (1)
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Example Image Inputs and Outcomes (2)
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Experiments: Effect of Ensemble Size, k , Top 1 Error
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Figure: Top 1 test error rate vs. ensemble size estimated from 12 runs over
100,000 images. Error bars omitted: 1 s.e. is approximately width of plotted
line.
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Experiments: Effect of Ensemble Size, k , Top 3 Error
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Figure: Top 3 test error rate vs. ensemble size estimated from 12 runs over
100,000 images. Error bars omitted: 1 s.e. is approximately width of plotted
line.
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Experiments: Effect of Ensemble Size, k , Top 5 Error
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Figure: Top 5 test error rate vs. ensemble size estimated from 12 runs over
100,000 images. Error bars omitted: 1 s.e. is approximately width of plotted
line.
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Preliminary Experiments with Stratification
Statistical theory suggests if data can be split into approximately
homoskedastic (uniform variance) strata with well-separated
means, then variance of sampling distribution of population mean
can be reduced by stratified sampling (here population mean ≡
Euclidean norm).
We transpose the data matrix and apply k -means clustering to the
features (i.e. rather than the observations) to search for such
strata.
No obvious ‘best’ number of clusters for all images: Highly
data-dependent. Sweet spot seems to be between 3 and 7
clusters for the image data we worked with.
Two stratification schemes tried: Proportional Allocation (gives
unbiased estimate of norms) and Neyman Allocation (gives biased
estimate of norms, but with reduced standard error).
Obtains improved stability in norm estimates, as theory would
suggest, but improvement only marginal.
Conclusion: k -means not a great way to find strata.
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Stratification
Experiments:

Stratified sampling with 3
strata and proportional
allocation.
Histograms of ‖P(Xi−Xj )‖

‖Xi−Xj‖
for k = 50 dimensions on
three representative
images, n = 4950.
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Conclusions and Future Work
Random projections have a wide range of theoretically
well-motivated and effective applications in machine learning and
data mining.
Overhead of matrix-matrix multiplication can be removed for
‘smooth’ datasets using RS, with no obvious disadvantages.
Variance in projected norms can be further reduced by using RS
with stratified sampling. How to better identify strata automatically
and cheaply an interesting (and probably hard) problem.
RS provides one potential route to meaningful theory, with
typical-case guarantees, for dropout regularization of NNs – this
would be interesting in its own right.
Potential of RS to both speed up back-propagation and reduce
model size of deep NNs intriguing - we have just started work in
this direction, watch this space!
Further experiments and extension of RS ensemble idea – some
potential applications in sight e.g. edge computing.
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Appendix

Proposition JLL for dot products.
Let xn,n = {1 . . .N} and u be vectors in Rd s.t. ‖xn‖, ‖u‖ 6 1.
Let R be a k × d RP matrix with i.i.d. entries Rij ∼ N (0,1/

√
k) (or with

zero-mean sub-Gaussian entries).
Then for any ε, δ > 0, if k ∈ O

( 8
ε2

log(4N/δ)
)

w.p. at least 1− δ we
have:

|xT
n u − (Rxn)T Ru| < ε (1)

simultaneously for all n = {1 . . .N}.
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Proof of JLL for dot products
Outline: Fix one n, use parallelogram law and JLL twice, then use
union bound.

4(Rxn)T (Ru) = ‖Rxn + Ru‖2 − ‖Rxn − Ru‖2 (2)
> (1− ε)‖xn + u‖2 − (1 + ε)‖xn − u‖2 (3)
= 4xT

n u − 2ε(‖xn‖2 + ‖u‖2) (4)
> 4xT

n u − 4ε (5)

Hence, (Rxn)T (Ru) > xT
n u − ε, and because we used two sides of JLL,

this holds except w.p. no more than 2 exp(−kε2/8).
The other side is similar and gives (Rxn)T (Ru) 6 xT

n u + ε except w.p.
2 exp(−kε2/8).
Put together, |(Rxn)T (Ru)− xT

n u| 6 ε · ‖x‖
2+‖u‖2

2 6 ε holds except w.p.
4 exp(−kε2/8).
This holds for a fixed xn. To ensure that it holds for all xn together, we
take union bound and obtain eq.(1) must hold except w.p.
4N exp(−kε2/8). Finally, solving for δ we obtain that k > 8

ε2
log(4N/δ).
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