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Figure 3: A sensors’ network and its associated C̆ech complex.

Definition 9 (Vietoris-Rips complex) Given (X, d) a metric space, ! a fi-
nite set of points in X, and ✏ a real positive number. The Vietoris-Rips complex
of parameter ✏ of !, denoted R�(!), is the abstract simplicial complex whose
k-simplices correspond to unordered (k + 1)-tuples of vertices in ! which are
pairwise within distance less than ✏ of each other.

In general, unlike the C̆ech one, Vietoris-Rips complexes are not topologically
equivalent to the coverage of an area. However, the following gives us the relation
between coverage and Vietoris-Rips complexes:

Lemma 1 Given (X, d) a metric space, ! a finite set of points in X, and ✏ a
real positive number,

R�
3�(!) ⇢ C�(!) ⇢ R2�(!).

In the Erdös-Rényi model, which is a random graph model, there is no
geometric considerations, we extend the model to the homology:

Definition 10 (Erdös-Rényi complex) Given n an integer and p a real num-
ber in [0, 1], the Erdös-Rényi complex of parameters n and p, denoted G(n, p),
is an abstract simplicial complex with n vertices which are connected randomly.
Each edge is included in the complex with probability p independent from every
other edge. Then a k-simplex, for k � 2, is included in the complex if and only
if all its faces already are.

Only graph descritption is required to build a Vietoris-Rips or a Erdös-Rényi
complex. That is why here we will give examples only on these two complexes.

3 Moments of random variables of an abstract
simplicial complexe

By means of Malliavin calculus, we have computed explicitly the n-th order
moment of the number of k-simplices. The computation of these moments are
not detailed here, only are given the main theorems.

4

4/47

February, 2017 Institut Mines-Telecom Topology of wireless networks



Algebraic topology

Poisson homologies

Persistence

Mathematical framework

Geometry leads to a combinatorial object

Combinatorial object is equipped with a Linear

algebra structure

Coverage and connectivity reduce to compute the

rank of a matrix

Localisation of hole: reduces to the computation of a

basis of a vector matrix, obtained by matrix reduction

(as in Gauss algorithm).
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Cech complex

a

b

c

d

e

Vertices : { a, b, c, d, e } = C
0

Edges : {ab, bc, ca, be, ec, ed } = C
1

Triangles : {bec} = C
2

Tetrahedron : ; = C
3

Comput. Rips
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Hypergraphs

A simplicial complex = hypergraph = boolean monotone function

The Embedded Homology of Hypergraphs and Applications
Stephane Bressan, Shiquan Ren, Jie Wu

arXiv:1610.00890
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Cech complex

k-simplices

Ck =
[

{[x
0

, · · · , xk�1

], xi 2 !, \k
i=0

B(xi , ✏) 6= ;}

Nerve theorem
We can read some topological properties of

S
x2! B(x , ✏) on

(Ck , k � 0)

I
Same nb of connected components

I
Same nb of holes

I
Same Euler characteristic
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Definition

@k : Ck �! Ck�1

[v
0

, · · · , vk�1

] 7�!
kX

j=0

(�1)j [v
0

, · · · , v̂j , · · · ]
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(bec) = ec � bc + be
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Boundary operator

Definition

@k : Ck �! Ck�1

[v
0

, · · · , vk�1

] 7�!
kX

j=0

(�1)j [v
0

, · · · , v̂j , · · · ]

Example
@

2

(bec) = ec � bc + be
@

1

@
2

(bec) = c � e � (c � b) + e � b = 0
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Theorem

@k � @k+1

= 0

Consequence

Im @k+1

⇢ ker@k

Definition

Hk = ker @k/Im@k+1

and �k = dim ker @k � range @k+1
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Interpretation : The magic

I �
0

: number of connected components

I �
1

: number of holes

I �
2

: number of voids

I
to be continued

12/47

February, 2017 Institut Mines-Telecom Topology of wireless networks



Algebraic topology

Poisson homologies

Persistence

Example

@
0

⌘ 0, @
1

=

0

BBBB@

�1 0 1 �1 0 0

1 �1 0 0 0 �1

0 1 �1 0 1 0

0 0 0 0 0 1

0 0 0 1 �1 0

1

CCCCA

Nb of connected components
dim ker @

0

= 5, range @
1

= 4 hence �
0

= 1
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@
2

=

0

BBBBBB@

0

�1

0

1

1

0

1

CCCCCCA

Nb of holes
dim ker@

1

= 2, range @
2

= 1 hence �
1

= 1
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= Nb of independent polygons � Nb of independent triangles.
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�
1

= Nb of independent polygons � Nb of independent triangles.

�
1

= 2 � 1 = 1.
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Polygons=cycles

�
1

= Nb of independent polygons � Nb of independent triangles.

�
1

= 2 � 2 = 0.
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Open question

What is the interpretation of the Betti numbers for hypergraphs or

boolean monotone functions ?

Find the single minimal triangulation = construct the minimum

weight basis of H
2
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Euler characteristic (S � A+ F )

Definition

� =
dX

j=0

(�1)j�j

Discrete Morse inequality

� |Ck�1

| + |Ck | � |Ck+1

|  �k  |Ck |
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Definition

� =
dX

j=0

(�1)j�j =
1X

j=0

(�1)j |Cj |

Discrete Morse inequality

� |Ck�1

| + |Ck | � |Ck+1

|  �k  |Ck |
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Alternative complex

Cech complex

[v
0

, · · · , vk�1

] 2 Ck () \k
j=0

B(xj , ✏) 6= ;

Rips-Vietoris complex

[v
0

, · · · , vk�1

] 2 Rk () B(xj , ✏) \ B(xl , ✏) 6= ;

k simplex = clique of k + 1 points
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For the l1 distance
RV=Cech

Euclidean norm : false negative
Rips complex may miss some holes
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Cech vs Rips

R✏0(V) ⇢ Č✏(V) ⇢ R
2✏(V) whenever

✏

✏0
�

s
d

2(d + 1)

Euclidean distance (D.-Feng-Martins)
I

Coverage radius RS

I
Communication radius RC = �RS
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Lower-bound of the error

Theorem (
p

3  �  2)

p
2dl(�) =2⇡�2

Z Rc/
p

3

Rs

r
0

dr
0

Z 'u(r
0

)

'l (r0)
d'

1

Z R
1

(r
0

,'
1

)

r
0

e��⇡r2
0

⇥ e��|S+(r
0

,'
1

)|(1 � e��|S�(r
0

,r
1

,'
1

)|)r
1

dr
1

(1)

where

'l (r0)=2 arccos(Rc/(2r
0

)), 'u(r
0

)=2 arcsin(Rc/(2r
0

))�2 arccos(Rc/(2r
0

))

R
1

(r
0

,'
1

)=min(
p

R2

c �r2
0

sin

2 '
1

�r
0

cos'
1

p
R2

c �r2
0

sin

2('
1

+'l (r0))+r
0

cos('
1

+'l (r0)))
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simulation γ  = 2.0
lower bound γ  = 2.0
simulation γ  = 2.2
lower bound γ  = 2.2
simulation γ  = 2.4
lower bound γ  = 2.4
simulation γ  = 2.6
lower bound γ  = 2.6
simulation γ  = 2.8
lower bound γ  = 2.8
simulation γ  = 3.0
lower bound γ  = 3.0

Probability to miss a hole using RRS
and RRC
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Goals and related works

I
Evaluate Betti nb and Euler charac. in some random settings

I
Penrose : Asymptotics of E[|Ck |m] for Euclidian-RG Rips

complex on the whole space (m = 1, 2)

I
Kähle : Asymptotics of E[�k ] for Euclidian-RG Cech complex

(deterministic number of points) and ER
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I
Evaluate Betti nb and Euler charac. in some random settings

I
Penrose : Asymptotics of E[|Ck |m] for Euclidian-RG Rips

complex on the whole space (m = 1, 2)

I
Kähle : Asymptotics of E[�k ] for Euclidian-RG Cech complex

(deterministic number of points) and ER

Our results
Exact expressions of all moments of |Ck | and � in any dimension for

RG complex on a torus for the l1 norm
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Random setting

x
1

a
a

a

a
x
1

"

[0, a] ⇥ [0, a] T2

a⇥a
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Euler characteristic

Asymptotic results

Robust estimate

Euler characteristic

I
d=1 : {� = 0 \ �

0

6= 0} , { circle is covered }
I

d=2 : {� = 0 \ �
0

6= �
1

} , { domain is covered }
I

d=3 : {� = 0 \ �
0

+ �
2

6= �
1

} , { space is covered }
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Euler characteristic (D.-Ferraz-Randriam-Vergne)

Euler characteristic

E [�] = ��e�✓ ad

✓
Bd(�✓ ad) where ✓ = �

✓
2✏

a

◆d

.

where Bd is the d-th Bell polynomial

Bd(x) =

⇢
d
1

�
x +

⇢
d
2

�
x2 + ... +

⇢
d
d

�
xd
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k simplices

The key remark

|Ck | =
Z

h(x
1

, · · · , xk)d!(k)(x
1

, · · · , xk)

where

h(x
1

, · · · , xk) ,
1

k!

Y

i 6=j

1{kxi�xjk<✏}

First moments

E[|Ck |] = �ad
(k + 1)d

(k + 1)!
(ad✓)k
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Dimension 5
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Asymptotic results

If � ! 1, �i (!)
p.s.�! �i (Td) =

�d
i

�
.
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Limit theorems

CLT for Euler characteristic

distanceTV

 
� � E[�]p

V�
, N(0, 1)

!
 cp

�
·
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Limit theorems

CLT for Euler characteristic

distanceTV

 
� � E[�]p

V�
, N(0, 1)

!
 cp

�
·

Method
I

Stein method

I
Malliavin calculus for Poisson process
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Robust estimate

Concentration inequality

I
Discrete gradient DxF (!) = F (! [ {x}) � F (!)

I Dx�0

2 {1, 0, �1, �2, �3}
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Concentration inequality

I
Discrete gradient DxF (!) = F (! [ {x}) � F (!)

I Dx�0

2 {1, 0, �1, �2, �3}

c > E[�
0

]

P(�
0

� c)  exp


� c � E[�

0

]

6

log

✓
1 +

c � E[�
0

]

3�

◆�
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Complexity

An important remark
I

Construction of the complex is exponential (worst case)

I
Computations of Betti numbers is polynomial
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Further application (D.-Martins-Vergne)

Green networking
Switch off some sensors keeping the coverage

Height of an edge
Rank of the highest simplex it belongs to

Index of a vertex
Infimum of the height of its adjacent edges
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v
0

v
1

v
2

v
3

v
4

D[v
0

, v
1

, v
2

]=D[v
0

, v
1

, v
3

]=D[v
0

, v
2

, v
3

]=D[v
1

, v
2

, v
3

]=3

D[v
1

, v
3

, v
4

] = 2

I [v
0

]= I [v
2

]=3 and I [v
1

]= I [v
3

]= I [v
4

]=2
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Example
We can see in Figure 5 the realisation of the coverage algorithm on a Vietoris-

Rips complex of parameter ✏ = 1 based on a Poisson point process of intensity
� = 4.2 on a square of side length 2, with a fixed boundary of vertices on the
square perimeter. The boundary vertices are circled in red.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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1.8

2

Figure 5: A Vietoris-Rips complex before and after the coverage reduction al-
gorithm.

For this configuration, on average on 200 runs, the algorithm removed 69.22%
of the non-boundary vertices, and computed in 206.01 seconds.

We can see in Figure 6 the realisation of the connectivity algorithm on a
Erdös-Rényi complex of parameter n = 15 and p = 0.3, with random active
vertices. We chose a small number of vertices for the figure to be readable.
A vertex is active with probability pa = 0.5 independantly from every other
vertices. The graph key is the same as before.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6: A Erdös-Rényi complex before and after the connectivity reduction
algorithm.

15

I
Complexity C bounded by 2

H
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Complexity

✓n = (rn/a)d

✓0k =
k

1+⌘�d
k�1

n
k

k�1

, ✓k =
k�

1+⌘+d
k�1

n
k

k�1

✓n 2 [✓0k , ✓k ] =) C
n!1���! k
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Other regimes

Theorem (Critical: n✓n ! 1)
C = O(n3

ln n).
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C = O(n3
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Theorem (Super-critiqual: n✓n ! 1)

Cn = O(2nn3)
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= nb of connected components
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Persistence diagram of 10 pts on a circle

-40 -20 0 20 40

-4
0

-2
0

0
20

40

x1

x2

 

 

0e+00 1e-04 2e-04 3e-04 4e-04 5e-04

0e
+0
0

1e
-0
4

2e
-0
4

3e
-0
4

4e
-0
4

5e
-0
4

Birth

D
ea
th

dim Birth Death

0 6.50655e-22 5.124479e-04

0 2.00255e-15 2.956910e-07

0 1.15748e-14 1.118440e-06

0 1.78540e-14 1.039640e-08

0 1.18076e-13 9.427080e-13

0 4.58441e-09 3.829860e-08

0 2.99134e-08 3.758330e-08

1 3.37283e-07 1.587770e-04

1 3.80028e-06 5.124480e-04

1 9.12595e-05 4.632000e-04

1 9.31748e-05 1.577760e-04

1 1.23796e-04 1.596950e-04
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Persistence diagram of 500 pts on a circle
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0 1 2 3 4 5
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D
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Comparison of persistence diagrams

Definition
If |D

1

| > |D
2

|, D̃
1

=D
1

\{ the |D
1

| � |D
2

| pts of D
1

closest to the

diagonal }
⇢(D

1

,D
2

) = T1(D̃
1

,D
2

)
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Costs on configuration space

Definition (Total variation)

C
TV

(!, ⌘) = sup

A compact

|!(A) � ⌘(A)| = ( nb of 6= pts)

where

! =
nX

j=1

"xi , ⌘ =
mX

k=1

"yk
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Definition (Total variation)

C
TV

(!, ⌘) = sup

A compact

|!(A) � ⌘(A)| = ( nb of 6= pts)

where

! =
nX

j=1

"xi , ⌘ =
mX

k=1

"yk

Definition (Quadratic cost)

C
2

(!, ⌘) =
1

2

inf

⇢Z
dE (x , y)2d�(x , y), � 2 ⌃!,⌘

�
,

=

8
<

:
+1 if m 6= n

inf

�2Sn

1

2

Pn
j=1

dE (xj , y�(j))
2

if m = n < +1.
44/47

February, 2017 Institut Mines-Telecom Topology of wireless networks



Algebraic topology

Poisson homologies

Persistence

Finite point processes on E = Rd

Theorem (LD’08)

TC
2

(µ, ⌫) < 1 iff

µ(⌘(E ) = n) = ⌫(!(E ) = n), 8n � 0

X

n�1

TCe (j
µ
n , j⌫n )

2 µ(⌘(E ) = n) < +1

Moreover, the optimal map T is described by

T : �(n)E �! �(n)E

! =
nX

j=1

"xi 7�! tjµn ,j⌫n (x1

, · · · , xn)
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Poisson process

Theorem

I Te(�1

, �
2

) < +1
I t�

1

,�
2

the transport map of MKP(�
1

, �
2

, Ce)

I
Then

T : �E �! �EX

x2!
✏x 7�!

X

x2!
✏t�

1

,�
2

(x)

is the transport map from ⇡�
1

to ⇡�
2

and

TC
2

(⇡�
1

, ⇡�
2

) = �
1

(E )TCe (�1

, �
2

).
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Persistence diagrams of point processes

Theorem (LD, A. Vasseur’15)
I µ and ⌫ 2 point processes

I D#µ = distribution of the µ-persistence diagram

T⇢(D#µ, D#⌫)  TC
2

(µ, ⌫)
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