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This note presents a generalization of Dilworth’s theorem [1] to labeled
posets. As it turns out, we were only able to obtain results for the case of
the alphabet {a, b}, i.e., an alphabet with two elements. This note is work-
in-progress and has not been proofread carefully, so the results should be
taken with a grain of salt: caveat lector.

1 Introduction

We consider a partial order (G,<), which we equivalently see as a transitive DAG. An
antichain of G is a subset of vertices of G that are pairwise incomparable, and the
width of G is the cardinality of its largest antichain. Dilworth’s theorem states that
the width is equal to the minimal cardinality of a chain partition of G, i.e., a partition
G = G1 t · · · tGn such that the restriction of < to each Gi is a total order.

We generalize this result to labeled posets, i.e., we fix a non-empty alphabet A, and
each vertex x in G carries a label λ(x) ∈ A. For any set Y of vertices and a ∈ A, we
write |Y |a to mean |{y ∈ Y | λ(y) = a}|. For non-empty A′ ⊆ A, the A′-size of a subset
Y ⊆ G is mina∈A′ |Y |a. The A′-width of G is the maximal A′-size of an antichain of G.

We fix a width threshold k ∈ N>0. For A′ ⊆ A, we call A′ frequent in G for k if G has
A′-width at least k, and call it rare otherwise. The spectrum of G for k is the function f
mapping each non-empty A′ ⊆ A to 1 if A′ is rare and 0 if it is frequent. It is clear that
f is a monotone Boolean function, i.e., if A′ ⊆ A′′ and A′ is rare in G for k, then A′′ is
also rare, because any antichain of A′′-size ≥ k is in particular an A′-antichain of A′-size
≥ k. In particular, if every singleton set is rare, this means that there is no antichain of
{a}-size k for any a ∈ A, which implies that the width of G (in the standard sense) is
at most k × |A|: this is the “most constrained” case. Conversely, if A is frequent, this
means that there is an antichain containing k copies of each possible letter as we want,
which is the “least constrained” case.

Conversely, almost any monotone Boolean function f can be realized as a spectrum
of some DAG G, e.g., the one built as a serial composition of one antichain for each A′

which is frequent according to f , that consists of k vertices labeled a for each a ∈ A′
(note that this is non-empty).

Our goal is to answer the following question: knowing the spectrum of a DAG, what
can we tell about its structure? Dilworth’s theorem can be seen as the case where
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A = {a}: either A is frequent and G has unbounded width, or A is rare and G has
bounded width.

2 Case of A = {a, b}
We start by studying the simpler case of an alphabet with two letters only. The least
constrained spectrum is the one where {a, b} is frequent, meaning that there is an an-
tichain containing k elements labeled a and k-elements labeled b, and we cannot hope
to say anything more interesting here. The most constrained spectrum is the one where
{a} and {b} are both rare, meaning that the width is globally bounded. Another unin-
teresting possibility is when {a} is the only frequent subalphabet, which means that G
has no large antichain of b elements; so we can look at the restriction of G to b-labeled
elements, say that it has width bounded by k, and that’s all. There is obviously another
uninteresting symmetric case where {b} is the only frequent subalphabet. However, there
is an interesting case: the spectrum where {a} and {b} are both frequent but {a, b} is
infrequent: this is the case that we will study.

Remember that one possible scenario for this is when the DAG is a series composition
of a part with a large antichain of a-labeled elements, and a part with a large antichain
of b-labeled elements. We will show that the graph can be decomposed in a similar way.

A convex set of a DAG G is a subset X of its vertices such that, for any vertices
u ≤ v ≤ w of G, if u ∈ X and w ∈ X then v ∈ X. A layering of a DAG G is a sequence
L1, . . . , Ln of convex sets of G, called layers, that are a partition of the vertices of G,
such that, for any u ≤ v in G, letting Li and Lj be the respective layers of u and v, we
have i ≤ j.

In a layering, the order relation across layers is unspecified, i.e., it is not necessarily
total, unlike a series composition. However, in our case, the composition will be “almost
serial”. We formalize this by saying that the layering is discriminative. For k ∈ N, we
say that a layering L1, . . . , Ln of a DAG G is k-discriminative if, for every antichain A
of G, there is a layer Li such that A is “almost contained” in Li, formally |A \ Li| ≤ k.
Note that this requirement imposes no condition on antichains of G of size ≤ k.

We will show the following claim:

Theorem 2.1. For any constant k ∈ N>0, given an {a, b}-DAG G where {a, b} is rare
for k but {a} and {b} are frequent for k, we can compute in PTIME a 15k-discriminative
layering L1, . . . , Ln such that, for every i ∈ N, either {a} is rare for 15k and {b} is
frequent for 2k in Li, or {b} is rare for 15k and {a} is frequent for 2k in Li.

To show this result, we will start by a simple layering construction on G:

Lemma 2.2. We can determine in PTIME whether G has width ≥ 3k, and if it does
we can compute in PTIME a layering L1, . . . , Ln such that, for all 1 ≤ i ≤ n, the layer
Li has width < 6k, and one of {a} and {b} is frequent in Li for threshold 2k.

To prove this lemma, we introduce an auxiliary notion on antichains. We will say that
an antichain X is above an antichain X ′, written X ≤ X ′, if X is included in the union
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of the ancestors of the elements of X ′, formally, for each x ∈ X, there exists x′ ∈ X ′
such that x ≤ x′.

Lemma 2.3. The relation ≤ is an order relation.

Proof. We first show that ≤ is transitive. Assume that X ≤ X ′ and X ′ ≤ X ′′. Then, for
every x ∈ X, there exists x′ ∈ X ′ such that x ≤ x′, and for this x′ there exists x′′ ∈ X ′′
such that x′ ≤ x′′. By transitivity we conclude that x ≤ x′′. Hence, it is indeed the case
that for every x ∈ X there is x′′ ∈ X ′′ such that x ≤ x′′, so we have X ≤ X ′′

Second, we show that ≤ is antisymmetric. Assume that X ≤ X ′ and X ′ ≤ X, and
assume by way of contradiction that X 6= X ′. We assume without loss of generality that
X \X ′ is not empty. Take x ∈ X \X ′ and consider its witnessing element x ≤ x′ with
x′ ∈ X ′. Observe that necessarily x < x′ because x′ ∈ X ′ but x /∈ X ′. Now, consider
the element x′′ ∈ X of x′ such that we have x′ ≤ x′′. We deduce by transitivity that
x < x′′, which contradicts the fact that X is an antichain.

We can now prove Lemma 2.2:

Proof. We will work by induction on the number of vertices of G.
We can check whether G has width ≥ 3k by checking whether it has an antichain of

size 3k, in time O(|G|3k), hence in PTIME. If it does not, there is nothing more to show.
If it does, then pick some antichain X of G of size 3k which is minimal in the order ≤:
this can be done naively in PTIME by computing explicitly the relation ≤ on antichains
of size 3k. As {a, b} is rare for threshold k in G, we know that the {a, b}-width of X
is < k, so that either |X|b < k or |X|a < k. We will assume the first case, the second
being symmetric; so in particular we know that |X|a > 2k. Let U be the union of the
ancestors of X (including X): we know that U has width ≤ 3k, because if U contains
an antichain Y of cardinality 3k + 1 then there is a subset Y ′ of Y of size 3k which is
different from X, and by definition Y ′ < X, contradicting the minimality of X. Let G′

be the restriction of G to the complement of U .
We now use the induction hypothesis to process G′ recursively. If G′ has width < 3k,

then we decompose G in the singleton layer L1 := G. In this first case, we know that a
is frequent in L1 for threshold > 2k, because L1 contains the antichain X and |X| = 3k
and |X|b < k so |X|a > 2k. Further, we know that L1 has width < 6k because it is the
union of U which has width ≤ 3k and G′ which has width < 3k.

If G′ has width ≥ 3k, we let L′1, . . . , L
′
n′ be the layering of G′ obtained by induction,

and take our layering of G to be U,L′1, . . . , L
′
n′ of G. We know that U has width

≤ 3k, hence width < 6k; we know that {a} is frequent for threshold 2k in U because it
contains U ; and we know by induction that the layers L′1, . . . , L

′
n′ satisfy our conditions.

This concludes the proof.

We now show a useful result on antichains and layerings, called the antichain shuffling
lemma:

Lemma 2.4. Let L1, . . . , Ln be a layering of G, and let X and Y be two disjoint an-
tichains such that X ⊆ Li for some 1 ≤ i ≤ n. Define Y− := Y ∩

⋃
i′<i Li and
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Y+ := Y ∩
⋃

i′>i Li. Then there are X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| ≥ |X| /2,
such that |Y ′| ≥ min(|Y−| , |Y+|), and such that X ′ ∪ Y ′ is an antichain.

Proof. Let X+ ⊆ X be the elements x ∈ X such that there exists a y ∈ Y+ such that
x ≤ y+, and let X− ⊆ X be the elements x ∈ X such that there exists a y ∈ Y− such
that y− ≤ x. It is clear that X+ and X− must be disjoint, because if there existed
x ∈ X− ∩ X+ then, taking two witnessing y− and y+, by transitivity we would have
y− ≤ y+, but as Y− and Y+ are disjoint we have y− < y+, contradicting the fact that Y
is an antichain. We assume without loss of generality that |X−| ≥ |X+|, the other case is
symmetric. Let X ′ := X \X+, we know that |X ′| ≥ |X| /2. We now argue that Y ′ := Y+
satisfies the statement. Indeed, the bound on the cardinality of Y ′ holds. Now, assume
by way of contradiction that there are x ∈ X ′ and y ∈ Y ′ that are comparable. We
cannot have x ≤ y, as otherwise, since y ∈ Y+, we would have x ∈ X+, so by definition
we cannot have x ∈ X ′. Further, we cannot have x ≥ y because x is in layer Li but y
is in Y+ so it is in a layer Li′ with i′ > i, so this would contradict the definition of a
layering. Hence, indeed, X ′ ∪ Y ′ is an antichain.

We can now use Lemma 2.2 and the antichain shuffling lemma to show Theorem 2.1:

Proof. We start with the layering L′1, . . . , L
′
n′ obtained in Lemma 2.2. Recall that, by

the lemma statement, for each 1 ≤ i ≤ n′ there is x′i ∈ {a, b} such that x′i is frequent
in L′i; if both letters are frequent then we make an arbitrary choice for x′i. We now define
a new layering L1, . . . , Ln by merging together the consecutive L′i that have the same
value for x′i; for each 1 ≤ j ≤ n we write xj the common value of x′i for the L′i user
to create Lj . It is clear that L1, . . . , Ln is still a layering, and that it is constructed in
PTIME; we now show that it satisfies the conditions of the theorem. First, it is clear
that for every 1 ≤ i ≤ n, the letter xj is frequent for threshold 2k in Lj , because this is
the case of the L′i used to create Lj . Second, we must show that the other letter is rare,
and that the layering is discriminative. To do this, we will show the following auxiliary
claim: (*) for any antichain Y of G, letting x be the most common letter in Y , there is
1 ≤ i ≤ n such that |Y \ Li| ≤ 15k and xi = x.

Observe first that claim (*) implies what we want to show. Indeed, it clearly implies
that the layering is 15k-discriminative (if we forget about the additional condition on xi).
Second, it implies that, for every Li with 1 ≤ i ≤ n, letting x := xi and y be the other
letter, then y is 15k-rare in Li. Indeed, for any antichain Y of y-labeled elements in Li,
as y is the most common element of Y and Y is also an antichain of G, we know by (*)
that |Y \ Lj | ≤ 15k for some 1 ≤ j ≤ n with xj = y, which implies j 6= i, so Y and Lj

are disjoint and so we know that |Y | ≤ 15k. Hence, all that remains is to show claim (*).
To show claim (*), let Y0 be an antichain of G. We assume that |Y0| > 15k, as there

is nothing to show otherwise. Let x be the most common letter in Y , and let y be the
other letter. Let Y ⊆ Y0 be the subset of elements labeled x in Y ; as {a, b} is rare for
threshold k in G, we know that |Y0|y < k, so that |Y | > 14k.

We will write for simplicity L↑(i) :=
⋃

i′<i L
′
i′ for 1 ≤ i ≤ n′+1, and L↓(i) :=

⋃
i′>i L

′
i′

for 0 ≤ i ≤ n′; and we write Y ↑(i) := Y ∩ L↑(i), write Y ↓(i) := Y ∩ L↓(i), and write
Y =(i) := Y ∩ Li Let us now define a function g↑ mapping each i ∈ {1, . . . , n′ + 1} to
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∣∣Y ↑(i)∣∣: this function is nondecreasing, we have g↑(1) = 0, and g↑(n′ + 1) = |Y |. There
are two cases: either there is 1 ≤ i0 ≤ n such that x′i0 = y and g↑(i0) ≥ k, or there is no
such i0.

Case 1: there is no such i0. In this case, there are two subcases. The first subcase is
when there are no layers L′i at all such that x′i = y, i.e., we have n = 1, and the only
layer L1 is such that x′1 = x; but in this case claim (*) holds because we can simply
take i := 1. The second subcase is where there are layers such that x′i = y; let i1 be the
largest i such that x′i1 = y. We know that all L′i with i > i1 are such that x′i = x (by our
assumption on the inexistence of i0), so they are all merged into the last layer Ln. Now,
we know that

∣∣Y ↑(i1)∣∣ < k, we know that |Y =(i1)| < 6k because L′i1 has width < 6k, so
we know that all elements of Y except at most 7k are in Ln; hence, as |Y0 \ Y | < k, all
elements of Y0 except at most 8k are in Ln; this shows claim (*) in case 1.

Case 2: there is i0 such that x′i0 6= x and g↑(i0) ≥ k. In this case, we take for i0 the

smallest possible value such that this holds; of course we know that i0 > 1 as g↑(1) = 0.
We now define g↓(i0) :=

∣∣Y ↓(i)∣∣, and show that we must have g↓(i0) < k. Indeed, if
g↓(i0) ≥ k, then we can consider the antichain X of 2k a-labeled elements which is known
to exist in L′i0 , and we can use the antichain shuffling lemma (Lemma 2.4) to conclude

that there is X ′ ⊆ X with |X ′| ≥ k and Y ′ ⊆ Y with |Y ′| ≥ min(g↑(i0), g
↓(i0)) ≥ k

such that X ′ ∪ Y is an antichain, but this is impossible because it contains |X ′| ≥ k
elements labeled a and |Y ′| ≥ k elements labeled b, contradicting the assumption that
{a, b} is rare for threshold k in G. So indeed we have g↓(i0) < k. We now distinguish
two subcases: either there is i1 < i0 such that x′i1 = y or there is none.

The first subcase is when no such i1 exists. Then we know that, for 1 ≤ i′ < i0, each
layer L′i′ is such that x′i′ = y, so they are merged together in the first layer L1; now as
|Y =(i0)| < 6k because Li0 has width < 6k and as g↓(i0) < k we know that all elements
of Y except at most 7k are in L1; so all elements of Y0 except at most 8k are in L1,
which shows claim (*). The second subcase is when such an i1 exists: in this case, we let
i1 be the largest value such that 1 ≤ i1 ≤ i0 and x′i1 = y. By minimality of i0, we know

that g↑(i1) < k. So we know that
∣∣Y ↑(i1)∣∣ < k and that

∣∣Y ↓(i0)∣∣ < k, and we know
that |Y =(i0)| < 6k and |Y =(i1)| < 6k again from the width bound. As |Y | > 14k, this
implies that we must have i0 − i1 > 1. So let us consider the layers L′i1+1, . . . , L

′
i0−1; by

maximality of i1 we know that xi′ = x for all i1 < i′ < i0, so all these layers are merged
in some layer Lj . From the inequalities above, we know that all elements of Y are in Lj

except < k that are in Y ↑(i1), except < k that are in Y ↓(i0), except < 6k that are in
L′i0 , and except < 6k that are in L′i1 , i.e., 14k exceptions at most. So all elements of Y0
except at most 15k are in Lj , and indeed we have xj = x. This establishes claim (*)
and concludes the proof.

Open problem. We do not know whether we replace PTIME by NL in Theorem 2.1,
i.e., show that the layering can be implicitly computed in NL.
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3 General alphabets

There is an annoying counter-example: consider the parallel composition of a large
antichain of a and of the serial composition of a large antichain of b and of a large
antichain of c. Then by discriminativity you want the a’s and the b’s to be in the same
layer, and ditto for the a’s and the c’s, so everyone is in the same layer, but then the
layer contains large antichains of a’s, of b’s, and of c’s, and of {a, b}’s, and of {a, c}’s,
so it is not more informative than the original instance... even though it was interesting
that {b, c} was infrequent in the instance.
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