Labeled variant of Dilworth’'s theorem
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This note presents a generalization of Dilworth’s theorem [1] to labeled
posets. As it turns out, we were only able to obtain results for the case of
the alphabet {a, b}, i.e., an alphabet with two elements. This note is work-
in-progress and has not been proofread carefully, so the results should be
taken with a grain of salt: caveat lector.

1 Introduction

We consider a partial order (G, <), which we equivalently see as a transitive DAG. An
antichain of G is a subset of vertices of G that are pairwise incomparable, and the
width of G is the cardinality of its largest antichain. Dilworth’s theorem states that
the width is equal to the minimal cardinality of a chain partition of G, i.e., a partition
G =G U---UG, such that the restriction of < to each G; is a total order.

We generalize this result to labeled posets, i.e., we fix a non-empty alphabet A, and
each vertex z in G carries a label A(z) € A. For any set Y of vertices and a € A, we
write |Y|, to mean [{y € Y | A(y) = a}|. For non-empty A’ C A, the A’-size of a subset
Y C G is mingear |Y]q. The A'-width of G is the maximal A’-size of an antichain of G.

We fix a width threshold k € N~g. For A’ C A, we call A’ frequent in G for k if G has
A’-width at least k, and call it rare otherwise. The spectrum of G for k is the function f
mapping each non-empty A’ C A to 1 if A’ is rare and 0 if it is frequent. It is clear that
f is a monotone Boolean function, i.e., if A’ C A” and A’ is rare in G for k, then A” is
also rare, because any antichain of A”-size > k is in particular an A’-antichain of A’-size
> k. In particular, if every singleton set is rare, this means that there is no antichain of
{a}-size k for any a € A, which implies that the width of G (in the standard sense) is
at most k x |A]: this is the “most constrained” case. Conversely, if A is frequent, this
means that there is an antichain containing k copies of each possible letter as we want,
which is the “least constrained” case.

Conversely, almost any monotone Boolean function f can be realized as a spectrum
of some DAG G, e.g., the one built as a serial composition of one antichain for each A’
which is frequent according to f, that consists of k vertices labeled a for each a € A’
(note that this is non-empty).

Our goal is to answer the following question: knowing the spectrum of a DAG, what
can we tell about its structure? Dilworth’s theorem can be seen as the case where



A = {a}: either A is frequent and G has unbounded width, or A is rare and G has
bounded width.

2 Case of A = {a,b}

We start by studying the simpler case of an alphabet with two letters only. The least
constrained spectrum is the one where {a,b} is frequent, meaning that there is an an-
tichain containing k elements labeled a and k-elements labeled b, and we cannot hope
to say anything more interesting here. The most constrained spectrum is the one where
{a} and {b} are both rare, meaning that the width is globally bounded. Another unin-
teresting possibility is when {a} is the only frequent subalphabet, which means that G
has no large antichain of b elements; so we can look at the restriction of G to b-labeled
elements, say that it has width bounded by k, and that’s all. There is obviously another
uninteresting symmetric case where {b} is the only frequent subalphabet. However, there
is an interesting case: the spectrum where {a} and {b} are both frequent but {a,b} is
infrequent: this is the case that we will study.

Remember that one possible scenario for this is when the DAG is a series composition
of a part with a large antichain of a-labeled elements, and a part with a large antichain
of b-labeled elements. We will show that the graph can be decomposed in a similar way.

A conver set of a DAG G is a subset X of its vertices such that, for any vertices
u<v<wof G, ifue X and w € X then v € X. A layering of a DAG G is a sequence
Lq,...,L, of convex sets of GG, called layers, that are a partition of the vertices of G,
such that, for any u < v in G, letting L; and L; be the respective layers of v and v, we
have ¢ < j.

In a layering, the order relation across layers is unspecified, i.e., it is not necessarily
total, unlike a series composition. However, in our case, the composition will be “almost
serial”. We formalize this by saying that the layering is discriminative. For k € N, we
say that a layering L1,..., L, of a DAG G is k-discriminative if, for every antichain A
of G, there is a layer L; such that A is “almost contained” in L;, formally |A\ L;| < k.
Note that this requirement imposes no condition on antichains of G of size < k.

We will show the following claim:

Theorem 2.1. For any constant k € Ns, given an {a,b}-DAG G where {a,b} is rare
for k but {a} and {b} are frequent for k, we can compute in PTIME a 15k-discriminative
layering Ly, ..., Ly, such that, for every i € N, either {a} is rare for 15k and {b} is
frequent for 2k in L;, or {b} is rare for 15k and {a} is frequent for 2k in L;.

To show this result, we will start by a simple layering construction on G:

Lemma 2.2. We can determine in PTIME whether G has width > 3k, and if it does
we can compute in PTIME a layering L1, ..., Ly such that, for all 1 < i <mn, the layer
L; has width < 6k, and one of {a} and {b} is frequent in L; for threshold 2k.

To prove this lemma, we introduce an auxiliary notion on antichains. We will say that
an antichain X is above an antichain X', written X < X', if X is included in the union



of the ancestors of the elements of X', formally, for each x € X, there exists 2’ € X’
such that = < /.

Lemma 2.3. The relation < is an order relation.

Proof. We first show that < is transitive. Assume that X < X’ and X’ < X”. Then, for
every x € X, there exists 2/ € X’ such that z < 2/, and for this 2’ there exists 2/ € X"
such that 2’ < 2”. By transitivity we conclude that x < z”. Hence, it is indeed the case
that for every z € X there is ” € X” such that z < z”, so we have X < X"

Second, we show that < is antisymmetric. Assume that X < X’ and X’ < X, and
assume by way of contradiction that X # X’. We assume without loss of generality that
X \ X’ is not empty. Take z € X \ X’ and consider its witnessing element = < z’ with
a2’ € X'. Observe that necessarily < 2’ because 2’ € X’ but ¢ X’. Now, consider
the element z” € X of 2/ such that we have #’ < z”. We deduce by transitivity that
x < z”, which contradicts the fact that X is an antichain. O

We can now prove Lemma 2.2:

Proof. We will work by induction on the number of vertices of G.

We can check whether G has width > 3k by checking whether it has an antichain of
size 3k, in time O(|G|**), hence in PTIME. If it does not, there is nothing more to show.
If it does, then pick some antichain X of G of size 3k which is minimal in the order <:
this can be done naively in PTIME by computing explicitly the relation < on antichains
of size 3k. As {a,b} is rare for threshold k in G, we know that the {a,b}-width of X
is < k, so that either |X|, < k or |X|, < k. We will assume the first case, the second
being symmetric; so in particular we know that |X|, > 2k. Let U be the union of the
ancestors of X (including X): we know that U has width < 3k, because if U contains
an antichain Y of cardinality 3k + 1 then there is a subset Y’/ of Y of size 3k which is
different from X, and by definition Y’ < X, contradicting the minimality of X. Let G’
be the restriction of G to the complement of U.

We now use the induction hypothesis to process G’ recursively. If G’ has width < 3k,
then we decompose G in the singleton layer L := G. In this first case, we know that a
is frequent in L; for threshold > 2k, because L; contains the antichain X and | X| = 3k
and | X|, < k so |X|, > 2k. Further, we know that L; has width < 6k because it is the
union of U which has width < 3k and G’ which has width < 3k.

If G’ has width > 3k, we let L, ..., L, be the layering of G’ obtained by induction,
and take our layering of G to be U,L},...,L!, of G. We know that U has width
< 3k, hence width < 6k; we know that {a} is frequent for threshold 2k in U because it
contains U; and we know by induction that the layers L},. .., L], satisfy our conditions.
This concludes the proof. O

We now show a useful result on antichains and layerings, called the antichain shuffling
lemma:

Lemma 2.4. Let Ly,..., Ly, be a layering of G, and let X and Y be two disjoint an-

tichains such that X C L; for some 1 < i < n. Define Y_ = Y N Ui,<i L; and



Yy ==Y NUys; Li- Then there are X' C X and Y' C Y such that | X'| > |X]/2,
such that |Y'| > min(|Y_|,|Y4]), and such that X' UY" is an antichain.

Proof. Let X1 C X be the elements z € X such that there exists a y € Y, such that
xz < yq, and let X_ C X be the elements z € X such that there exists a y € Y_ such
that y— < x. It is clear that X, and X_ must be disjoint, because if there existed
x € X_ N Xy then, taking two witnessing y_ and y,, by transitivity we would have
y— < yy, but as Y_ and Y, are disjoint we have y_ < y, contradicting the fact that Y
is an antichain. We assume without loss of generality that | X_| > | X[, the other case is
symmetric. Let X' := X\ X, we know that | X’| > |X| /2. We now argue that Y’ := Y,
satisfies the statement. Indeed, the bound on the cardinality of Y’ holds. Now, assume
by way of contradiction that there are z € X’ and y € Y’ that are comparable. We
cannot have x < y, as otherwise, since y € Y, we would have x € X, so by definition
we cannot have x € X’. Further, we cannot have x > y because z is in layer L; but y
is in Y, so it is in a layer Ly with ¢ > 4, so this would contradict the definition of a
layering. Hence, indeed, X’ UY” is an antichain. O

We can now use Lemma 2.2 and the antichain shuffling lemma to show Theorem 2.1:

Proof. We start with the layering L/, ..., L], obtained in Lemma 2.2. Recall that, by
the lemma statement, for each 1 < i < n' there is z} € {a,b} such that z} is frequent
in L; if both letters are frequent then we make an arbitrary choice for z;. We now define
a new layering Li,..., L, by merging together the consecutive L} that have the same
value for z}; for each 1 < j < n we write z; the common value of z for the L user
to create L;. It is clear that Lq,..., L, is still a layering, and that it is constructed in
PTIME; we now show that it satisfies the conditions of the theorem. First, it is clear
that for every 1 <17 < n, the letter x; is frequent for threshold 2% in L;, because this is
the case of the L} used to create L;. Second, we must show that the other letter is rare,
and that the layering is discriminative. To do this, we will show the following auxiliary
claim: (*) for any antichain Y of G, letting x be the most common letter in Y, there is
1 <i < nsuch that |Y \ L;| <15k and z; = x.

Observe first that claim (*) implies what we want to show. Indeed, it clearly implies
that the layering is 15k-discriminative (if we forget about the additional condition on ;).
Second, it implies that, for every L; with 1 < ¢ < n, letting = := z; and y be the other
letter, then y is 15k-rare in L;. Indeed, for any antichain Y of y-labeled elements in L;,
as y is the most common element of ¥ and Y is also an antichain of G, we know by (*)
that |Y \ L;| < 15k for some 1 < j < n with ; = y, which implies j # ¢, so Y and L;
are disjoint and so we know that |Y| < 15k. Hence, all that remains is to show claim (*).

To show claim (*), let Yy be an antichain of G. We assume that |Yy| > 15k, as there
is nothing to show otherwise. Let x be the most common letter in Y, and let y be the
other letter. Let Y C Y| be the subset of elements labeled x in Y; as {a, b} is rare for
threshold k in G, we know that [Yp|, < k, so that [Y| > 14k.

We will write for simplicity LT(i) := Ui < L, for 1 <i<n'41, and LH(i) := Uirsi L,
for 0 < i < n/; and we write YT (i) := Y N L(4), write Y+(i) := Y N L*(i), and write
Y=(i) := Y N L; Let us now define a function g" mapping each i € {1,...,n' + 1} to



|YT(i)|: this function is nondecreasing, we have g'(1) = 0, and g'(n’ + 1) = |Y|. There
are two cases: either there is 1 < iy < n such that l‘;-o =y and ¢'(ip) > k, or there is no
such 7.

Case 1: there is no such ¢g. In this case, there are two subcases. The first subcase is
when there are no layers L} at all such that z; = y, i.e., we have n = 1, and the only
layer L; is such that 2} = =z; but in this case claim (*) holds because we can simply
take ¢ := 1. The second subcase is where there are layers such that x} = y; let 4; be the
largest i such that x; =y. We know that all L; with i > iy are such that x; = 2 (by our
assumption on the inexistence of ig), so they are all merged into the last layer L,,. Now,
we know that |YT(i1)| < k, we know that [Y=(i1)| < 6k because L;, has width < 6k, so
we know that all elements of Y except at most 7k are in L,; hence, as |Yy \ Y| < k, all
elements of Yj except at most 8% are in L,; this shows claim (*) in case 1.

Case 2: there is ig such that xgo # r and gT(z'g) > k. In this case, we take for iy the
smallest possible value such that this holds; of course we know that ig > 1 as g'(1) = 0.
We now define g*(ip) := |Y*(i)|, and show that we must have g*(ig) < k. Indeed, if
g*(ip) > k, then we can consider the antichain X of 2k a-labeled elements which is known
to exist in Lj , and we can use the antichain shuffling lemma (Lemma 2.4) to conclude
that there is X’ C X with |X’| > k and Y/ C Y with |Y’| > min(g"(i0), g*(i0)) > k
such that X’ UY is an antichain, but this is impossible because it contains |X'| > k
elements labeled a and |Y’| > k elements labeled b, contradicting the assumption that
{a,b} is rare for threshold k in G. So indeed we have g*(ip) < k. We now distinguish
two subcases: either there is 71 < 7gp such that xél = y or there is none.

The first subcase is when no such 7; exists. Then we know that, for 1 < i’ < ig, each
layer L/, is such that z!, = y, so they are merged together in the first layer L;; now as
|Y=(ip)| < 6k because L;, has width < 6k and as g*(ip) < k we know that all elements
of Y except at most Tk are in Lp; so all elements of Yy except at most 8k are in L,
which shows claim (*). The second subcase is when such an i1 exists: in this case, we let
i1 be the largest value such that 1 < iy <4y and l’;-l = y. By minimality of 7y, we know
that ¢'(i;) < k. So we know that ’YT(il)’ < k and that {Yi(ioﬂ < k, and we know
that |[Y=(ig)| < 6k and |Y=(i1)| < 6k again from the width bound. As |Y| > 14k, this
implies that we must have ig —41 > 1. So let us consider the layers L; ,,...,L; ; by
maximality of i, we know that z; = x for all i1 < ¢/ < ig, so all these layers are merged
in some layer L;. From the inequalities above, we know that all elements of ¥ are in L;
except < k that are in YT(i1), except < k that are in Y+(ig), except < 6k that are in
L} , and except < 6k that are in L] , i.e., 14k exceptions at most. So all elements of Y
except at most 15k are in Lj, and indeed we have x; = x. This establishes claim (*)
and concludes the proof. ]

Open problem. We do not know whether we replace PTIME by NL in Theorem 2.1,
i.e., show that the layering can be implicitly computed in NL.



3 General alphabets

There is an annoying counter-example: consider the parallel composition of a large
antichain of a and of the serial composition of a large antichain of b and of a large
antichain of ¢. Then by discriminativity you want the a’s and the b’s to be in the same
layer, and ditto for the a’s and the ¢’s, so everyone is in the same layer, but then the
layer contains large antichains of a’s, of b’s, and of ¢’s, and of {a,b}’s, and of {a,c}’s,
so it is not more informative than the original instance... even though it was interesting
that {b, c} was infrequent in the instance.
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