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Abstract

We present the problem of finding efficient labeling schemes to encode
the reachability relation represented by a DAG. We focus on the well-
studied cases of interval labeling and interval-containment labeling, and
spell out the details of an interval-containment labeling algorithm. We
then look at existing relaxations of these schemes with non-constant label
sizes, and present ideas for a relaxation scheme on interval-containment
orders.

1 Introduction

General problem. We are given a DAG G on which we will have to answer
reachability queries: can we reach node a from node b in G? Which preprocess-
ing can we do on this DAG to answer those queries efficiently?

Without preprocessing, the reachability can be tested by a simple graph
exploration which is O(E) in the worst case. If we precompute the answer to
each reachability query (which is akin to computing the transitive closure), we
can answer all queries in O(1), but need O(V 2) memory. Can we do better? The
well-known scheme of [ABJ89] is efficient in practice but still requires O(V 2)
memory in the worst case. In particular, can we devise a scheme which requires
memory O(V ) while allowing us to answer reachability queries in O(1)?

An example. Consider the graph G in figure 1. We will encode the transitive
closure of G by representing each node as an interval, so a total representation
size of O(1)), and ensuring that for any two nodes x and y, y is reachable from x
if and only if the interval representing y is included in the interval representing
x.
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Figure 1: An example graph G and intervals.
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Each interval is represented as two values, so the storage cost per node is
O(1) (we consider that the values used fit in a machine word, which is true for
graphs of reasonable size). Hence, the total storage cost is O(V ), and testing
if one interval is included in the other costs O(1). We will present this scheme
(the interval-containment order) in the rest of this document. Sadly, not all
graphs can be represented by intervals in this way.

Labeling schemes. The scheme presented above is an example of a labeling
scheme: attach an constant-sized label i(x) to each node x, define a constant-
time boolean function f on couple of labels, and require that f(i(x), i(y)) iff y
is reachable from x in G. More specifically, let us focus on the case where we set
a given constant k, require the labels are k-uples of integer values, and require
f to be a boolean combination of the predicates i(x)i < i(y)j and i(y)i < i(x)j
for (i, j) ∈ {1, ..., k}2. In other words, the partial order on vertices defined by
the labels is some combination of the total orders on the possible couple of label
values, and we require this partial order to match the order encoded by the
reachability relation in our DAG. The example presented above is a labeling
scheme in this sense, for k = 2.

How expressive are those labeling schemes, depending on k? If we take
k = 1, it is clear that the only orders that can be represented by such a scheme
are linear orders (matching the linear order on labels) over groups of pairwise
incomparable nodes (which carry the same label). If we take k = 2, we can
see the values as the left and right endpoints of intervals: if we set f to be
the interval precedence order or the interval containment order, the class of
orders that can be represented are the so-called interval orders and interval-
containment orders that we will describe later. Interestingly, these orders have
different expressivity and different recognition and labeling algorithms. I do not
know if different choices of f for k = 2 would give rise to different classes.

For arbitrary values of k, the behaviour of the product order (boolean

“and”), corresponding to f(i(x), i(y)) =
∧k

j=0 i(x)j < i(y)j , is well-known: the
smallest k for which a given partial order admits such a representation is its
dimension, and the (i(x)j)j are linear extensions of the order. The interval-
containment order is actually the product order for k = 2. Other well-studied
classes of orders for arbitrary values of k are containment relations of various
kinds of geometrical structures [FT99]. A natural question is to know whether
the expressivity increases indefinitely with k (ie. for every k one can devise
an order which can not be represented using k values), or if some value k0 is
sufficient to represent all possible orders (ie. the hierarchy collapses at k0). It
is known that this hierarchy does not collaspe if we restrict f to be the product
order, but I do not know what happens for arbitrary values of k: it seems very
likely that it does not collapse but I’m not sure of how to prove it.

A related notion is defined in the conclusion of [GNT90], under the name
local presentation, with the minor difference that the boolean function can also
test equality in addition to inequality. It does not seem to have been studied
since.

Relaxations. From the comparison functions which can work on a certain
class of graphs, a natural relaxation is to extend the comparison to a sequence
of labels, and to devise a labeling scheme which is correct and which minimizes
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the total number of labels used. This approach is used by [ABJ89] with an quasi-
optimality proof for their labeling scheme, and a greedy non-optimal approach
is used by [Cap94]. Of course, such approaches are less expressive than using
larger labels (because their comparison functions are a simple expression of
comparison functions on smaller labels), but they are more fine-grained because
they make it possible to use a different number of values on different nodes.

Outline. In the rest of this text, we present the vocabulary of graphs and tran-
sitive orders in section 2. We present interval orders and interval-containment
orders in section 3. We conclude by studying relaxations of interval orders and
interval-containment orders in section 4.

2 Vocabulary

2.1 Graphs

Consider a DAG G = (V,E). The transitive closure of G is G∗ = (V,E∗)
where E∗ is the transitive closure of E seen as a binary relation. The transitive
reduction of G is the smallest DAG G′ such that G′∗ = G′; it is unique.

We say that a DAG G = (V,E) is transitive if for all x, y, z ∈ V , (x, y) ∈
E(y, z) ∈ E ⇒ (x, z) ∈ E. Equivalently, G is transitive iff G = G∗. We identify
transitive DAGs with the strict partial order that they define on V : x < y iff
(x, y) ∈ E. Hence, we can say that any DAG G defines a strict partial order on
V , which is the one represented by its transitive closure G∗.

Given a DAG G = (V,E), we write E− = {(y, x) ∈ V 2|(x, y) ∈ E} and G− =
(V,E−) the reverse of G. We write G∼ = (V, {{x, y}|(x, y) ∈ E}) the undirected
graph obtained by forgetting the orientation of the edges of G. We define the
complement of an undirected graph G as G = (V, {{x, y} ∈ V 2|{x, y} /∈ E})
and the complement of a DAG G to be the complement of G∼.

2.2 Orders

A strict partial order < on a set X is an antisymmetric transitive relation on X.
A total order is a strict partial order (X,<) such that for every x, y ∈ X, either
x = y or x < y or y < x. Hence, the usual order on integers is a total order,
however the order induced by the proper divisibility on positive integers (x < y
iff x is a proper divisor of y) is not a total order, and the orders on intervals
presented in the next section are not total orders either.

We say that an order (X1, <1) can be embedded in some other order (X2, <2)
when there is a way to encode the first order in the second, ie. a function from X1

to X2 which preserves order. Formally, we define an order embedding between
two orders (X1, <1) and (X2, <2) as a function f : X1 ⇒ X2 such that for any
x, y ∈ X1, x <1 y iff f(x) <2 f(y)

As explained above, a strict partial order corresponds exactly to a transitive
DAG with X as vertices and (x, y) ∈ E whenever x < y. The incomparability
graph of a partial order (X, <) represented by a transitive graph G is defined
as G, the undirected graph of incomparable pairs of <.
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3 Interval labeling schemes

We present here the two well-known classes of interval labeling schemes:
interval-containment orders and interval orders.

3.1 Interval-containment orders

The strict containment relation is a partial order on intervals of the real line
([a, b] ( [c, d] iff c < a and b < d). We say that an order is an interval-
containment order if it can be embedded in the strict containment relation over
intervals of the real line. We say that a graph is an interval-containment graph
if it represents such an order. In other words, this means that given an interval-
containment graph, there exists a labeling i from vertices to intervals of the
real line which encodes the strict reachability relation (v is reachable from u iff.
i(v) ( i(u)).

Given a DAG G, how can we determine if it is an interval-containment
graph, and how can we determine a labeling? To do so, we must introduce more
concepts from graph theory and partial order theory.

3.1.1 Transitively orientable graphs

We say that an undirected graph G is transitively orientable (or that it is a
comparability graph) if there exists a DAG G′ such that G′∼ = G. A necessary
and sufficient condition for G to be transitively orientable is that G does not
contain an odd-length cycle with no triangular chords ([GH64], th. 1). Another
necessary and sufficient condition is that G does not contain any induced sub-
graph from a complicated family of forbidden induced subgraphs identified by
[Gal67]. Note that if G′ is a transitive orientation of G, then so is G′−, so, be-
cause of this symmetry, a transitively orientable graphs always admits at least
two transitive orientations (and possibly a larger even number of them).

Given an undirected graph G, there is a polynomial algorithm to test if it is
transitively orientable, and determine a transitive ordering [PLE71]. It proceeds
as follows. We start by orienting one edge arbitrarily, which is motivated by the
symmetry that we mentioned above. We then propagate the consequences of
this choice by orienting all neighboring edges in the opposite direction if order-
ing them in the same direction would lead to a transitivity violation: we also
propagate the consequences of these orientations, etc. Once all consequences
have been propagated, we orient another edge arbitrarily, and we propagate.
We continue to do this until all edges have been oriented, and check if the graph
is transitive. This algorithm is O(E2) for the checking part, and same for the
orientation part (since for each edge we potentially look at all other edges of
the graph to see if we have to orient them).

Given a graph G which is not transitively orientable, it is NP-hard to deter-
mine the minimum completion of G (ie. the minimum number of edges to add
to make it transitively orientable) [HMP08]. It seems that finding the minimum
number of edges to remove is also NP-hard ([HSY02] allude to it and cite a book
I don’t have access to).
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3.1.2 Order dimension

Consider (X,<) a partial order. A linear extension of (X,<) is a total order
<′ on X such that ∀x, y ∈ X,x < y ⇒ x <′ y. Computing a linear extension of
a partial order is analogous to performing a topological sort on the transitive
DAG which represents the order: you assign a distinct time t(x) to every element
x ∈ X such that x < y implies t(x) < t(y). This uses the fact that the DAG
is acyclic (ie. there are no circular dependencies). Note that we don’t have
t(x) < t(y) implies x < y unless < is a total order: in other words, this is not
an order embedding.

We say that a partial order (X,<) is realized by a collection of linear orders
(<i)i if ∀x, y ∈ X,x < y ⇔ ∀i, x <i y. In other words, < is the intersection of
the pairs of the <i. Intuitively, total orders are represented by just one linear
extension (themselves), and non-total orders must intersect disagreeing linear
extensions to represent their incomparable pairs (but these linear extensions all
agree on the comparable pairs, since they are linear extensions). Hence, non-
total orders require at least two linear extensions to be represented, and actually
we will see that two is not always enough.

The dimension of a partial order is the minimal size of a collection of linear
orders which realizes it. Hence, a linear order has dimension 1. It is NP-complete
to check if the dimension of a partial order is at most 3 [Yan82]; however, we
can check in polynomial time if the dimension of a partial order is at most 2.
Orders of arbitrarily high dimension can be constructed.

3.1.3 Characterization

It can be proved ([DM41], th. 3.61) that a partial order (X,<) is an interval-
containment order iff it is of dimension ≤ 2, that it, either it is of dimension 1
and it is a linear order, or it is of dimension 2 and it can be realized by two linear
extensions P and Q. Further, we can build an interval-containment labeling of
the order from these two linear extensions, by ordering the left interval endpoints
according to the first linear extension and the right interval endpoints according
to the second linear extension (and putting all left endpoints to the left of all
right endpoints). Hence, finding an interval-containment labeling (if one exists)
is equivalent to finding two linear extensions realizing the order represented by
a graph.

Further, the same theorem tells us that such linear extensions exist iff the
incomparability graph G of < is transitively orientable. With their terminology:
< has a conjugate order <′ which orders the elements of the incomparability
graph of <. Further, if we have transitive ordering <′ of the incomparability
graph, we can build the linear extensions as follows: the first extension P is the
original order < extended to incomparable elements by the <′, and the second
extension Q is < extended by <′− (the reverse of <′, ie. the order relation
represented by the reverse transitive ordering of the incomparability graph).

Interestingly, this means that to know if G has an interval-containment repre-
sentation, one only needs to look at its comparability graph G∗∼. In particular,
this implies that G has such a representation iff G− has.

A generalization of the above characterization of interval-containment orders
is mentioned in [FT99] (th. 2): a partial order is a box-containment order over
boxes of Rk (ie. Cartesian products of k intervals) iff its dimension is ≤ 2k.
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3.1.4 Simple algorithm

Using the characterization, we can build an interval-containment labeling of a
graph G (or determine that none exists) in the following fashion:

1. Compute G∗, the incomparability graph of the transitive closure of G.

2. Determine a transitive orientation P = (V,E′) (represented as a DAG) of
G∗ if one exists, and fail if none does.

3. Construct G1 = (V,E ∪ E′), and G2 = (V,E ∪ E′−). Lemma 3.51 of
[DM41] guarantees that G1 and G2 represent total orders (and are there-
fore acyclic).

4. Perform a topological sort of G1, yielding times T1 such that for all x, y ∈
V , if y is reachable from x in G1 then T1[x] < T1[y].

5. Likewise, perform a topological sort of G−2 , yielding times T2.

6. Assign intervals as follow: to a vertex x, assign [T1[x], |V |+ T2[x]].

The most expensive operation is the transitive orientation of the incompa-
rability graph. The number of edges of the incomparability graph is O(|V |2),
and determining a transitive orientation of it is using the algorithm that we
described is thus O(|V |4), where V is the vertex set of the original graph.

3.1.5 Modular decomposition algorithms

The simple algorithm that we describe is polynomial but costly. However, it
turns out that are linear time recognition algorithms for two-dimensional par-
tial orders (apparently [MS94] and its follow-up [MS99], and [CH94]). These
algorithms work by looking at the modular decomposition of the graph [Wik12a],
which is a representation of the graph which generalizes somehow the idea of
looking at connected components of G independently: either we split on the
connected components of G, or on the connected components of G−, or if both
are connected we can partition the vertices into disjoint minimal sets (“mod-
ules”) of nodes with the same neighbors and treat independently the graph up
to this partition (which is a prime graph) and the partitions themselves. Ap-
parently the problem of transitive orientation on a prime graph is easier. It
looks like these algorithms make it possible to determine an interval labeling in
quasi-linear time. I’m not sure of whether it is reasonable to implement these
algorithms, and if they can really determine an interval labeling; I’m still trying
to understand them.

3.1.6 Permutation graphs

We say that an undirected graph G is a permutation graph if G and G are both
transitively orientable. Hence, if G has dimension 2 then G∼ is a permutation
graph. Conversely, if G∼ is a permutation graph, then G’s incomparability
graph is transitively orientable and so is G∼, but since G is a DAG then we can
trivially choose it as a way to order G∼. So, permutations graphs are exactly the
comparability graphs of interval-containment orders. This is surprising because
permutation graphs have an entirely different (but equivalent) definition as the
graph of intersection of segments between points on parallel lines [Wik12b].
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3.2 Interval orders

The precedence relation is a partial order on intervals of the real line ([a, b] <
[c, d] iff. b < c). We say that an order is an interval order if it can be embedded
in the precedence relation over intervals of the real line.

3.2.1 Interval dimension

The interval dimension of an order is defined analogously to the order dimension
but with interval order extensions instead of linear extensions. More precisely,
an interval order extension <′ of a given order < is an interval order such that
∀x, y ∈ V, x < y ⇒ x <′ y. Analogously to the case of linear extensions, a partial
order (X,<) is realized by a collection of interval orders (<i)i if ∀x, y ∈ X,x <
y ⇔ ∀i, x <i y (ie. < is the intersection of the pairs of the <i). The interval
dimension of a partial order is the minimal size of a collection of interval orders
which realizes it. Hence, interval orders are the orders of interval dimension 1
(they are realized by one interval order, namely themselves).

It is known that the interval order dimension of an order is less than its
order dimension ([FHM94], (1)) but that there exist orders of interval dimen-
sion 1 (aka. interval orders) of arbitrarily high dimension. In particular, there
exist interval orders of dimension < 2, so some interval orders are not interval-
containment orders.

Conversely, interval orders can be characterized by a forbidden pattern
([BM93], sec. 1) and this forbidden pattern itself is an interval-containment
order. Therefore, some interval-containment orders are not interval orders.

This means that the classes of interval orders and interval-containment or-
ders are different, and that neither is included in the other. Of course, some
orders are in neither of those classes: for instance, take a graph with two con-
nected components, one which is of interval dimension 2, and one which is of
order dimension 3.

3.2.2 Algorithm

There is a linear time and space algorithm to recognize interval orders and
obtain an interval labeling [BM93].

3.2.3 Interval graphs

An undirected graph G is an interval graph iff it is the graph of intersections
of a family of segments of the real line. A DAG G represents an interval order
iff its incomparability graph G is an interval graph. This is by definition: in an
interval order, two nodes are not comparable iff their intervals intersect.

4 Relaxations

4.1 Spanning tree relaxation

In a way, [ABJ89] is a relaxation of a simple containment labeling scheme for
trees. They prove that their relaxation is optimal for their scheme except for
adjacent interval merging.
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4.2 Interval order relaxation

The idea of extending interval orders to arbitrary DAGs by seeing them as the
union of interval orders has been explored by [Cap94]. Using the algorithm
of [BM93], they compute a maximal interval restriction of a DAG, which is a
maximal subgraph of G which is an interval order, and greedily represent G as a
union of a sequence of maximal interval restrictions. The scheme is not optimal
(be it only because the maximal subgraphs are not maximum subgraphs, and
because the greedy representation might not be the best one). They provide an
experimental comparison of their approach to [ABJ89].

4.3 Interval-containment order relaxation

To my knowledge, there is no analogous relaxation scheme for interval-
containment orders. Here, I sketch possible ideas to develop one.

Given a graph G, we can try to find a maximal subset of vertices for which we
can have an interval-containment order. More precisely, we look at G∗ and want
to find a minimal subset of vertices V ′ such that we can create a graph (G∗)′ (not
necessarily transitive or even acyclic anymore) which agrees with G∗ except for
couples of two vertices in V ′. In the transitively orientable setting, this means
that I can add or remove vertices between nodes of V ′ to make the resulting
graph transitively orientable. Note that we do not propagate the results of these
changes by transitivity: we do not care if the result is not transitive (or even
cyclic) when elements of V ′ are involved, we just care about the fact that it will
be correct between elements not both in V ′.

We can then label with intervals which will be correct except in V ′. Now,
we can apply the same process to the restriction of G∗ to V ′ and label elements
of V ′ with a second interval only valid within V ′ (the first interval serves to
get the correct order with vertices in V \V ′, the second to get the correct order
within V ′). Of course, we may need to get more than two intervals levels; when
looking at two vertices labeled by two sequences of intervals, we should test the
containment of the last interval of the shortest sequence with the interval at the
same position in the other sequence.

A naive implementation of this idea could give something similar to that
of [Cap94]: we take as many vertices as we can until we get a non-interval-
containment graph, and we try again on the remaining vertices, etc. We
could hope that this would experimentally yield shorter labels than [ABJ89]
or [Cap94]. To implement this in practice, we would probably need a quasi-
linear algorithm as the subroutine: whereas [Cap94] uses [BM93], we would
probably need to use one of the complicated quasi-linear algorithms in section
3.1.5.

A harder question is: can we determine a maximum subset of vertices instead
of a maximal subset of vertices? (Is this NP-complete like the other subgraph
and supergraph problems on transitively orientable graphs? Is it reasonable in
practice on the graphs that we are interested in?). Also, is the greedy scheme
of picking the maximum subsets at each step optimal with regards to the total
number of intervals or not? Have those maximal subsets any link with the
modular decomposition?

Other ideas: extend [ABJ89] using an (almost) transitive orientation of the
incomparability graph to guide the order in which we browse the tree. Determine
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if [ABJ89]’s non-optimality is (a.) just because of the ordering or (b.) because
they don’t use the right spanning tree or (c.) because they use a spanning tree.
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