
Enumerating
Tree Decompositions

Nofar Carmeli Batya Kenig Benny Kimelfeld

Technion – Israel Institute of Technology

1

• Q1: Is there a manager with a relative in the company?

works Emp1,Proj1 ∧manages Emp2,Proj2 ∧ relative Emp1, Emp2

Proj1

Emp1 Emp2

Proj2

2

Employee Project

Alice A

Anna A

Bob B

Barak B

Employee Project

Ester A

Fady B

Gil C

Hava D

Emp1 Emp2

Barak Hava

Anna Ester

Carl Clement

David Dan

Works: Manages: Relative:

Motivation

• Q2: Is there an employee managed by a relative?

works Emp1,Proj ∧ manages Emp2,Proj ∧ relative Emp1,Emp2

Proj

Emp1 Emp2

3

Employee Project

Alice A

Anna A

Bob B

Barak B

Employee Project

Ester A

Fady B

Gil C

Hava D

Employee Employee

Barak Hava

Anna Ester

Carl Clement

David Dan

Works: Manages: Relative:

Motivation

Motivation

• Evaluating a general conjunctive query is NP-complete
[Chandra&Merlin77]

• Efficient algorithm for acyclic conjunctive queries [Yannakakis81]

• A tree decomposition allows applying Yannakakis’s to general
conjunctive queries [Chekuri&Rajaraman97]

Q2 – cyclicQ1 – acyclic

Proj1

Emp1 Emp2

Proj2 Proj

Emp1 Emp2

4

Tree Decompositions

Every edge is

contained in some bag

Tree

Every node

occurs in a

connected subtree

Graph

Tree decomposition
5

Tree Decompositions

• Many applications beyond join optimization:

• Games

• Nash equilibria computation [Gottlob+05]

• Bioinformatics

• prediction of RNA secondary structure [Zhao+06]

• Probabilistic graphical models

• statistical inference [Lauritzen&Spiegelhalter88]

• Constraint-satisfaction problems [Kolaitis&Vardi00]

• Weighted model counting [Li+08]

• ...

6

• A graph can have many TDs

• We want the ‘best’ decomposition

• Common – minimize the cardinality of the largest bag (smallest width)

Graph

Tree decompositions

7

Which TD to use?

Which TD to use?

• Smallest width is NP-hard [Arnborg+87]

• Common: Use heuristics

• Width isn’t enough

• Different applications – different requirements

Flexible Caching in Trie Joins [Kalinsky+16]

Query TD1 TD2 TD1 runs 100 times faster!

8

TD enumeration is needed

• Related work:

• Query plans using generalized hypertree decompositions [Tu&Ré15]
• Generate all, choose one

• No complexity guarantees

• Works for small graphs

• Improving the efficiency of dynamic programing on tree
decompositions using machine learning [Abseher+15]

• Heuristically generate a pool, choose using machine learning

• Limited pool, may not contain the best

• Can we enumerate the TDs with efficiency guarantees?
9

Goal

Problem: Enumerating all TDs of a graph

1. Complexity guarantees
2. Effective practical solution

?

10

There can be exponentially many TDs!

all

Which TDs to Generate?

Graph

Better tree

decomposition

11

Tree decomposition

Better tree

decomposition

Proper TDs

• We define “proper” TDs

• Intuitively, in a proper TD you cannot:

• Split bags

• Remove bags

Problem: exponentially many TDs, what is an “efficient” algorithm?

Goal: Enumerating all proper TDs of a graph

12

Efficiency of enumeration algorithms
[Johnson,Papadimitriou,Yannakakis 88]

13

start

time

polynomial total time

Running time is polynomial in input + output

incremental polynomial time

Delay before answer i is polynomial in input + i

start

time

start

time

polynomial delay

Delay between successive answers is poly(input)

The main theoretical result

Main Theorem:
Given a graph, it is possible to enumerate in
incremental polynomial time:

- The proper tree decompositions
- The minimal triangulations

14

Goal: Enumerate Proper TDs

• Chord: An edge between two non-adjacent nodes in a cycle

• Chordal graph: Every cycle of length>3 has a chord

15

Chord:

Not Chordal Chordal

Goal: Enumerate Proper TDs
• Chord: An edge between two non-adjacent nodes in a cycle

• Chordal graph: Every cycle of length>3 has a chord

• Finding proper TDs of a chordal graph is easy
• The bags are the maximal cliques

• These TDs can be enumerated in polynomial delay
[Jordan02][Gavril74] [Yamada+10]

16

1

1

2

Goal: Enumerate Proper TDs

• Triangulation of a graph: Adding edges to make it chordal

• Minimal triangulation:
Adding a proper subset of the edges does not make it chordal

17

Graph

Minimal triangulation

Triangulation

Goal: Enumerate Proper TDs
• A bijection:

classes of bag equivalent proper TDs ↔ min triangulations

18

Goal: Enumerate Proper TDs

19

Goal: Enumerating all min triangulations of a graph

Goal: Enumerating all proper TDs of a graph

Goal: Enumerate Minimal Triangulations

• Minimal Separator:
Removing these nodes separates some u and v
No proper subset separates u and v

• Crossing separators:
One of them separates nodes of the other

20

• Minimal separators:

• Crossing separators: and

• Parallel separators: and

↔/ ↔/ ↔/

Goal: Enumerate Minimal Triangulations

• A bijection [Parra&Scheffler97]:
minimal triangulations ↔ maximal sets of non crossing

minimal separators

21

Goal: Enumerate Proper TDs

22

Goal: Enumerating all min triangulations of a graph

Goal: Enumerating all max independent sets of a graph

Goal: Enumerate Maximal Independent Sets

23

Problem:
The graph may be of

exponential size!

Challenge:
Solve without generating the graph

Enumerating max independent
sets can be done in polynomial

delay [Johnson+88]

The Algorithm (Enumerating max independent sets)

24

• Redesign of an algorithm for hereditary graph

properties [Cohen+08]

• Assuming:

• Efficiently enumerating nodes

• Efficiently checking edges

• Efficiently extending an independent set

• Polynomial size of max independent sets

• Extends all nodes in the direction of all

independent sets.

• Runs in incremental poly time

The Algorithm (Enumerating max independent sets)

25

• In our case, extending = triangulating

• We can use any triangulation or tree

decomposition algorithm

• First result = algorithm’s result

Goal: Enumerating max independent sets

26

Find a single minimal triangulation

Goal: Enumerating all max independent sets of a graph

Solution Summary

Enumerate
proper TDs

Enumerate min
triangulations

Enumerate max
independent sets

27

Single min
triangulation

Experiments

• Goals: check efficiency and quality

• C++ implementation

• Triangulation algorithms:

• MCS-M [Berry+02]

• LB-Triang [Berry+06] with min fill heuristics

• Benchmarks:

• DunceCap [Tu&Ré15]

• Heuristics (First result)

28

Experiments

• Datasets:

• Database queries

• TPC-H (LogicBlox translation)

• 2-19 nodes, 1-46 edges

• Probabilistic graphical models

• UAI inference challenge

• 60-1039 nodes, 135-1696 edges

• Random

• 30-200 nodes, 131-13955 edges

29

Experiments

30

• A single run (UAI, 414 nodes, 801 edges, MCS-M, 30 minutes)

• Queries, completed within 5 seconds
• 11 graphs: triangulated

• 9 graphs: 2-5 triangulations

• 1 graph: 588 triangulations

• 1 graph: 700 triangulations

0

1000

2000

3000

4000

5000

6000

7000

0

10

20

30

40

50

0 5 10 15 20 25 30

fi
ll

w
id

th

time (minutes)

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30

n
u

m
b

er
 o

f
re

su
lt

s

time (minutes)

results

min width results

≤w1 results

46

396232

3934

Experiments

31

• Random (30 minutes)

• Probabilistic graphical models (30 minutes)

0

1

2

3

4

5

6

0 50 100 150 200

av
er

ag
e

d
el

ay

(s
ec

o
n

d
s)

number of nodes

MCS-M

p=0.3

p=0.5

p=0.7
0

1

2

3

4

5

6

0 50 100 150 200

number of nodes

LB-Triang

alg. measure avg #results avg #≤first avg min avg %improv max %improv

MCS-M width 33635.0 12733.4 20.2 2.6% 26.3%

MCS-M fill 33635.0 12724.9 2043.8 14.4% 55.8%

LB-T(fill) width 11998.3 4744.1 18.5 3.4% 20.7%

LB-T(fill) fill 11998.3 1013.6 965.8 2.2% 27.6%

Future Work

• Practical

• Parallelized implementation

• Heuristics for ranked enumeration

• Theoretical

• Polynomial delay

• Restricted versions

32

Questions?

33

