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General Context

The development of the semantic Web has given birth to a large number of data sources (ontologies) with
independent data and schemas. These ontologies are usually generated from existing relational databases or
extracted from semi-structured data. Ontology alignment is a technique to automatically integrate them by
discovering overlap in their instances and similarities in their schemas. Such integration makes it possible to
access the combined information of all these data sources simultaneously rather than separately. Ontology
alignment must deal with numerous challenges: the schemas are heterogeneous, the volume of data is huge,
and the information can be partially incomplete or inconsistent.

Problem Studied

My internship focuses on the Paris (Probabilistic Alignment of Relations, Instances, and Schema) ontology
alignment system [SAS11] developed by Fabian Suchanek, Pierre Senellart, and Serge Abiteboul at Inria
Saclay’s Webdam team. Paris is a generic system which aligns data and schema simultaneously (hence the
adjective “holistic”) and uses each of these alignments to cross-fertilize the other. The alignments produced
are annotated with a confidence score and have a probabilistic interpretation. Paris was able to align large
real-world datasets from the semantic Web.

The aim of my internship is to propose improvements to Paris on some problems (both theoretical and
practical) that were left open by the original system: achieving a better understanding of the behavior of Paris’s
equations, aligning heterogeneous schemas, being tolerant to differences in the strings of both ontologies, and
improving the overall performance of the system.

Proposed Contributions

The contributions of my internship are the following: the implementation of performance improvements to
Paris through parallelization, in-memory computation, and other techniques (section 3); the study and im-
plementation of join relation support to align simple cases of heterogeneous schemas (section 4); a theoretical
analysis of the behavior of Paris (section 5); support for approximate literal matching as a replacement for
ad-hoc normalization techniques (section 6, joint work with Mayur Garg); and an application of Paris to deep
Web analysis which makes use of these improvements (section 7, joint work with Marilena Oita).

The result of my implementation efforts was released on the Paris website [SSG+], and the deep Web
analysis contribution was accepted as a vision paper to the VLDS workshop of VLDB [OAS12]. As an additional
contribution, I have studied the problem of efficient DAG labeling schemes during a three-week visit at Fabian
Suchanek’s ontology group in Saarbrücken and wrote a summary of my efforts during this time [Ama], not
further discussed in this report.

Arguments Supporting Their Validity

The new setup and improved implementation was shown to achieve a ten-fold speed improvement for one
of the main alignment tasks used to benchmark the system. The support for join relations was found to
be useful in small matching tasks (especially for crawl results from the deep Web) though it cannot be run
on large ontologies for performance reasons. The theoretical analysis of Paris hints at a link between the
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probabilistic model justifying the equations of Paris and a variant of Green measures, which suggest possible
alternative choices for the design of Paris. The literal matching technique was benchmarked and shown to
match the performance of ad-hoc normalization used for one of the original datasets used to evaluate Paris.
The application of Paris to deep Web analysis showed promising results by managing to outline the semantics
of the Amazon book search Web form, which showcased the use of join relations and approximate literal
matching.

Summary and Future Work

During my internship, I have proposed several improvements to the Paris system which address some of its
original shortcomings. This contribution should both improve the performance of Paris on existing matching
tasks and make it possible to attempt matching tasks between more heterogeneous or noisy ontologies. The
next step would be to obtain more experimental proof of this claim.

Several questions are left open. The natural generalization of join relation alignment is the alignment of
arbitrary patterns between ontologies, though we would need an elaborate way to chose candidate patterns to
ensure that the task is still tractable. Approximate literal matching techniques could be extended to handle
all datatypes and not just strings. Other possible incremental improvements to the Paris system would be
an improved class alignment to align unions and intersections of classes, though this is another special case of
generic pattern alignment.

More fundamental efforts to improve Paris would be to achieve a better understanding of its model by
linking it to such formalisms as weighted Max-SAT or Markov Logic Networks [RD06], and maybe use these
formalisms to derive a new model with stronger guarantees. Another ambitious goal would be to ensure the
scalability of Paris to larger tasks, either through distributed computation or with a different, more efficient
algorithm.

A very interesting “next question” would be the design of an ontology matching system inspired by Paris
but scaled to a large number of data sources from the Web. The aim of such efforts would be to integrate both
general and specialized data sources of various natures on the Web: semantic Web ontologies, automatically
extracted information from semi-structured data or natural language text, and data crawled from the deep
Web. Such a task would lead to deep questions on the management of uncertainty and subjective trust, on the
attribution of facts, and on intensional processes to align remote sources through a small number of localized
queries.

Notes and Acknowledgements
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Garg for his contribution to the code. Thanks to Serge Abiteboul, David Montoya, and Émilien Antoine for
helpful discussion during our “Data Integration at Large” meetings. Thanks to Rainer Gemulla for insight on
join functionalities.
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1 Background

In this section, I review the general setting of my internship: I present the semantic Web and the problem of
ontology alignment.

1.1 Ontologies and the Semantic Web

Motivation. Most of the information on the Web today is written directly for humans in semi-structured
HTML documents. The semantic Web is an effort to promote standards for structured, semantically-annotated
information on the Web, which allows us to trade some of the convenience of natural language text in exchange
for the numerous advantages of structured data. Motivations include ensuring interoperability between different
organizations, building complex systems which rely transparently on data from various sources, automatically
checking the consistency of the data, performing machine reasoning on it to infer knowledge from it, and
answering complex queries on it.

RDF. The main standard to state information on the semantic Web is RDF [W3C04d]. An RDF document
is a set of triples: each triple contains a subject position, an object position, and a predicate position, and each
position contains a Uniform Resource Identifier (URI) which identifies a resource (except the object position
which may contain a literal value instead, as will be seen later). The triple expresses that the resources occurring
at the subject and object positions are related by the resource occurring at the predicate position. In theory, a
given resource can occur indifferently at subject, object and predicate positions; however, in practice, resources
can be separated in those which appear at the subject and object positions (which we will call entities) and
those which appear as predicates (which we will call relations or properties). In our terminology, an ontology
is simply an RDF document.

URIs. URIs used to identify resources can be of two kinds. They can be the well-known Uniform Re-
source Locators (URLs), which identify resources by their location indicated as a scheme, domain (do-
main name managed by the DNS system), and path (managed by the domain owner): for instance, http:

//www.gutenberg.org/files/1400/1400-h/1400-h.htm is the URI for the Project Gutenberg online edition
of Charles Dickens’ Great Expectations. They can also be Uniform Resource Names (URNs) which identify
uniquely a resource by a namespace and a namespace-specific string : for instance, urn:isbn:0486415864 iden-
tifies a certain paper edition of Great Expectations. URIs in RDF can be abbreviated with the use of namespace
prefixes, defining for instance “dbp:” to stand for “http://dbpedia.org/”. In the rest of this documents, no
URNs will appear: the frequent use of namespace prefixes to shorten URIs should not be mistaken for URNs.

RDF by example. As an example, consider the following RDF triple (expressed in N-Triples notation,
details follow) from the DBpedia [BLK+09] ontology. This triple would be rendered in natural language as
“Paris is located in France”, where “Paris”, “located” and “France” refer to resources managed by http:

//dbpedia.org/.

<dbp:resource/Paris> <dbp:ontology/country> <dbp:resource/France> .

Our next example indicates that the website of Paris is http://www.paris.fr/. Note that the URIs at
the predicate and object positions do not point to the DBpedia domain: this illustrates how the semantic Web
makes it possible to express assertions between resources managed by independent entities.

<dbp:resource/Paris> <http://xmlns.com/foaf/0.1/homepage> <http://www.paris.fr/> .

As a final example, consider the following triple, which expresses that “Paris” (the DBpedia resource)
has the name “Paris” (the string), with the “@en” language indicator to indicate that this is in the English
name (which is coincidentally the same as the French name). Other such annotations exist to indicate literal
datatypes, but we will not go into the details of this and will remove them from further examples for simplicity.
This example illustrates the fact that the object of an RDF predicate can also be a literal value.

<dbp:resource/Paris> <http://xmlns.com/foaf/0.1/name> "Paris"@en .
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dbp:resource/Paris

dbp:resource/Francedbp:ontology/country

http://www.paris.fr/
foaf:homepage

"Paris"@en
foaf:name

Figure 1: RDF facts from DBpedia about Paris, represented as a graph.

Storage. RDF can be written in different serialization formats. The first option is to write it as triples like
in the examples above, using the N-Triples notation or supersets of this notation such as Turtle or Notation
3. The second option is to write it as XML. We will not give further details about syntax here: the interested
reader is referred to [W3C04a, W3C12, W3C11, W3C04c]. RDF data can be stored directly in a text file in
one of the above formats and read sequentially, or it can be accessed by querying specialized databases (triple
stores) using the SPARQL language.

RDF sources. Semantic Web data can come from several different sources. It can be manually built by
humans: either by writing RDF directly, or by annotating unstructured resources with semantic information
using RDFa or microformats. It can be produced automatically from existing databases by exporting them
to RDF. It can also be produced automatically from unstructured sources using information extraction tech-
niques. For instance, the DBpedia [BLK+09] and Yago [SKW07] ontologies are automatically extracted from
Wikipedia.

Representations. Beyond the different ways of serializing RDF, there are different possible ways to look at
RDF data. First, we can see it as a graph with entities and literals as vertices, relations as edge labels, and
one labeled edge per triple. Figure 1 sums up the triples given as examples above. Second, we can see it as
a classical database. In this case, we can either think of it as a database with one ternary relation between
subjects, predicates, and objects, or we can think of it as a database where each predicate is a binary relation
between its subjects and objects.

Schema. So far, we have seen no way to describe the structure (or schema) of an RDF document. Interest-
ingly, in contrast with traditional relational databases which need to know the structure of the data to figure out
how to store it, RDF does not require the user to specify a description of the schema: it can be left implicit and
guessed from the data. On the other hand, if the user wishes to provide a schema, the RDF, RDFS [W3C04b]
(RDF Schema) and OWL [W3C09] (Web Ontology Language) standards define RDF properties to do this. In
a more general way, these predicates are a very expressive language to express logical constraints on the data:
the expressiveness of the full OWL standard is actually sufficient to make it undecidable, though decidable
subsets of OWL exist. Here are some important properties which pertain to the schema of RDF documents:

rdf:type This property indicates that a resource is an instance of a certain type, or class in the sense of
object-oriented programming. Of course, classes in RDF are also resources. Some standard classes (the
class of literal values, the class of all resources) are defined by RDF and RDFS. Entities can have multiple
classes.

rdfs:subClassOf This property indicates that a class is a subclass of another class. Classes can be
subclasses of multiple classes. The meaning of this property is the following: if A is a subclass of B,
then all resources which are instances of A are also instances of B. Besides, the property is transitive:
if A is a subclass of B and B is a subclass of C, then A is a subclass of C. Note that facts implied by
properties such as rdf:type and rdfs:subClassOf do not need to be materialized in the document or
in the schema.
Like for the entity/relation distinction, there is no strong requirement for classes and instances to be
disjoint sets, but this assumption usually holds in practice, so we will call classes those resources which
appear as the object of rdf:type or rdfs:subClassOf, and we will amend our definition of entities to
exclude classes.

rdfs:subPropertyOf This property indicates that a property is implied by another property. In other
words, if p is a subproperty of p′, it means that whenever (x, p, y) holds, then (x, p′, y) also holds. Unlike
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the two previous ones, this property does not occur especially frequently “in the wild”: however, we
define it because this notion of subproperty will occur again later.

owl:sameAs This property indicates that two different resources have actually the same identity. While
such an assertion might seem paradoxical, the use of various distinct URIs to refer to the same thing is
widespread. Once again, the presentation of this property is motivated by the fact that the equality of
two resources will be a useful notion later.

1.2 Ontology Alignment

In an ideal world, each resource would have exactly one URI, and all ontologies would do their best to reuse
existing URIs as much as possible. Obviously, this is not a reasonable expectation. A more realistic view of
the semantic Web is the one advocated by the Linked Data [Lin] project: a mapping of existing data sources
to RDF, and links between these various data sources. This vision is already thrilling, because it would make
it possible to integrate independent sources with entirely different schemas and to regroup them in a federated
Giant Global Graph (GGG).

However, to achieve this vision, we must have a way to determine links between the data sources, i.e., to align
them. More specifically, we will say that an alignment (or matching) between two ontologies can be expressed
in RDF as a set of rdfs:subClassOf, rdfs:subPropertyOf, and owl:sameAs statements between resources of
the two ontologies. The restriction of the alignment to each of these types of statements is respectively the class
alignment, the relation alignment and the entity alignment. Of course, because the ontologies are numerous
and large (up to millions of entities), we want to find a way to derive such alignments automatically.

The problem that ontology alignment faces is that two ontologies will use different names (URIs) to talk
about the same things. Consider, for instance, the following statements from the DBpedia and Yago ontologies
(using the “y:” namespace prefix to stand for the Yago namespace):

<dbp:resource/Titanic_(film)> <dbp:ontology/producer> <dbp:resource/Charles_Brackett> .

<y:Charles_Brackett> <y:produced> <y:Titanic_(film)> .

A human would quickly identify that those two statements express the same thing, namely, that the movie
Titanic was produced by Charles Brackett. To do so, we rely on the similarity of URIs; however, strictly
speaking, there is no guarantee that dbp:Charles Brackett and y:Charles Brackett have anything to do
with each other, or that the way URIs are written have anything to do with the name of the resource which
they identify. For instance, in the Internet Movie Database IMDb [Dat] which was adapted as an ontology for
Paris ([SAS11]), the same fact in expressed as follows:

<imdb:p138992> <imdb:producerOf> <imdb:tt0046435> .

While looking at URIs seemed like a good heuristic, in the general case we actually need to look at the
facts which give the name of the various resources as literals:

<y:Charles_Brackett> <y:hasPreferredName> "Charles Brackett" .

<y:Charles_Brackett> <y:produced> <y:Titanic_(film)> .

<y:Titanic_(film)> <y:hasPreferredName> "Titanic" .

<imdb:p138992> <imdb:label> "Charles Brackett" .

<imdb:p138992> <imdb:producerOf> <imdb:tt0046435> .

<imdb:tt0046435> <imdb:label> "Titanic" .

This is easier said than done, however. How do we find out the relation between y:produced and
imdb:producerOf, and between y:hasPreferredName and imdb:label? Alternatively, how do we identify
that the co-occurrence of the two literals “Charles Brackett” and “Titanic” is really an interesting basis to
align resources?

Another issue is that the names may not match exactly. For instance, compare the name given to Charles
Brackett in Yago (above) and in DBpedia (below):

<dbp:resource/Charles_Brackett> <foaf:name> "Charles William Brackett"@en .
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Yet another issue is that the structure of the two ontologies might not match fact for fact as they did in the
simple case above. As a more complicated example, here is the fact indicating Douglas Adams’ birth date in
DBpedia and the three facts which indicate it in the British Library ontology [Lib]. Notice how DBpedia gives
the exact date while the British Library only gives the year, and how the British Library has an intermediate
entity to represent the birth of Douglas Adams.

<dbp:resource/Douglas_Adams> <dbp:ontology/birthDate> "1952-03-11".

<bnb:person/AdamsDouglas1952-2001> <bio:event> <bnb:person/AdamsDouglas1952-2001/birth> .

<bnb:person/AdamsDouglas1952-2001/birth> <rdf:type> <bio:Birth> .

<bnb:person/AdamsDouglas1952-2001/birth> <bio:date> "1952".

These examples illustrate why ontology matching can be a challenging task.

2 Paris

In this section, we present the Paris (Probabilistic Alignment of Relations, Instances, and Schema) system for
ontology alignment, which is described in more detail in [SAS11]. The Paris system was developed by Fabian
Suchanek, my supervisor Pierre Senellart, and Serge Abiteboul.

2.1 Informal Presentation

The Paris system aligns two ontologies O1 and O2 in the sense of the previous section, and does so without
prior knowledge on the ontologies, without training data, and without parameter tuning. It assumes, however,
that there are no duplicate entities within the ontologies that it aligns. It does not produce crisp matchings,
but gives a confidence score to matchings, following a probabilistic model.

The general working of Paris is as follows: we keep alignment scores Pr(x ≡ y) ∈ [0, 1] for every couple
of entities or literals (x, y) ∈ O1 × O2, and alignment scores Pr(r ⊆ r′) ∈ [0, 1] for every couple of relations
(r, r′) from each ontology (formally, (r, r′) ∈ O1 × O2 ∪ O2 × O1). We start with an initial matching which is
set to zero for pairs of entities, to a literal equality function for pairs of literals, and to a small constant for
pairs of relations. From this, we apply formulae to get a new matching, and iterate this process until we reach
a fixpoint, which is the result of the computation. We then compute the class alignment from the result. In
theory, the class alignment could cross-fertilize the entity alignment, but this does not work well in practice.

The formulae to update the alignments are designed to make the relation matching and entity matching
cross-fertilize, i.e., each one draws on the other. Their informal wording is as follows:

Entities. Two entities are matched if they are linked to a matched entity pair by a matched pair of relations.
This is refined by a notion of relation functionality which is computed from the data. See Figure 2.

Relations. Two relations are matched if whenever one occurs between two entities then the other one
occurs between the matching entities. See Figure 3.

Functionalities. A relation r is said to be functional if it behaves as a function from its first argument to
its second argument, i.e., if for all x there exists at most one y such that r(x, y) holds. Inverse functionality is
defined symmetrically with the second and first arguments.

x’ y’
r’

x y
r

Figure 2: Entity alignment rule. Fact r(x, y)
holds in O1 and fact r′(x′, y′) holds in O2. The
solid edge represent an existing alignment, the
dotted edge a new alignment to do if the re-
lations r and r′ are aligned and inverse func-
tional.

x’ y’
r’

x y
r

Figure 3: Relation alignment rule. Fact r(x, y)
holds in O1 The solid edges represent existing
alignments, the dotted edge is checked as evi-
dence that the alignment r ⊆ r′ should be made
or not.
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Functionality is an important notion to indicate that a relation expresses a unique attribute of an entity, e.g.,
the country of birth of a person, the owner of a phone number, the capital of a country, etc. The functionality of
a relation can be specified as part of the ontology schema using OWL predicates: this is analogous to functional
dependencies in relational databases. It is a helpful tool for ontology alignment: if two entities y and y′, and
two relations r and r′, are aligned, if r and r′ are inverse functional, and if it holds that r(x, y) and r′(x′, y′)
for some x, x′, then x and x′ have to be aligned, because the inverse functionality of r and r′ ensures that they
must represent the same object.

However, we do not wish to assume that the ontologies which we will align with Paris provide a description
of their schema which indicates functionality constraints. Besides, relations which are almost (but not exactly)
functional, such as the date of birth or even the nationality, can still provide useful information about the
alignments to perform: for the example of the previous paragraph, the more inverse functional r and r′ are, the
more x and x′ should be aligned. To achieve this, Paris defines a “fuzzy” functionality for relations (between
0 and 1) which is estimated from the data by looking at each relation’s occurrences.

2.2 Related Work

Most existing work on ontology alignment focuses only on schema alignment (relations and classes) or on
instance matching (entities). Tools which only perform schema alignment such as [ADMR05] work very differ-
ently from Paris because they use a schema description with rich constraints rather than data to guide the
alignment: they rely on structural similarity of schemas and string similarity between relation and class names.

As for systems which only perform entity alignment, Paris shares some techniques with [HPUZ10] which
aligns based on predicates which were identified as functional from the data (but does not propagate alignments
like Paris does).

There are very few holistic systems which perform schema and entity matching simultaneously. Existing
systems such as RiMOM [LTLL09] or Illiads [UGM07] either have not been tested on large ontologies or
are focused on domain-specific strategies rather than generic approaches. Others such as Micu [Zai10] are not
really holistic but built by combining existing entity matching and schema matching techniques. Another very
recent system is SiGMa [LJPD+12] which is able to achieve impressive running times through greedy choices
but requires a manual seed alignment of relations.

2.3 Formal Description

Preliminary notations. We assume that a similarity function L is defined on pairs of literals such that
L(l, l′) ∈ [0, 1] denotes an equality score for l and l′. Of course, ∀l, L(l, l) = 1. For convenience, we will always
assume that whenever a relation r occurs in an ontology O, then the relation r− is also implicitly defined by
O, where r−(x, y) holds iff r(y, x) holds.

Alignments. We define the entity and relation alignments at step n to be En = (Prn(x ≡ x′))(x,x′)∈O1×O2

and Rn = (Prn(r ⊆ r′))(r,r′)∈O1×O2∪O2×O1
, where x, x′ denote entities or literals and r, r′ denote relations. For

all n, for all literals (l, l′) ∈ O1 × O2 and entities (x, x′) ∈ O1 × O2, we will have Prn(l ≡ l′) = L(l, l′) and
Prn(l ≡ x′) = Prn(x ≡ l′) = 0. In other words, only alignments between proper entities need to be stored,
alignments involving literals are either fixed to 0 or determined from L.

We define the initial alignment E0, R0 as ∀(x, x′) ∈ O1×O2, Pr0(x ≡ x′) = 0 and ∀(r, r′) ∈ O1×O2 ∪O2×
O1, Pr0(r ⊆ r′) = θ for some small constant θ.

Functionalities. Given a relation r in an ontology O and an entity x in O which appears as first argument
for r (i.e., ∃y, r(x, y)), we define the local functionality of r at x as:

fun(r, x) =
1∣∣{y ∈ O | r(x, y)

}∣∣
The functionality of r is defined as the harmonic mean of its local functionalities over all entities x ∈ O

where they are defined, which turns out to have the following closed form:

fun(r) =

∣∣{x ∈ O | ∃y ∈ O, r(x, y)
}∣∣∣∣{(x, y) ∈ O2 | r(x, y)
}∣∣
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We define the inverse functionality fun-1 of a relation r as the functionality of r−.

Equations. Now, we write the equations which define the entity and relation alignments at step n+ 1 from
those at step n. See [SAS11] for alternative design choices for these equations, including some which take
negative evidence into account.

Prn+1(x ≡ x′) = 1−
∏

r(x,y)
r′(x′,y′)

(
1− Prn(r′ ⊆ r)× fun-1(r)× Prn(y ≡ y′)

)
×
(
1− Prn(r ⊆ r′)× fun-1(r′)× Prn(y ≡ y′)

)
(1)

Prn+1(r ⊆ r′) =

∑
r(x,y)

(
1−

∏
r′(x′,y′) (1− (Prn(x ≡ x′)× Prn(y ≡ y′)))

)
∑

r(x,y)

(
1−

∏
x′,y′ (1− Prn(x ≡ x′)× Prn(y ≡ y′))

) (2)

See [SAS11] for a probabilistic interpretation which justifies these equations. We give further insight into
this in Appendix C, including alternative design choices for the equations guided by this interpretation.

Result. The final alignment E∞, R∞ is the fixpoint of the two above equations when starting at E0, R0. Note
that we have not given any theoretical guarantees for the existence of this fixpoint; this will be discussed in
Section 5. Class alignments are computed from E∞, R∞; we omit the formal computation of class alignments
as we will not use it in the rest of this report, the reader is referred to [SAS11] for details about this step.

2.4 Implementation

The implementation of Paris is a straightforward mapping of the equations to code. In this section, I describe
the original implementation of Paris, without my changes that will be introduced in future sections1.

To ensure that the appropriate facts and entities can be looked up efficiently, the ontologies are kept in
a Berkeley database with adequate indexes. Because of the numerous random accesses, this database has to
reside on a SSD to ensure acceptable run times.

Algorithm 1: Entity alignment computation

Data: O1, O2, E
n, and Rn

Result: En+1

1 for (x, x′) ∈ O1 ×O2 do
2 Q[x, x′] ··= 1; /* Stores the product for Equation (1) */

3 for x ∈ O1 do
4 for r, y such that r(x, y) do
5 for r′ ∈ O2 do
6 for y′ such that En[y, y′] > 0 do
7 for x′ such that r′(x′, y′) do
8 Q[x, x′] ··= Q[x, x′]× (1− fun−1(r)× En[y, y′]×Rn[r′, r]);
9 Q[x, x′] ··= Q[x, x′]× (1− fun−1(r′)× En[y, y′]×Rn[r, r′]);

10 for (x, x′) ∈ O1 ×O2 do
11 En+1[x, x′] ··= 1−Q[x, x′];

The entity alignment computation is given as Algorithm 1. The main difference between the Paris model
and the Paris implementation is the following: for every entity, the implementation only keeps one equality
candidate at each step, chosen at random from those which achieve the best score. Formally, as soon as En is
computed, it is replaced by a variant E′n where for every x, there is at most one y0 such that Pr′n(x ≡ y0) > 0,
in which case y0 should realize maxy P

n(x ≡ y) and Pr′n(x ≡ y0) = Prn(x ≡ y0); for every y, the symmetric
constraint is imposed. This is done to reduce memory usage and to make the computation faster at the next

1However, I do not take into account a bug present in the original version of Paris where quantity d in Algorithm 2 was
incorrectly computed.
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steps (because only one equality candidate will need to be considered). For this reason, the for loop starting
at line 6 in Algorithm 1 only iterates on 0 or 1 element in practice.

Another efficiency tweak is the fact that relation alignment scores, entity alignment scores, and inverse
functionalities will be considered as equal to zero if they are less than some small constant θ. Relations which
have too low a functionality will not be considered. Yet another trick used to improve the runtime is to store,
for each r, a list of the candidate r′ to try out. Initially, all r′ are candidates, but a candidate gets discarded
when it does not result in enough useful alignments (i.e., we stop considering r′ relations for r whenever this
choice of r′ does not make lines 8 and 9 run a sufficient number of times).

Algorithm 2: Relation alignment computation for alignments in O1 ×O2

Data: O1, O2, and En+1

Result: Rn+1 in one direction
1 for r ∈ O1 do
2 for r′ ∈ O2 do
3 N [r′] ··= 0; /* Stores the numerator for equation (2) */

4 Rn+1[r, r′] ··= 0;

5 d ··= 0; /* Stores the denominator for equation (2) */

6 for x, y such that r(x, y) do
7 v ··= 1;
8 for r′ ∈ O2 do
9 T [r′] ··= 1;

10 for x′, y′ such that En[x, x′] > 0 and En[y, y′] > 0 do
11 v ··= v × (1− En[x, x′]× En[y, y′]);
12 for r′ such that r′(x′, y′) do
13 T [r′] ··= T [r′]× (1− En[x, x′]× En[y, y′]);

14 for r′ ∈ O2 do
15 N [r′] ··= N [r′] + (1− T [r′]);
16 d ··= d+ (1− v);

17 if n > 0 then
18 for r′ ∈ O2 do
19 Rn+1[r, r′] ··= N [r′]/d;

The relation alignment computation is given as Algorithm 2. Unlike the entity alignment, it is performed
in both directions, i.e., the algorithm is called for alignments in O1 ×O2 and then for alignments in O2 ×O1.
Once again, in practice, entity alignment scores are considered to be zero if they are less than θ.

The final alignment is determined by iterating these algorithms until the alignment does not change anymore
or until a maximal number of iterations is reached.

2.5 Results and Evaluation

Paris is experimentally evaluated in [SAS11] on three main tasks: aligning benchmark datasets from the
Ontology Alignment Evaluation Initiative, 2010 [EFM+10]; aligning Yago and DBpedia; and aligning Yago
and IMDb.

Performance is measured by comparing the alignment produced by Paris to a gold standard which is
assumed to represent the truth for this matching task. In some cases, the gold standard alignments were
provided with the datasets (OAEI), produced manually (IMDb–Yago relations), derived from the URIs (Yago–
DBpedia entities), or computed through ad-hoc means (IMDb–Yago entities). In other situations, no gold
standard was available so an incomplete gold standard was devised by evaluating the results of Paris by hand,
possibly by sampling them if they were too large (Yago–DBpedia and IMDb–Yago class alignments).

The quality of the Paris matching with respect to the gold standard can be evaluated in terms of precision,
in terms of recall, or in terms of F-measure. Precision measures the proportion of produced matches which are
correct, recall measures the proportion of correct matches which were produced, and F-measure is the harmonic
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mean of those two scores. Formally, we see the gold standard as a set G of correct matchings to produce and
the results R as a set of matchings effectively produced, and we define:

precision =
|R ∩G|
|R|

recall =
|R ∩G|
|G|

F =
2× precision × recall

precision + recall

The results of Paris on the various tasks and the various datasets are summarized in Table 1 in Appendix B.

3 Performance Improvements

Paris has been criticized for the time it takes to run [LJPD+12]. A contribution of my internship is to improve
the efficiency of the Paris implementation through a variety of techniques. This section does not discuss my
more radical changes to Algorithms 1 and 2 which were motivated by the need to add support for join relations
but were also helpful to improve performance: they will be presented in Section 4.3.

In-Memory Storage. The first optimization to do was to move the ontologies from the SSD to main memory
in order to ensure that Paris was no-longer IO-bound but CPU-bound. To do so, I replaced the Berkeley DB
store by a custom in-memory store which manages directly the various indexes required to perform the queries
of Algorithms 1 and 2 efficiently. Another possible approach would have been to make use of an existing
in-memory triple store such as RDF3X [NW08]. The use of a custom in-memory store has the advantage of
ensuring that the memory overhead is minimal (because we can control precisely how the data is stored).

To make it possible to run the alignment tasks, my supervisor and I studied the possible hardware choices
and settled on the X79A-GD45 motherboard by MSI which supports 8 DDR3 slots; however, this forced us
to use Intel’s recent LGA2011 socket, for which few affordable CPUs were available (we chose the Intel Core
i7-3820). We assembled the machine ourselves.

Threading. The main bottleneck in the Paris computation after moving to an in-memory store is the
main loop of Algorithm 1. An important observation to make is that this loop can be parallelized easily:
taking advantage of this would be useful on multi-cores architectures; besides, it leaves open the possibility of
distributing the computation between different machines.

I implemented the loop on entities of O1 as a multithreaded computation, using a thread pool to avoid the
cost of spawning new threads for each entity. No care needs to be taken when performing parallel accesses
to O1 and O2 since only reads are performed: the only operations to synchronize are the reads and writes in
Q[x, x′], which is easy because the various threads use different, fixed values for x.

Changing Data Structures. Changing the data structures in several places lead to efficiency gains. For
instance, the original Paris stores the relation alignments as triples of two relations and a floating point score
which are kept in a Berkeley database and indexed by sub- and super-relation. The natural translation of this
to make it run in-memory is to use MultiMaps as indexes from sub- and super-relations to the equality pairs,
but a much more efficient choice is to use a native array of dimension two. (The relation alignment matrix is
sufficiently small and dense to make this preferable to a sparse solution involving a hash table.)

Results. To present the improvement in run times between the original implementation and the new im-
plementation, I compare them on the DBpedia–Yago alignment task which is one of the main experiments
presented in [SAS11]. The times reported for the original version are those indicated in the paper, on an
older (and smaller) version of DBpedia and Yago. Because the datasets have changed, the results of the two
versions are not identical, but they have similar F-measure. Note that because of the high RAM requirement,
the hardware used is not the same either: the results are therefore not directly comparable, but they give a
idea of the general efficiency gain. The results are presented in Table 2 in Appendix B.

4 Join Relations

One extension to Paris that I developed during my internship is the support for join relations. In this section,
I define join relations and present related work on this topic, before presenting the changes that must be made
to Paris to support them. I conclude with a presentation of the practical difficulties posed by join relations.
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4.1 General Presentation

As explained in Section 1.2, ontology alignment can be hard to perform because the two ontologies do not have
the same structure.

Join relations are a natural idea to make it possible to align ontologies with a different structure. Given a
sequence of relations r1, ..., rn (not necessarily distinct) in an ontology O, we define the join relation (r1, ..., rn)
as follows:

∀x, y ∈ O, (r1, ..., rn)(x, y)⇔ ∃z1, ..., zn−1, r1(x, z1) ∧ r2(z1, z2) ∧ · · · ∧ rn(zn−1, y) (3)

Note that the number of possible choices for the existentially quantified variables does not matter. The
name of “join relations” comes from the fact that if you consider (r1, ..., rn) as a binary relation in the relational
algebra, then its table is what you obtain by considering the tables of the binary relations representing r1, ...,
rn, renaming the columns so that the second column of each ri matches the first column of ri+1, joining the
tables, and projecting on the first column of r1 and on the second column of rn.

We have presented joins in logical terms and in relational terms, but the graph interpretation may be the
most intuitive: the facts for a join relation (r1, ..., rn) are simply the endpoints of the paths labeled by (r1, ..., rn)
in the graph.

4.2 Related Work

The alignment of join relations that we want to compute with Paris could be seen as a simplified case of
schema mapping if we see the ontologies as relational databases. A schema mapping [Kol05] is a set of logical
constraints which describes the schema of a database as a function of the schema of another database. In
this context, the problem of learning schema mappings from examples (given two database instances, find a
schema mapping from one to the other which is consistent with the data) has already been studied: see for
instance [tCDK12] for a theoretical study of this learning problem. Our setting is different, however, because
we are interested in imperfect mappings (i.e., we are willing to tolerate some errors), and because the alignment
of entities (i.e., equality on the database instances) is not crisp. For a study of the complexity of inferring the
optimal schema mapping from examples, where the optimality is defined by the minimal costs in terms of a
combination of the mapping size and the number of errors to correct, see [GS10]. This work does not lead to
any practical solution.

The more general problem of understanding the structure of a set of examples to produce a logic program
which generates those examples is known as Inductive Logic Programming [LD94]: however, in this setting,
we need negative evidence to guide the learning, which is not directly available in our case. Many problems
from data mining, for instance association rule learning, can be related to Inductive Logic Programming.
Such techniques can be applied to knowledge bases, see for instance [LMC11] or the ongoing work of Fabian
Suchanek’s PhD student Luis Galárraga.

4.3 Modifications to Algorithms 1 and 2

We will now describe how the support for join relations can be added to Paris.
The main change when join relations are supported is that it adds a large number of relations which, because

of memory constraints, are not materialized, i.e., we cannot compute them and add them to the in-memory
representation. For this reason, we cannot request all facts for a given join relations without an unreasonable
amount of computation. This observation means that the entity and relation alignment computations need to
be changed. Algorithm 1 can be made to work simply by changing the order of the loops and tweaking them
slightly. However, Algorithm 2 cannot be adapted so easily.

The solution that I propose is to perform the entity and relation alignment simultaneously. The crucial
observation is that, as we iterate over fact pairs to perform entity alignment, we are seeing almost all of the
information that we need in order to perform relation alignment: while we compute En+1, we can review the
evidence in En to compute Rn+1. This means that Rn+1 will depend on En instead of En+1. See Algorithm 3
for the combined entity and relation alignment algorithm. When we iterate on all facts with a fixed entity as
first or second argument in lines 6 and 12, this should be taken to mean “all facts with a simple relation r or
an interesting join relation r” for some measure of interestingness.
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Algorithm 3: Entity and relation alignment computation

Data: O1, O2, E
n, and Rn

Result: En+1 and Rn+1

1 for (x, x′) ∈ O1 ×O2 do
2 Q[x, x′] ··= 1; /* Stores the product for equation (1) */

3 N ··= new HashMap(); /* Stores the numerator for equation (2) */

4 D ··= new HashMap(); /* Stores the denominator for equation (2) */

5 for x ∈ O1 do
6 for r, y such that r(x, y) do
7 v ··= 1;
8 T ··= new HashMap();
9 for y′ such that En[y, y′] > 0 do

10 for x′ such that En[x, x′] > 0 do
11 v ··= v × (1− En[x, x′]× En[y, y′]);
12 for r′, x′ such that r′(x′, y′) do
13 Q[x, x′] ··= Q[x, x′]× (1− fun−1(r)× En[y, y′]×Rn[r′, r]); /* Direction 1 */

14 Q[x, x′] ··= Q[x, x′]× (1− fun−1(r′)× En[y, y′]×Rn[r, r′]); /* Direction 2 */

15 if T [r′] was not initialized then
16 T [r′] ··= 1;
17 T [r′] ··= T [r′]× (1− En[x, x′]× En[y, y′]); /* Align r and r’ */

18 for r′ such that T [r′] was initialized do
19 if N [r, r′] was not initialized then
20 N [r, r′] ··= 0;
21 N [r, r′] ··= N [r, r′] + (1− T [r′]); /* Update numerator for r(x, y) */

22 if D[r] was not initialized then
23 D[r] ··= 0;
24 D[r] ··= D[r] + v; /* Update denominator for r(x, y) */

25 for (x, x′) ∈ O1 ×O2 do
26 En+1[x, x′] ··= 1−Q[x, x′];
27 for (r, r′) ∈ O1 ×O2 do
28 Rn+1[r, r′] ··= N [r, r′]/D[r];

The notion of “interestingness” to use when exploring joins is an important question. In our implementation,
we used a simple depth-first traversal of the graph at each node, bounded by a maximum depth. Note that
this traversal must store the various facts that it encounters and discard duplicates, because a same fact can
correspond to different paths in the graph since we do not care about intermediate entities (see Figure 4
in Appendix B for an example of this).

To parallelize the computation of Algorithm 3, we can share Q across the various threads as before, but we
cannot share the numerators and denominators N and D across the threads because of possible race conditions.
Instead, we make each thread compute its own N and D from the entities that it took care of, and we sum the
N and D once all threads have finished following Equation (2). This can be thought of as a simple MapReduce
operation: the Map step maps entities to values of N and D accounting for the facts involving this involving
this entity as first argument, and the Reduce step sums the D and N .

One advantage of Algorithm 3 over Algorithms 1 and 2 is that the only accesses made to O2 are of the form
“get all facts involving a certain literal or entity” or “find all literals similar to a certain literal”. We do not
need to iterate over all relations, or find all facts for a given relation. This could be useful to apply Paris to an
intensional setting, where one of the ontologies to align is stored on a distant server and can only be accessed
through simple requests: Algorithm 3 can proceed by querying the remote ontology for facts about matched
entities, and discover the relations of the remote ontology and align them on the fly. This is also useful when
one ontology is much smaller than the other, for instance in the case of Section 7: we will only explore the
small part of the big ontology which is close to literals which match in the small ontology, which ensures good
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running time.
One drawback of Algorithm 3, however, is that the relation alignment is only computed in one direction

(i.e., determining that a relation of O1 is included in a relation of O2), like with Algorithm 2, so we need to
run this algorithm a second time (switching the roles of O1 and O2) to obtain a relation alignment in the
second direction. It seems that the relation alignment rule makes this hard to avoid, for the following reason:
whenever x and y in O1 align with x′ and y′ in O2 and there is a fact r′(x′, y′) but no fact r(x, y), then we
must account for r′(x′, y′) in the denominator of Equation (2) for r′; however, when exploring O1, we have no
reason to see this fact because x and y are not linked by any fact. An interesting question that we leave open
is to know whether it is possible to compute an approximation of the relation alignment in both directions by
performing Algorithm 3 only once.

4.4 Functionality Estimation

To perform the computation, we need to know the functionality of join relations. Determining them is an
interesting subproblem that I did not manage to solve satisfactorily. We can count the number of occurrences
and the size of the domain of joins like we do for simple relations, but this is already a challenging task on large
ontologies such as Yago (remember that join relations are not materialized). It seems that the functionality
of join relations should be related to the functionality of the individual relations which comprise them, but a
closer look suggests that this probably not the case. For a join of two relations (r1, r2), the functionality can
be very different depending on how the join occurs, i.e., depending on the intersection of r1’s codomain and
r2’s domain. See Figure 5 in Appendix B if you need an illustration. In the light of such examples, it seems
unlikely that useful, tight bounds can be derived.

For this reason, as a simple heuristic, we set the functionality of a join relation to be the minimum of the
functionalities of the individual relations being joined.

It is interesting to note that the related problem of estimating the cardinality of joins (i.e., the number
of facts for a join relation) has been studied in the context of triple stores because it can be used to esti-
mate the size of intermediate results to help choose query execution plans. See for instance [NW08] or more
specifically [NM11].

4.5 Practical Issues and Further Work

To select interesting joins to perform, we tried to limit first to all joins with a length of 2. In practice, we did
not manage to run an alignment task with this setting on large ontologies, and only ran it in a setting where
one of the ontologies was small (see Section 7).

To actually perform the alignment of large ontologies using joins, a more clever approach would be needed
to select which joins are promising and which joins should not be explored, and possibly with which relations
we should try to align a certain join relation. Algorithm 3 allows us to estimate on the fly the support of join
relations and the current confidence of a relation alignment. This could be used to stop considering alignments
early if they do not seem promising.

Another issue with join relations is that we should not pay attention to relations with insufficient support.
However, it is not easy to know how the support should be bounded, especially if we wish to retain the
parameter-free nature of Paris. One option, inspired by minimum description length and by [GS10], would
be to say that an alignment should be kept only if the extent to which it explains the data (i.e., the amount of
data that it summarizes) is larger that the space it takes to describe this alignment.

Despite those shortcomings, the addition of joins make it possible for Paris to align the simple cases of joins
which occur in the restaurant dataset from the Ontology Alignment Evaluation Initiative, 2010 [EFM+10], thus
bringing the recall of relation alignments on this dataset from 66% to 100% while maintaining 100% precision.

5 Convergence Analysis

There is no guarantee of convergence for Paris, only experimental proof. This section outlines possible ideas
to prove the convergence in simplified models of Paris.
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As a general remark, let us first notice that if we fix the relation alignment score, then the entity alignment
scores converge, because they are bounded (in [0, 1]) and increase component-wise. Formally, since we start to
iterate at the zero vector, then it must be the case that for all (x, x′) ∈ O1×O2, Pr1(x ≡ x′) ≥ P 0(x ≡ x′) = 0,
and the entity alignment equation guarantees that if P i+1(x ≡ x′) ≥ P i(x ≡ x′) then P i+2(x ≡ x′) ≥ P i+1(x ≡
x′), so a trivial induction proves our claim. However, this does not give us any intuition about the meaning of
the fixpoint.

In this section, we present a simplification of the Paris entity alignment equation (Equation (1)) and try
to link it to a variant of PageRank. We then present an alternate entity alignment equation suggested by this
analogy. Conversely, a simple example on non-convergence in a specific case is given in Appendix D.

5.1 A Simpler Model

In this subsection, we fix the relation alignment scores and we consider a simplified model:

• Couples of relations are either aligned (with score 1) or not aligned (with score 0).
• Relations are either inverse functional (with score 1) or not inverse functional (with score 0).
• We propagate alignments in a one-directional fashion, i.e., we do not symmetrize, we only take into

account fun-1(r) and r ⊆ r′.
In this simplified setting, the entity alignment equation rewrites to:

Prn+1(x ≡ x′) = 1−
∏

r(x,y)
r′(x′,y′)

fun-1(r)=1
r′⊆r

(
1− Prn(y ≡ y′)

)
(4)

We can simplify (4) by looking at the log-probabilities defined as follows and designed so that as Prn(x ≡ x′)
takes values in [0, 1], LPrn(x ≡ x′) takes values in [0,+∞]:

LPrn(x ≡ x′) ··= − log(1− Prn(x ≡ x′)) (5)

Equation (4) rewrites to:

LPrn+1(x ≡ x′) =
∑
r(x,y)

r′(x′,y′)
fun-1(r)=1

r′⊆r

LPrn(y ≡ y′) (6)

To simplify this equation further, we will formalize a representation of ontologies as labeled graphs: we
write O1 = (V1, R1, E1) where V1 are the entities and literals, R1 are the relations, and E1 ⊂ V1 ×R1 × V1 are
the facts, and likewise for O2.

Now, consider the product graph G = (V1 × V2, R1 ×R2, E) with:

E =
{

((x, x′), (r, r′), (y, y′)) | (x, r, y) ∈ E1, (x
′, r′, y′) ∈ E2, fun-1(r) = 1, r′ ⊆ r

}
(7)

Except for the conditions on the functionality and on relation alignments, this is exactly the product
automata construction if you see O1 and O2 as automata on the alphabets R1 and R2. Now, let us rewrite
Equation (4), writing (x, x′) instead of (x ≡ x′):

LPrn+1(x, x′) =
∑

((x,x′),(r,r′),(y,y′))∈E

LPrn(y, y′) (8)

Some of the terms of this sum come from neighboring entity alignments, and other come from neighboring
literal alignments. Let us distinguish those two cases by defining:

L(x, x′) =
∑

((x,x′),(r,r′),(l,l′))∈E
l and l′ literals

LPrn(l, l′) (9)
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Remember that LPrn(l, l′) is a constant denoting the similarity of l and l′, and LPrn(y, l′) = LPrn(l, y′) = 0
for all entities y, y′. Define G′ = (V1 × V2, R1 × R2, E

′) and E′ = E\{(x, r, y) | x or y literal}. Write M the
adjacency matrix of G′ (where rows and columns are indexed by couples of proper entities in O1 × O2). We
will see L and the LPrn as vectors indexed by such couples. We can therefore write:

LPrn+1 = M LPrn +L (10)

Hence, the Paris computation converges if and only if the LPr series defined in this way converges in
[0,+∞], with LPr0 = ~0.

The point of reformulating the Paris computation in this way is to compare it to linear systems such as
PageRank. To the difference of PageRank, however, M is not stochastic, so there is no conservation of mass
(but diverging to +∞ still translates as convergence for Prn), and there is an affine L term which biases the
computation towards alignments which are close to couples of similar literals.

More specifically, we can link this model to the use of Green measures in [OS07], but in our case we use L
to bias the computation instead of a Dirac measure on only one node.

5.2 A Different Model

It seems natural to lift the restrictions that we made on the simpler model so that M can have arbitrary
coefficients in [0, 1] instead of {0, 1}. Sadly, doing this directly will not work. For concision, we will stay in the
unidirectional model, and will write A(r, r′) = Prn(r′ ⊆ r) × fun-1(r). The translation of Equation (1) to log
probabilities does not give what we intend:

LPrn+1(x ≡ x′) =
∑
r(x,y)

r′(x′,y′)

− log
(
1−A(r, r′) Prn(y ≡ y′)

)
(11)

Our hope was that there would exist a function B(r, r′) such that:

LPrn+1(x ≡ x′) =
∑
r(x,y)

r′(x′,y′)

B(r, r′) LPrn(y ≡ y′) (12)

If we want to obtain this, then we should replace Equation (1) by:

Prn+1(x ≡ x′) = 1−
∏

r(x,y)
r′(x′,y′)

(
1− Prn(y ≡ y′)

)B(r,r′)
(13)

Sadly, if we do this, we lose the probabilistic interpretation of Equation (1). The probabilistic interpretation
was, informally: “x and x′ are aligned if one of the following events (that we assume to be independent) is true:
for some r(x, y) and r′(x′, y′), y and y′ are aligned and the alignment should be propagated over (r, r′)”. In
other words, A(r, r′) Prn(y ≡ y′) is to be interpreted as the conjunction of “r′ ⊆ r and r is inverse functional”
and “y and y′ are aligned”. By contrast, the alternative equation that we propose does not have a clear
probabilistic interpretation.

An interesting question for further work would be to find out the difference in performance between the
use of Equation (1) with its probabilistic approach and the use of Equation (13) with the interpretation that
we described.

5.3 Understanding the Full Paris

To prove the convergence of the whole Paris, it would be necessary to take into account the fact that relation
alignment scores vary. However, relation alignment scores are not increasing, but can vary arbitrarily, so the
simple argument for convergence given at the beginning of this section does not apply anymore. It seems
challenging to study the convergence of the sequence (En, Rn); it would perhaps be more promising to fix Rn,
compute the limit for entity alignments, compute Rn+1, compute the limit for entity alignments, compute Rn+2,
etc., and prove that this whole process converges. To do so, we would need to understand to what extent the
relation alignment computation “respects” the entity alignment and leads to convergence of the whole process.
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6 Approximate Literal Matching

In this section, we present an improved way to match literals in Paris through shingling. The shingling
technique itself was implemented by Mayur Garg (see Section 6.4), I took care of the integration with Paris.

6.1 Motivation

The alignments computed by Paris are initialized (“bootstrapped”) by an alignment on literals defined as a
similarity function L giving, for any couple of literals x, y, an equality score L(x, y) ∈ [0, 1]. The simplest such
function is the exact equality function such that L(x, x) = 1 and L(x, y) = 0 if x 6= y. The original imple-
mentation of Paris ([SAS11], sections 5.3 and 6.3) uses the exact equality function with simple normalization
techniques: remove language information and datatypes, and (for the datasets where it helps) lowercase and
remove punctuation.

The simple approach has limitations, however, because literals in the two ontologies might differ slightly
because of spelling variations and typos. For instance, where one ontology may represent the name of Charles
Dickens as “Charles Dickens”, another one may write “Dickens, Charles”, “C. Dickens”, or, in the case of
ontologies extracted automatically, “by Charles Dickens”. The simple approach will consider all these literals
to be different, whereas we would want to notice that they are similar and give them a non-zero score to use
them in the alignment.

This suggests that a more elaborate literal similarity function is needed. This problem is challenging,
because the literals in the ontologies can be of a very diverse nature: they can represent strings, of course, but
also numbers, dates, date ranges, etc. We study alternatives designed for the case of strings, because it is a
common case and gives a reasonable approximation for other literal types.

6.2 Possible Approaches

There are several well-known string similarity measures:

Levenshtein similarity The Levenshtein distance computes the minimal number of insertions, substitu-
tions and deletions to go from one string to the other. It is computed with a simple dynamic programming
algorithm which runs in time proportional to the product of the length of the two strings. The Levenshtein
distance can be normalized to [0, 1] by dividing it by the length of the longest of the two strings, and can
be turned in a similarity measure by taking the similarity to be one minus the normalized distance.

Damerau–Levenshtein similarity The Damerau–Levenshtein distance is defined like the Levenshtein
distance but adds transpositions as an edit operation of cost 1.

n-gram similarity If we look at the set of n-grams of a string (either at the character or at the word level),
then we can define a similarity between two strings as the Jaccard similarity of their sets of n-grams.
(The Jaccard similarity of two sets is the size of their intersection divided by the size of their union.)

However, because we are dealing with large ontologies, the number of distinct literals is very high: for instance,
there are 2.3 million distinct literals in DBpedia and 2.7 million in Yago. Hence, we cannot afford to compute
the similarity between all pairs of literals. The algorithm for Paris suggests that the operation which we have
to optimize is the following: given one literal x, we need to find the literals in the other ontology which are
close to x for the similarity measure of interest.

A good idea to do so is to preprocess the literals of both ontologies and index them in a way which allows
queries to be run more efficiently. This problem is called approximate dictionary searching and occurs in
a variety of contexts: spell-checkers (which suggest dictionary words which are close to a misspelled word),
automated speech recognition and optical character recognition (find dictionary words which are close to a
recognized word), search engines (e.g., the “did you mean” feature of Google) and computational biology (find
DNA sequences in a database which are similar to a query sequence).

Numerous methods are known for approximate dictionary searching within a certain distance threshold for
the Levenshtein and Damerau–Levenshtein distances: see [Boy11] for a general survey. However, in our context,
we do not need to respect an exact threshold for edit distance, but only want to get a reasonable number of
good candidates (and do not require precision or recall to be 1). Besides, because we can both have small
changes within words but also changes in word order, we can neither use the Levenshtein similarity at word
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level nor use it at character level. Instead, we choose to use the n-gram similarity measure at the character
level.

The methods described in [Boy11] which index n-grams of a string are sequence-based filtering methods
such as inverted n-gram files (section 7.1.2) or the unigram signature hashing (section 7.2.5). However, inverted
n-gram file have a large index size which is problematic in our setting (because the index has to reside in main
memory), and unigram signature hashing is a folklore method with poor performance. For these reasons, we
turn to a different scheme.

6.3 Shingling

Shingling (or MinHash applied to the shingle set) is a technique which maps strings to a constant-size summary
of their set of shingles (a.k.a. n-grams): these summaries can be indexed efficiently and an approximation of
the Jaccard similarity of the shingle sets can be computed from them. It was introduced in [BGMZ97] to find
duplicate in sets of Web pages, and presented in [MRS08, AMR+11] for the same purpose, using as shingles
the n-grams at word level. We use it to approximate the n-gram similarity measure on our literals, by taking
as shingles the n-grams at character level. In this subsection, we review how this technique works and explain
how we use it in our setting.

Shingling relies on the following observation: if we draw at random a hash function f from shingles to
arbitrary values, then f essentially acts as a random permutation of the shingles. To simplify the analysis, we
will assume that f has no collisions, which is extremely likely given the small number of possible shingles for
the values of n that we use. Given a set of shingles S, the minimum φf (S) = mins∈S f(s) is thus realized by
a random element of S under a uniform distribution; hence, given two sets S1 and S2 of Jaccard similarity
J(S1, S2), we have ([MRS08], p. 439 of the online edition):

Prf (φf (S1) = φf (S2)) = J(S1, S2) (14)

Now, notice that we can use the law of large numbers to get an arbitrarily good estimation of J(S1, S2).
Choose a constant N , and draw a family (fi)1≤i≤N of hash functions independently at random. Given a set of
shingles S = (sj), we compute the fi(sj) and define the sketch of S to be the N -uple ψ(S) = (minj fi(sj))1≤i≤N .
As an abuse of notation, for two strings x and y, we will write J(x, y) the Jaccard similarity of the set of shingles
of x and y (which is the n-gram similarity of x and y), and will write ψ(x) the sketch of the set of shingles of x.
Remember that L(x, y) is the n-gram similarity of x and y. Now, by Equation (14), if we consider two strings
x and y, an unbiased estimator for the Jaccard similarity of the set of shingles of x and y is the proportion of
positions at which the sketches of both strings are equal. Formally:

lim
N→∞

∣∣{i ∈ {1, ..., N} | ψ(x)i = ψ(y)i
}∣∣

N
= L(x, y)

The point of this estimator is that it can be used to index a collection of strings in an efficient fashion.
Build N hash tables (Hi) (solving collisions by chaining), and for every string x of the collection, compute its
sketch ψ(x) and hash x in each hash table Hi at position ψ(x)i. Of course, to save memory, we only store
references to x in the hash tables, not copies of x.

Now, given a query string y and a threshold k, we can compute its sketch ψ(y), and, from the N cells
(Hi[ψ(y)i])i, extract those strings which occur at least k times. As an interesting side remark, note that the
obvious algorithm to do this (scan the N cells, count the number of occurrences of each string, and keep those
which occur more than k times) is not the most efficient one. The problem of retrieving the candidate strings
is the T-occurrence problem of [LLL08] (section III, p. 2), for T ··= k. Their results show that elaborate
approaches such as their DivideSkip algorithm can be significantly more efficient than the straightforward
method (which they call ScanCount).

By the results above, the strings which occur in at least k of these N cells have been estimated to have a
Jaccard similarity with y of at least k/N . Because this set of candidate strings should be small, we can actually
afford to re-compute the exact similarity between them and the query string: the point of the estimator is only
to filter the strings. Hence, by indexing the literals of one ontology, we can, given a query string from the other
ontology, obtain efficiently the similar literals with their similarity scores.
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6.4 Implementation

A standalone implementation of the shingling technique was implemented in Java by Mayur Garg who interned
in the DBWeb team from IIT Delhi. Mayur also investigated the best choice of parameters for our needs:
number of hash function to use, characteristics of the hash functions, and value of n for the n-grams, evaluated
in terms of query time, memory usage, and recall. Details are available in his report [Gar12].

I helped supervise Mayur and assisted him in his work. I also improved the implementation of Paris to
allow it to use Mayur’s code.

6.5 Results

To investigate experimentally the efficiency of approximate literal matching, we tested the results of Paris
with the shingling technique on the restaurant dataset from the Ontology Alignment Evaluation Initiative,
2010 [EFM+10], which was used to evaluate the original version of Paris. We compare the shingling technique
to the straightforward use of the exact equality function, and to the use of the exact equality function up to
an ad-hoc normalization technique devised specifically for this dataset.

The results are summarized in Table 3 in Appendix B and show that the results of the shingling technique
are comparable to ad-hoc normalization. By contrast, the shingling technique is generic and does not depend
on the dataset.

7 Application to Deep Web Analysis and Ontology Enrichment

In this section, I present a possible use of Paris for information extraction from deep Web sources. This is joint
work with Marilena Oita, who is currently doing her PhD on “Deriving Semantic Objects from the Structured
Web” under Pierre Senellart’s supervision. It has been accepted as a vision paper for the VLDS workshop of
the VLDB conference [OAS12]. Parts of this section are directly adapted from the publication.

7.1 Introduction

The deep Web consists of dynamically-generated Web pages that are reachable by issuing queries through
HTML forms. A form is a section of a document with special control elements (e.g., checkboxes, text inputs)
and associated labels. Users generally interact with a form by modifying its controls (entering text, selecting
menu items) before submitting it to a Web server for processing. Usually, the contents of the form are used to
prepare a query which is run on a backend database, and the results of this query are presented on the response
page.

Forms are primarily designed for human beings, but it is an important challenge to design automated
agents that are able to use them. A first possible use of such agents is simply to crawl the result pages that
can be obtained from the form: for instance, this is an improvement over existing search engine crawlers such
as Googlebot which do not know how to fill forms and thus are not able to crawl and index result pages.
Furthermore, more elaborate uses are possible thanks to the structured nature of the information on result
pages: we can try to extract structured data from them, and use it to build ontologies or to enrich existing
ontologies.

Most existing approaches for automated form understanding rely on domain knowledge: they assume that
the domain of the form is known. Besides, they tend to separate the steps of form interface understanding and
information extraction from result pages, although both contribute to a more authentic vision on the backend
database schema. The form interface exposes in the input schema some attributes describing the query object,
while response pages present this object instantiated in Web records that outline the form output schema.

A harder challenge is to understand the semantics of the backend database schema and how they relate to
the object of the form. For instance, we want to understand that a given form allows us to query a database
of books, that a certain input field and result page internal path corresponds to the title of the book, and
that another field and internal path corresponds to the author of the book. Once again, previous attempts to
achieve this have only relied on heuristics, or have assumed domain-specific knowledge.

Our approach to form interface understanding integrates two components. The first component is a system
developed by Marilena Oita during her PhD which analyzes and probes forms, identifies records in result pages,
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establishes a mapping of the input and output schema, and represents the results of this crawling as an ontology.
The second component is the Paris system, which is used to align this ontology to the general-purpose ontology
Yago [SKW07]. This alignment allows us to identify the backend database objects (because the entities which
represent them are aligned to Yago entities) and to understand the semantics of the form input fields and the
output page internal paths (because the relations which represent them are aligned to Yago relations). This
alignment crucially relies on new features of Paris that I developed during my internship: support for join
relations (Section 4) and approximate literal matching (Section 6).

7.2 Building an Ontology from a Deep Web Source

The deep Web analysis system by Marilena produces a sample ontology from the deep Web source. In this
section, I summarize how this is being done, by reviewing the first steps of Figure 6 in Appendix B which
is an overview of the whole process. Details about the steps performed by Marilena’s system are available
in [OAS12].

The form is first analyzed and probed by entering stop words or neighboring terms into the form fields. The
system identifies records from the result page using [OS12] and identifies the output schema as the DOM paths
where record contents vary. It aligns input and output schemas by submitting record attribute values in form
fields and trying to find matches.

Marilena’s system then represents the data extracted from the Web records as RDF triples [W3C04d] in
the following manner:

1. Each record is represented as an entity ;
2. All records are of the same class, stated using rdf:type;
3. The attribute values of records are viewed as literals;
4. Each record links to its attribute values through the relation (i.e., predicate) that corresponds to the

record internal path of the attribute type in the response page;

It should be noted that since this information is represented as RDF, we could add much more information to
the representation provided that we have the means to extract it. Though Marilena’s current implementation
does not do this, we could include a more detailed representation of a record by following the hyperlinks that
we identify in its attribute values and replacing them in the original response page with the DOM tree of
the linked page. In this way, the extraction can be done on a more complete representation of the backend
database. We could also add complementary data from various sources, e.g., Web services or other Web forms
belonging to the same domain.

7.3 Ontology Alignment

The ontology generated in the previous section must now be aligned to a reference ontology. Paris is a good
choice to perform this alignment, because it is holistic and we benefit from all the alignments that it is able to
perform:

Entity alignment. This allows us to identify records from the deep Web source that are also present in
the reference ontology.

Class alignment. This allows us to determine the class(es) of the deep Web records in the reference
ontology.

Relation alignment. This allows us to determine the relations between the deep Web records, their real-
izations in the output schema of the form (e.g., understand that a certain DOM path in records indicates
the author of the book represented by this record), and their realizations in the input schema of the form
(e.g., understand that a certain form field allows us to search books by title).

The use of approximate literal matching is required to perform this alignment efficiently. Indeed, extracted
literals usually differ from those of Yago because of alternate spellings or surrounding stop words. A typical
case on Amazon is the addition of related terms, e.g., “Hamlet (French Edition)” instead of just “Hamlet”.
An independent possible improvement that could be made to the extraction phase to mitigate this issue is to
perform pattern identification among data values of the same type.

Furthermore, the support for join relations is also necessary in this context, because attributes in the result
pages of the form might not map to a simple relation in the source ontology. For instance, the “author”
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attribute in a form would correspond to a two-step path in Yago (y:created, y:hasPreferredName). To
ensure that the alignment with joins can be performed efficiently, we limit the length of joins to 2. Since the
sample ontology extracted from the deep Web source is small, this ensures that we will not explore the full
reference ontology, but only those parts which are at a distance of at most 2 to a literal which aligned with a
literal from the sample ontology.

Of course, a limitation of this whole approach is that there must be some overlap between the records of
the deep Web source and the entities of the reference ontology. If this is not the case, then the alignment
computed by Paris will necessarily be empty (or meaningless). If we use Yago as a reference ontology, then
this means that we are limited to domains on which Wikipedia has sufficient coverage.

7.4 Form Understanding and Ontology Enrichment

Ontology alignment gives us knowledge about the data types, the domains and ranges of record attributes, and
their relation to the object of the form (in our case, a book). The propagation of this knowledge to the input
schema through the input–output mapping (for the form elements that have been successfully mapped) results
in a better understanding of the form interface. On the one hand, we can infer that a given field of the Amazon
advanced search form expects author names, and leverage Yago to obtain representative author names to fill
in the form. This is useful in intensional or extensional automatic crawl strategies of deep Web sources. On
the other hand, we can probe the interface to generate new result pages for which data location patterns are
already known and enrich Yago through the alignment that we once determined.

There are three main possibilities to enrich the ontology. First, we can add to the ontology the instances
that did not align (e.g., we can use the Amazon book search results to add to Yago the books for which
it has no coverage). Second, we can add facts (triples) that were missing in Yago. Third, we can add the
relation types that did not align. For instance, we can add information about the publisher of a book to Yago.
This latter direction is more challenging, because we need to determine if the relation types contain valuable
information. One safe way to deal with this relevance problem is to require attribute values to be mapped to
a form element in the input schema. We can then use the label of the element to annotate them.

7.5 Results on Amazon Book Search

We have prototyped this approach for the Amazon book advanced search form2. Obviously, we cannot claim
any statistical significance of the results we report here, but we believe that the approach, because it is generic,
can be successfully applied to other sources of the deep Web.

Our preliminary implementation performed agnostic probing of the form, wrapper induction, and mapping
of input–output schemas. It generated a labeled graph with 93 entities and 10 relation types out of which 2 (title
and author) are recognized by Yago. Literals underwent a semi-heuristic normalization process (lowercasing,
removal of parenthesized substrings). We then replaced each extracted literal with the most similar literal in
Yago if the 2-gram similarity was higher than an arbitrary threshold.

We aligned this graph with Yago by running Paris for 15 iterations, i.e., a run time of 7 minutes (most of it
was spent loading Yago, the proper computation took 20 seconds). Though the vast majority of the books from
the dataset were not present in Yago, the 6 entity alignments with best confidence were books that had been
correctly aligned through their title and author. To limit the effect of noise on relation alignment, we recomputed
relation alignments on the entity alignments with highest confidence; the system was thus able to properly align
the title and author relations with y:hasPreferredName and (y:created, y:hasPreferredName), respectively.
These relations were associated to the record internal paths of the output schema attributes and propagated
to form input fields.

Conclusion

Due to space constraints, we will not repeat the conclusion of our report here, but refer the reader to page 2
for a summary of contributions and a discussion of further work.

2http://www.amazon.com/gp/browse.html?node=241582011
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Appendix B. Tables and Figures

Instances Classes Relations

Prec Rec F Prec Rec F Prec Rec F

OAEI person 100% 100% 100% 100% 100% 100% 100% 100% 100%
OAEI restaurant 95% 88% 91% 100% 100% 100% 100% 66% 88%
DBpedia–Yago 90% 73% 81% 94% - - 93% - -
IMDb–Yago 94% 90% 92% 28% - - 100% 80% 89%

Table 1: Summary of the results of Paris on the various datasets. Details are provided
in [SAS11].

Iteration Original Paris New Paris (1 thread) New Paris (4 threads)

Startup 0h00 0h27 0h10
1 4h04 0h40 0h27
2 5h06 3h00 1h02
3 5h00 0h34 0h24
4 5h30 0h29 0h16

Total 20h 5h 2h

Table 2: Running times in hours for the DBpedia–Yago alignment task. The original
Paris was run on an Intel Xeon E5620 CPU clocked at 2.40 Ghz on a machine with
12 GB of RAM. The new Paris was run on an Intel Core i7-3820 CPU clocked at 3.60
Ghz with 48 GB of RAM.

Precision Recall F-measure

Paris with exact equality 95% 88% 91%
Paris with shingling 96% 95% 96%
Paris with normalization 98% 96% 97%

Table 3: Results of entity alignment on the restaurants OAEI dataset with exact equal-
ity, shingling, and ad-hoc normalization.
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Figure 4: Because we project on the extremi-
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then the join relation can be either functional
(if x and a are the same node) or not functional
(if y and a are the same node).
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Appendix C. Refinements to the Entity Alignment Equation

In this appendix, I outline possible changes to Equation (1) by refining its probabilistic interpretation.
The propagation of entity alignment scores is given by Equation (1) on page 8. A condition that we would

like to impose on this equation is that it should not lead to evidence amplification: namely, for any two entity
couples (x, x′) and (y, y′), if P (y ≡ y′) increases by ε, then P (x ≡ x′) should not increase by more than ε.

However, it turns out that this condition is not respected. In the simple case where the only nodes in the
graph are x, x′, y, and y′, and where the only facts are r(x, y) and r′(x′, y′) where r and r′ are two perfectly
aligned and inverse functional relations (i.e., P (r ⊆ r′) = P (r ⊆ r′) = 1 and fun-1(r) = fun-1(r′) = 1),
Equation (1) rewrites as:

Pr(x ≡ x′) = 1−
(
1− Pr(y ≡ y′)

)2
(15)

The derivative of x 7→ 1 − (1 − x)2 in 0 evaluates to 2, so, whenever Pr(y ≡ y′) increases from 0 to a
small value ε, the value of Pr(x ≡ x′) increases by 2ε + o(ε). To fix this problem, a possible way would be to
take the harmonic mean of the score from both directions, though this means that we lose the probabilistic
interpretation (disjunction) that we had for the previous equation:

Pr(x ≡ x′) = 1−
∏

r(x,y)

r′(x′,y′)

√(
1− Pr(r′ ⊆ r)× fun−1(r)× Pr(y ≡ y′)

)
×
(
1− Pr(r ⊆ r′)× fun−1(r′)× Pr(y ≡ y′)

)
(16)

Furthermore, another problem arises whenever multiple relations exist between two nodes. This situation
is not unusual and occurs frequently in practice: for instance, in the Yago ontology, a person can be related
to the same place through y:wasBornIn and y:diedIn. As a simple example of the problem, let us assume
that the facts are r1(x, y), r2(x, y), r′1(x, y), and r′2(x, y), that all relations are inverse functional, and that r1
and r′1, r2 and r′2 align perfectly in both directions (Pr(ri ⊆ r′i) = Pr(r′i ⊆ ri) = 1 for i = 1, 2). See Figure 7
for an illustration. Substituting this in Equation (16), we obtain:

Pr(x ≡ x′) = 1−
(√

(1− Pr(y ≡ y′))2
)2

= 1−
(
1− Pr(y ≡ y′)

)2
(17)

x’ y’
r1’
r2’

x y
r1
r2

Figure 7: Multiple relations between entities.
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We have the same problem as before because, intuitively, the evidence for y ≡ y′ is propagated once for
each of the relation couples (r1, r

′
1) and (r2, r

′
2). The reason why this happens is because of the independence

assumption: when we reach (y, y′) by both relation couples, we consider that Pr(y ≡ y′) is independent of
itself, and take it into account twice. Indeed, consider the following logical formula, which is the justification
of Equation (1) (where “i.f.” stands for “inverse functional”):

∃r, r′, y, y′, r(x, y) ∧ r′(x′, y′) ∧ y ≡ y′ ∧
((
r is i.f. ∧ r′ ⊆ r

)
∨
(
r′ is i.f. ∧ r ⊆ r′

))
=⇒ x ≡ x′ (18)

Equation (1) is obtained by translating (18) according to the process outlined in Appendix B of [SAS11].
However, this process depends on how we group the existential quantifiers. Translating Equation (18) by
grouping the existential quantifiers as “∃(r, r′, y, y′)” yields Equation (1). However, if we choose to group them
as “∃(y, y′), ∃(r, r′)”, we can rewrite the formula as:

∃y, y′, R,R′, R(x, y) ∧R′(x′, y′) ∧ F (R,R′) ∧ y ≡ y′ =⇒ x ≡ x′

F (R,R′) ··= ∃r ∈ R, r′ ∈ R′,
(
r is i.f. ∧ r′ ⊆ r

)
∨
(
r′ is i.f. ∧ r ⊆ r′

) (19)

This logical formula is equivalent to (18), but its reformulation accounts for the fact that there is no possible
independence assumption between the various ways to reach a given couple (y, y′) through several r’s:

Pr(x ≡ x′) = 1−
∏

R(x,y)
R′(x′,y′)

(
1− F (R,R′)× Pr(y ≡ y′)

)
×
(
1− F (R′, R)× Pr(y ≡ y′)

)
(20)

(R,R′) ··= 1−
∏
r∈R
r′∈R′

(
1− fun-1(r) Pr(r′ ⊆ r)

)
(21)

The intuitive interpretation of this is that for a pair (x, x′), we do an independent disjunction over all
adjacent pairs (y, y′), and x and x′ are aligned if y and y′ are aligned and if some couple of relations is suitable,
which is the independent disjunction over all couple of relations that the relations are aligned and inverse
functional.

This alternate way to align entities was implemented as an optional setting in Paris. However, it does not
lead to an observable difference in quality.

Appendix D. Counter-Example to Convergence with Loop Facts and
TakeMax

In this appendix, I outline a simple counter-example to the convergence of Paris if we allow facts of the form
r(x, x) and if we pick one maximal alignment for each entity at each step. The counter-example was discovered
on real data and found by minification using multidelta [WM].

Consider the situation in Figure 8. At the first iteration, we will either align a and x2, or a and y2 (and
only one of these choices because we pick one maximal alignment). Say we align a and x2. Then, at the next
iteration, the alignment a ≡ x2 will make us align a and y2. At the next iteration, this alignment will make us
align again a and x2. Thus, the alignment oscillates and does not converge.

x2

y2R2

"foo"S2

S2

a

R1

"foo"
S1

Figure 8: Example of non-convergence on two ontologies. We assume that the ontologies
also contain data which encourage us to align R1 and R2, R

−
1 and R2, and S1 and S2.
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