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Motivation – Unstructured Data
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Motivation – Unstructured Data
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• Text representation
• Lack of structure
• No entity resolution
• No entity disambiguation



Motivation – Structured Data
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What is structured data?
•RDF – Resource Description Framework
•W3C standard for describing web resources
•Triple = statement of the form (subject, property, object)

Subject Property Object
Rodin type Artist

Artist interestedIn Sculpture

Rodin notableWork The Thinker

The Thinker type Sculpture

Rodin influences Artist1

interestedIn

type



Motivation – Structured Data
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Linked Open Data Cloud
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Government 18.05%

Publications 9.47%

Life Sciences 8.19%

User-generated content 4.73%

Cross-domain 4.04%

Media 2.17%

Geographic 2.07%

Social Web 51.28%

Domains

• Exponential increase of 
datasets and triples

• > 30 billion triples

• Automatically constructed KBs



Motivation – Structured Data
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Artist2
influences
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DBpedia
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1840

born

sculpturer

type

createdBy

1902

bronze

style

date

Artist1

Artist2
influences

influences

DBpedia Museum_Rodin

Complementary
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Motivation – Structured Data
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Diverse schemas for representation in LOD

• ~576 schemas/vocabularies 
used for representation

• Diverse quality of schemas[1]

• Duplicate representation of 
similar concepts/classes and 
relations

• Lack of explicit alignment 
between classes/relations 
(with only up to 2%)[2]

[1] Aimilia Magkanaraki, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis: Benchmarking RDF Schemas for the Semantic Web. 
International Semantic Web Conference 2002: 132-146
[2] Max Schmachtenberg, Christian Bizer, Heiko Paulheim: Adoption of the Linked Data Best Practices in Different Topical Domains. 
International Semantic Web Conference (1) 2014: 245-260
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createdBy
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style

date

Museum_Rodin

sculpture

bronze
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contains
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createdBy

1902

bronze

style

date

Museum_Rodin

MuseumExhibitions(Paris)

sculpture

bronze

DBpedia

contains

style

<exhibitions>
<museum> Louvre </museum>
<museum>Rodin</museum>
</exhibitions>

owl:sameAs



Motivation – Web services
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Motivation – Web services
More than 12000 APIs* from various domains:

• Search (3200 APIs) 

• Social (3000 APIs)    

• Traveling (1200 APIs)   

• Music (1000 APIs) 

• Financial (1200 APIs), Science (600 APIs), Weather (300 APIs) 

*Source: ProgrammableWeb.com
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Context & Objectives

¤ PART I – DORIS: Deriving Intensional Description for Web Services

¤ PART II – SOFYA: Online Relation Alignment on Linked Datasets
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SOFYA
SPARQL endpoint SPARQL endpoint

DORIS
Knowledge

Base

Web Service

Knowledge
Base

Knowledge
Base



Part I: Deriving Intensional
Descriptions for Web Services
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[CIKM’15, ISWC’15, BDA’15]



Web Services 

¤ Way of publishing/exporting data

¤ A Web service (WS) is a function 

¤ Consider WSs implementing REST: Interfaces to data sources

¤ Call a WS:
¤ URL address of WS
¤ Input value

Example: “get artworks by artist name” – exported by DORIS_museums
¤ call for input “Rodin”: http://doris_museums.com?artist= Rodin
¤ Output: XML document

20Koutraki Maria

What is a Web Service?What is a Web service?



Objective
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Uniform access to Web services!

Local as view approach: 

• We consider as target source a given Knowledge Base (RDF) 

• Infer a mapping function (transform XML call results à RDF)

• Infer a description (parameterized query over the target KB)

Web ServicesWeb Service

Knowledge
Base



Mapping function (σ)

Web service: “get artworks by artist”

R: getArtWorksByArtist(Rodin) σ(R)

σ

WS call result (XML) KB  fragment (RDF) 

URI51889 The Kiss
date name

URI1 Rodin
name

1840
birthdate

URI31902 The Thinker
date name

URI4

shownAt

works

URI2
works

shownAt
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root

td

a

b n

The Thinker1902

1840 Rodin

item

td

a

b n

The Kiss1889

1840 Rodin

item



Parameterized Query
Schema of the parameterized query: the KB schema 
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URI51889 The Kiss
date name

URI1 Rodin
name

1840
birthdate

URI31902 The Thinker
date name

URI4
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works

URI2
works

shownAt

σ(getArtworksByArtist(Rodin))



Parameterized Query
Schema of the parameterized query: the KB schema 

?x ?IO
name

?l1
birthdate

?z?l3 ?l4
date name

?y

shownAt

works

σ(getArtworksByArtist(?IO))
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Parameterized Query
Schema of the parameterized query: the KB schema 
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Overview – DORIS system

1. Mapping Function

2. Parameterized Query

Instance – based solution

1. Probing
• Call WS with top entities from KB
• Obtain call results (samples)

2. Compute alignments between WS and KB
• Path Alignments
• Class/Relation Alignments

1. Web service

2. Knowledge Base
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Input:

Output:



Path Alignments
¤ Relevant WS call result to an input entity (Rodin)

¤ Leaf nodes in call result encode attributes for input entity 

¤ Linear XML paths in WS call result correspond to input entity – literal paths
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root

td

a

b n

The Thinker1902

1840 Rodin

item

td

a

b n

The Kiss1889

1840 Rodin

item

yago:The_Thinker1902 The Thinker
date name

yago:Rodin Rodin
name

1840
birthdate

yago:Rodin_Museum

shownAt

works

yago:Pantheon

shownAt

works

getArtWorksByArtist(Rodin) yago fragment (Rodin)



Path Alignments
Path Pairs:

root

td

a

b n

The Thinker1902

1840 Rodin

item

td

a

b n

The Kiss1889

1840 Rodin

item

yago:The_Thinker1902 The Thinker
date name

yago:Rodin Rodin
name

1840
birthdate

yago:Rodin_Museum

shownAt

works

yago:Pantheon

shownAt

works

getArtWorksByArtist(Rodin) yago fragment (Rodin)

troot item KB Input shownAt works name
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Metrics for Path Alignments

1. Overlapping: align two paths if the results of the one overlap the 
results of the other over a threshold α. 

#x: number of samples

2. Inclusions: align two paths if the results of the one are included in 
the results of the other over a threshold α.

¤ Compute both ways inclusions:  KB path ⇆ WS path

¤ Partial completeness assumption: “a source knows either all or 
none of the p-attributes of some x”
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Class & Relation Alignments

¤ Idea: starting from the right-most side, align functional sub-paths 
(paths selecting one value)

¤ Assumption: the XML call result encode at least a function 
property per class of entities

titem

shownAt works name

XML:

KB:

1 n 11 1 1

1 n 1 n 11

à “item” nodes correspond to artworks

KB Input

Problem: Identify XML nodes representing entities

30Koutraki Maria

root



Class & Relation Alignments

¤ Idea: starting from the right-most side, align functional sub-paths 
(paths selecting one value)

¤ Assumption: the XML call result encode at least a function 
property per class of entities

titem

shownAt works name

XML:

KB:

1 n 11 1 1

1 n 1 n 11

à “item” nodes correspond to artworks

KB Input

Problem: Identify XML nodes representing entities
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root



Class & Relation Alignments

¤ KB: “A relation r(x,y) is called functional if for x there 
are not more than one y.”

¤ XML: “A path is functional if there are no two sibling 
nodes sharing the same label”.

Compute Functionality
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Overview

1. Web service

2. Knowledge Base

DORIS

1. Mapping Function

2. Parameterized Query

Discovering 
I/O Dependencies
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Discovering I/O Dependencies
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ID_THE_THINKER
• 1.96 m
• Bronze

ID_THE_KISS
• 1.81 m
• Bronze

Auguste Rodin
Auguste Rodin

Join the output 
from the two calls

• The Thinker ID_THE_THINKER
• The Kiss ID_THE_KISS

getArtworksByArtistgetArtworksByArworkID



Discovering I/O Dependencies

¤ Discover “hidden” input types for Web services in the outputs of 
mapped (solved) Web services

Example:

Solution
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getArtworksByArtist getArtworkByArtworkIDartworkID



Experimental Setup - Results

¤ 3 KB Tested ( YAGO, DBpedia, BNF)

¤ > 50 Web Services (music, movies, books, geodata)
¤ à High Precision and Recall

¤ Summarization of Class/Relation alignment experiments:

*Tested only with WSs from “Books” domain

Precision Recall

Classes Relations Classes Relations
YAGO 0.92 0.91 0.96 0.93
DBpedia 0.91 0.92 0.98 0.95
BNF * 1 1 1 1

36Koutraki Maria
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Evaluation Results
¤ Path Alignment

¤ Music Domain: 25 Web services

¤ More results :  http://oasis.prism.uvsq.fr/doris/index.html
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Conclusions - DORIS
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¤ We proposed DORIS, a system that provides a formal description 
of the output of a Web service in terms of a global schema 

¤ We provide a transformation function, as a script, to transform the 
output of the Web service in terms of a global schema. 

¤ We proposed and algorithm that discovers I/O dependences 
between Web services of the same API



Part II: Online Relation Alignment on 
Linked Datasets
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[EDBT’16]



Approach: Online Relation Alignment

¤ Goal: Compute one-to-one relation alignments
¤ Equivalence or subsumptions

¤ Align KBs published by SPARQL endpoints

¤ The entities of the two KBs are aligned via sameAs links

¤ Approach:
¤ Instance-based 
¤ Supervised Model (features computed on KB instances)
¤ Sample for a minimal set of entities to perform the alignment process
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Approach: Outline

SPARQL 
endpoint

SPARQL 
endpoint

rT
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y

x

y’

x’

rT
--

KBS KBT

rS

sameAs

sameAs

1
Candidates for alignment:

rS⊆ rT1
rS⊆ rT2
rS⊆ rT3

…

2

Classify the alignments:
rS⊆ rT1 (correct)
rS⊆ rT2 (incorrect)
rS⊆ rT3 (correct)

…

3



Approach: Features

Feature group

Inductive Logic Programming (ILP)

General Statistics (GS)
Lexical

..as matchers
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Features – ILP: CWA & PCA

¤ Closed world assumption (cwa): for a relation r the KB contains all 
the facts.

¤ Good precision, bad recall
¤ Absent data – counter examples 

¤ Partial completeness assumption (pca):  for a subject x  and 
relation r, the KB contains ether all or none of the facts.
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Features – ILP: CWA & PCA

b3
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The_Thinker

b2
created

created

b2
knownFor

created

Example 1

KBS KBT

rS: created rT:knownFor



Features – ILP: CWA & PCA

b3
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The_Thinker

b2
created

created

b2
knownFor

created

Example 2

c1

c2

created

created

KBS
KBT

rS: created rT:knownFor



Features – Relation Functionality

¤ Functionality: “A relation r(x,y) is called functional if for x there are 
not more than one y.”

¤ If  rs is subsumed in rt the functionality should be higher

¤ Target relations should have better coverage of facts
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Features - ILP: PIA

¤ Partial completeness assumption - pca
¤ good performance for functional relations
¤ Penalizes the non-functional relations

¤ Propose: Partial incompleteness assumption – pia

¤ The more important the counter example is the more should count! 
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Features – GS: Type similarity
¤ Check the type distribution similarity between relations rS and rT.

¤ Example:

¤ Weighted Jaccard similarity metric to assess if the two relations have 
similar structure in terms of types.

¤ High similarity – Good indicator for equivalence/subsumption
between relations
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Book 30%
Movie 20%
…

Book 20%
Movie 30%
…

rT :hasWriterrS :hasCreator

High 
similarity!!



Features – GS: Type dissimilarity

¤ Check if type distribution in rS contains type that do not exist in rT.

¤ Example:

¤ For missing types and based on their ratio we can accurately 
assess that rT does not subsume rS.
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Book 30%
Movie 20%
Song 5%
…

Book 20%
Movie 30%
Paintings 50% 
…

rT :hasWriterrS :hasCreator

High 
dissimilarity!!



Features – GS: Relevance likelihood

¤ Likelihood of ILP scores: depend on the datasets the matchers 
varies !!

¤ Compute the likelihood of specific ILP scores being indicators of 
subsumption for a relation pair!
¤ pca likelihood
¤ cwa likelihood
¤ Joint pca & cwa likelihood

¤ Compute the likelihood of a relation alignment being correct 
given a specific ILP score. 

¤ Probabilities are measured on the training set! Assign the scores 
on the test set
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Approach: Efficiency Issues

¤ Challenges

¤ Bandwidth

¤ Time-out at SPARQL endpoints

¤ Approach

¤ Reduce data transfers

¤ Retrieve a subset of instances for a given relation

¤ Solution

¤ Sample for a minimal subset of instances for the relation alignment

¤ First-N

¤ Random

¤ Stratified
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Experimental Setup

¤ 3 Knowledge Bases
¤ YAGO, DBpedia, Freebase (e.g. YAGO à DBpedia)

¤ Relations

¤ Baselines 
¤ cwa (used in PARIS)
¤ pca (used in ROSA)

¤ SOFYA: Logistic Regression (any other supervised model can be 
applied)
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KB YAGO DBpedia Freebase
#relations 36 563 1666



Evaluation Results: Performance

¤ Full Data: Comparison of the different models and competitors
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Evaluation Results: Performance

¤ Sampled Data: Individual results on sampling – Stratified Level 3 –
50 entity samples
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Evaluation Results: Efficiency

SPARQL Sampling time in 
milliseconds 
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Conclusions - SOFYA
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¤ We proposed SOFYA, an instance-based relation alignment 
approach, discovering subsumptions of relations 

¤ We propose supervised machine learning models, that combine 
a set of light-weight features to decide if the subsumption
relationship is correct or incorrect

¤ Overcome main drawbacks of existing schema matching 
approaches, through efficient alignment algorithms 

¤ Harness the complementarity of LOD sources through relation 
alignments at query time



Future/Ongoing work

¤ Automatic discovery of input types in DORIS

¤ Investigate for additional features in SOFYA 

¤ Relation alignment for complex relations: 1-n relations in SOFYA

¤ Compute subsumption of relations starting from the super-relation 
in SOFYA
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Thank you all !

Questions ? 
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