
Top-k Querying of Unknown Values
under Order Constraints

Antoine Amarilli1, Yael Amsterdamer2, Tova Milo2, and
Pierre Senellart1,3

1 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay; Paris, France
first.last@telecom-paristech.fr

2 Tel Aviv University; Tel Aviv
{yaelamst,milo}@cs.tau.ac.il

3 IPAL, CNRS, National University of Singapore; Singapore

Abstract
Many practical scenarios make it necessary to evaluate top-k queries over data items with partially
unknown values. This paper considers a setting where the values are taken from a numerical
domain, and where some partial order constraints are given over known and unknown values. Our
work is the first to propose a principled scheme to derive the value distributions and expected
values of unknown items in this setting, with the goal of computing estimated top-k results by
interpolating the unknown values from the known ones. We study the complexity of this general
task, and show tight complexity bounds, proving that the problem is intractable; however, we
show that the values can be tractably approximated. We then consider the case of tree-shaped
partial orders, and show a constructive PTIME solution to compute the exact values. We also
compare our problem setting to other top-k definitions on uncertain data.

1 Introduction

Many data analysis tasks involve queries over ordered data, such as maximum and top-k
queries, which must often be evaluated in presence of unknown data values. This problem
occurs in many real-life scenarios: retrieving or computing exact data values is often expensive,
but querying the partially unknown data may still be useful to obtain approximate results, or
to decide which data values should be retrieved next. Application domains include, e.g., top-k
queries over sensor data [18, 26], Web services [33], data mining [1], managing preference
data [35], as well as crowdsourcing (as we will illustrate). In such contexts, we can often
make use of order constraints relating the data values, even when they are unknown: for
instance, we know that object A will be preferred to object B (though we do not know their
exact rating); we know that an event happened before another one (but we do not know
exact timestamps), etc.

This paper thus studies the following general problem. We consider a set of numerical
values, some of which are unknown, and we assume that we have a partial order on these
values: a comparability pair x > y indicates that the value x (which can be known or
unknown) must be greater or equal to y (which may also be unknown). Our goal is to
estimate the unknown values, in a principled way, and to evaluate top-k queries: find the
data items with the highest values and compute an estimation of these values when they are
unknown.

Example. We consider a specific application setting where our problem occurs. Consider a
scenario where products are classified in a catalog taxonomy (Figure 1) using human input:

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

2 Top-k Querying of Unknown Values under Order Constraints

Sports Electronics Clothing

Cell Phones Cell Phones TVs Shoes Watches

Smartphones Smartphones

Diving Gear Diving Gear

Diving Watches Diving Watches
0.5

0.5

0.1

Wearable Devices Wearable Devices
0.9

1

Figure 1 Sample catalog taxonomy with compatibility scores

for each product, we may ask a question1 to obtain its compatibility score with any category.
Our goal is to assign the product to the top-k most compatible categories among a set of end
categories (in yellow with a solid border), as opposed to virtual categories (dashed border).
The virtual categories generalize the end categories, and allow us to ask broader questions to
experts, but we are not interested by the compatibility of objects with them: e.g., they do
not have a dedicated page in our online store.

Imagine now that the product to classify is a smartwatch, and that we want to find
the top-2 end categories for it. We asked an expert for its compatibility score with some
categories (both end and virtual categories), which we indicate in Figure 1. Because expert
input is costly, however, we wish to choose the top-2 end categories based on the incomplete
information that we have. The naïve answer is to look only at categories with known scores,
and to identify Wearable Devices and Diving Watches as the best end categories.

However, any product that belongs to a specific category (e.g., Smartphones) conceptually
also belongs to each of the more general categories (e.g., Cell Phones). This implies a partial
order over the (un)known category scores: if a category x is a sub-category of y, then the
product’s compatibility score for x should be at most its score for y.

Under these order constraints, the scores of Watches and Diving Gear, while unknown,
cannot be lower than that of Diving Watches; so either of the two could replace Diving
Watches in the top-2 answer. To choose between these categories, we observe that the score
of Diving Gear must be exactly 0.5 (which bounds it from above and below). In contrast,
as the score of Wearable Devices is 0.9, Clothing has a score of at least 0.9, so the score of
Watches can be anything between 0.5 and an unknown value which is > 0.9. A better top-2
answer is thus Wearable Devices and Watches, the latter being likely to have a higher score
than Diving Watches (or Diving Gear).

Contributions. Our work introduces a general scheme to reason over partially ordered
values which are not fully known, to estimate their values, and to answer top-k queries over
them, in a way that generalizes the previous example. We formally define this scheme in
Section 2: we consider the convex polytope of the possible value assignments under the
constraints (modeled as linear inequalities), and we assume the uniform distribution over
the possible valuations. We show in Section 3 how this natural model allows us to deduce
expected values for the unknown variables, and actually (marginal) probability distributions
for them: they are not independent, because of the order constraints, and are generally not
uniform. We show that we can compute the expected values, and evaluate top-k queries,
with an FP#P brute-force algorithm.

1 The questions may be asked to domain experts or to a crowd [6,30,36] of unqualified users; in the latter
case, we aggregate the answers of multiple workers to obtain the compatibility score.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 3

This scheme differs from previous work on top-k queries over incomplete or probabilistic
data [10,21,33], which usually assumes that each value is given with its probability distribution,
and assumes independence of the distributions (so that they cannot model order constraints
between values). Our approach does not need any distribution on the unknown values, and
does not assume independence: the (dependent and non-uniform) distribution on values are
derived from our uniform prior on the assignments. Further, in contrast with prior work,
our method allows us to estimate the values of the unknown items (not just their ranks),
which amounts to performing linear interpolation on all possible total orders weighted by
their probability. Thus, we propose (to our knowledge) the first principled way to estimate
missing numerical values under partial order constraints and known values.

Our second contribution is to study the complexity of this task. Via a connection to
expected rank computation in partial orders, we show in Section 4 that it is FP#P-hard to
compute the expected values, matching the upper bound on our algorithm. We also show
a more technical result: it is hard to compute the top-1 item, even without computing its
value. However, we also design an FPRAS to approximate the expected values. Further, in
Section 5, we show that the problem is tractable when the order constraints are tree-shaped
in some sense (i.e., in our motivating example, when the taxonomy is a tree rather than a
directed acyclic graph). In this case, as we prove, the expected values can be computed in
cubic time.

Last, we study how our definition of top-k matches other existing definitions (in Section 6).
We survey related work in more depth in Section 7 and conclude in Section 8. Our results
are provided with complete proofs which are given as an appendix for lack of space.

2 Preliminaries and Problem Statement

This section introduces the formal definitions for the problem that we study in this paper.
We model known and unknown item values as variables, and order constraints as equalities
and inequalities over them. Then we define the possible valuations for the variables via
possible-world semantics, and use this semantics to define a uniform distribution where all
worlds are equally likely. The problem of top-k querying over unknown values can then be
formally defined with respect to the expected values of variables in the resulting distribution.

2.1 Unknown Data Values under Constraints
Our input includes a set X = {x1, . . . , xn} of variables with unknown values v(x1), . . . , v(xn),
which we assume2 to be in the range [0, 1]. We consider two kinds of constraints over them:

order constraints, written xi 6 xj for xi, xj ∈ X , encoding that v(xi) 6 v(xj);
exact-value constraints to represent variables with known values, written3 xi = α for
0 6 α 6 1 and for xi ∈ X , encoding that v(xi) = α.

In what follows, a constraint set with constraints of both types is typically denoted C. We
assume that constraints in C are not contradictory (e.g., we forbid x = 0.1, y = 0.2, y 6 z,
and z 6 x), and that they are closed under implication: e.g., if x = α, y = β are given, and
α 6 β, then x 6 y is implied and thus should also be in C. We can check in PTIME that C
is non-contradictory by simply verifying that it does not entail a false inequality on exact

2 Our results extend to other bounded, continuous ranges, because we can rescale them to fall in [0, 1].
3 The number α is written as a rational number, represented by its numerator and denominator.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

4 Top-k Querying of Unknown Values under Order Constraints

values (e.g., 0.2 6 0.1 as in our previous example). The closure of C can be found in PTIME
as a transitive closure computation [20] that also considers exact-value constraints.

I Example 1. In the product classification example from the Introduction, the variable
xi ∈ X would represent the compatibility score of the product to the i-th category. If the
score is known, we encode it as a constraint xi = α. In addition, C contains the order
constraint xi 6 xj whenever category i is a sub-category of j, since by our definition the
score of a sub-category cannot be higher than that of an ancestor category.

2.2 Possible World Semantics
The unknown data captured by X and C makes infinitely many valuations of X possible, in
addition to the true one, v(X), that we do not know. We model these options via possible
world semantics: a possible world w for a constraint set C over X = {x1, . . . , xn} is a set
of values w = (v1, . . . , vn) ∈ [0, 1]n, intuitively corresponding to setting v(xi) := vi for all i,
such that all the constraints of C hold under this valuation. The set of all possible worlds is
denoted by pwX (C), or simply by pw(C) when the set of variables is clear from context.

We now notice that C can be encoded as a set of linear constraints, i.e., a set of inequalities
between linear expressions on X and constants in [0, 1]. We can encode xi 6 xj as xj−xi > 0
and xi = α can be encoded as xi > α and xi 6 α. The set pw(C) then contains all valuations
of X into [0, 1]n for which the constraints hold.

The feasible region of the set of linear constraints C, namely pw(C), can be characterized
geometrically as a convex polytope: writing n := |X |, each linear constraint defines a feasible
half-space of Rn (e.g., the half-space where x 6 y), and the convex polytope pw(C) is the
intersection of all half-spaces. For instance, in 2-dimensional space, a convex polytope is a
polygon enclosed by line segments such that, for any two points of the polygon, the segment
connecting them is within the polygon. In our setting, since the variables only take values in
[0, 1], the polytope pw(C) is bounded within [0, 1]n, and it is non-empty by our assumption
that C is not contradictory. We call it the admissible polytope.

However, with exact values constraints, or with order constraints such as xi 6 xj and
xj 6 xi for two variables xi, xj ∈ X , it may be the case that the dimension of this admissible
polytope is < |X |. This dimension can be easily computed from C, as we show:

I Lemma 2. Given a set of order and exact-value constraints C, we can compute in PTIME
the dimension of the admissible polytope.

I Example 3. Let X = {x, y, z}. If C = {x 6 y}, the admissible polytope has dimension 3
and is bounded by the planes defined by x = y, x = 0, y = 1, z = 0 and z = 1. If we add
to C the constraint y = 0.3, the admissible polytope is a 2-dimensional rectangle bounded
by 0 6 x 6 0.3 and 0 6 z 6 1 on the y = 0.3 plane. We cannot add, for example, x = 0.5,
because C would become contradictory. If we add y 6 x, the admissible polytope becomes a
1-dimensional segment 0 6 z 6 1 on the intersection of the planes x = 0.3 and y = 0.3.

2.3 Probability Distribution
Having characterized the possible worlds of pw(C), we assume a uniform probability distri-
bution over pw(C), as indicated in the Introduction. This captures the case when all possible
worlds are equally likely, and is a natural choice when we have no information about which
valuations are more probable.

Since the space of possible worlds is continuous, we formally define this distribution via a
probability density function (pdf), as follows. Let X and C define a d-dimensional polytope

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 5

pwX (C) for some integer d. The d-volume (also called the Lebesgue measure [22] on Rd) is a
measure for continuous subsets of d-dimensional space, which coincides with length, area,
and volume for dimensions 1, 2, and 3, respectively. We denote by Vd(C) the d-volume of the
admissible polytope. We also write V (C) for brevity when d is taken to be the dimension of
pw(C), with X being also implicit.

I Definition 4. The uniform pdf p is the function defined on pwX (C) by p(w) := 1/Vd(C).

2.4 Top-k Queries
We are now ready to formally define the main problem studied in this paper, namely, the
evaluation of top-k queries over unknown data values. The queries that we consider retrieve
the k items that are estimated to have the highest values, along with their estimated values,
with ties broken arbitrarily. We further allow queries to apply a selection operator σ on the
items before performing the top-k computation. In our example from the Introduction, this
is what allows us to select the top-k categories only among the end categories. We denote
the subset of X selected by σ as Xσ.

If all item values are known, the semantics of top-k queries is clear. In presence of
unknown values, however, the semantics must be redefined to determine how the top-k items
and their values are estimated. In this paper, we estimate unknown items by their expected
value over all possible worlds, i.e., their expected value according to the uniform pdf p defined
above on pw(C). This corresponds to interpolating the unknown values from the known ones,
and then querying the result. We use these interpolated values to define the top-k problem
as computing the k variables with the highest expected values, but we also study on its own
the interpolation problem of computing the expected values.

To summarize, the two formal problems that we study on constraint sets are:
Interpolation. Given a constraint set C over X and variable x ∈ X , the interpolation problem

for x is to compute the expected value of x in the uniform distribution over pwX (C).
Top-k. Given a constraint set C over X , a selection predicate σ, and an integer k, the top-k

computation problem is to compute the ordered list of the k maximal expected values of
variables in Xσ (or less if |Xσ| 6 k), with ties broken arbitrarily.

We compare our choice of definition with other definitions of top-k on uncertain data [10] in
Section 6, where we justify our choice of semantics.

3 Analysis of the General Case

We start by studying the general problem and investigate how the uniform distribution,
defined jointly over the variables of X , affects the individual behavior of each variable, i.e.,
their marginal distribution. To this end, we design an algorithm that computes the expected
value of variables.

The algorithm is brute-force because it enumerates all the possible orderings of the
variables (to be defined formally below), but it is still nontrivial: we must handle exact value
constraints specifically, and we must compute the probability of each ordering to determine its
weight in the overall expected value computation. Based on this algorithm, we then establish
complexity upper bounds for our two problems of interpolation and top-k computation.

We obtain our bounds through the more general problem of computing the marginal
distribution of variables, that we now define. Letting C be a constraint set, and x ∈ X a
variable, for a value v ∈ [0, 1], we write C|x=v the marginalized constraint set C ∪ {x = v}.
Assuming the uniform distribution on the polytope pw(C), we can define:

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

6 Top-k Querying of Unknown Values under Order Constraints

I Definition 5. The marginal distribution of x is defined as the pdf px : v 7→ V (C|x=v)/V (C).

We will show how marginal distributions can be computed in our setting. To simplify
our study, we will eliminate from the start the problem of ties. We say that a possible world
w = (v1, . . . , vn) of a constraint set C has a tie if vi = vj for some i, j. Intuitively, the only
situation where ties have non-zero probability is when they are enforced by C and hold in
every possible world. In such situations, we can rewrite C by merging these variables to
obtain an equivalent constraint set where ties have probability 0. Formally:

I Proposition 6. For any constraint set C, we can construct in PTIME a constraint set C′
such that the probability that the possible worlds of C′ have a tie (under the uniform distri-
bution) is zero, and such that any interpolation or top-k computation problem on C can be
reduced in PTIME to the same type of problem on C′.

Hence, we assume from now on that ties have zero probability in C. Note that this implies
that all of our results also hold for strict inequality constraints, of the forms x < y and x 6= y.

Under this assumption, we first study in Section 3.1 the case where C is a total order. We
then show in Section 3.2 how to handle arbitrary C by summing over the linear extensions.

3.1 Total Orders

We assume in this section that C is a total order Cn1 (α, β) defined as α 6 x1 6 · · · 6 xn 6 β,
where α and β are variables with an exact-value constraint: abusing notation we also denote
the corresponding values as α (which is > 0) and β (which is 6 1). We first assume that
there are no other exact value constraints.

For 1 6 i 6 n, we want to determine the marginal distribution and expected value of xi.
This relates to the known problem of computing order statistics:

I Definition 7. The i-th order statistic for n samples of a probability distribution Pr is the
distribution Pri of the following process: draw n independent values according to Pr, and
return the i-th smallest value of the draw.

I Proposition 8 ([16], p. 63). The i-th order statistic for n samples of the uniform distri-
bution on [0, 1] is the Beta distribution B(i, n+ 1− i).

The connection to the marginal distribution of xi in Cn1 (α, β) is the following:

I Observation 9. The marginal distribution of xi within the admissible polytope of Cn1 (α, β)
is the distribution of the i-th order statistic for n samples of the uniform distribution on [α, β].

We thus obtain that the expected value of xi in Cn1 (α, β) is the mean of the Beta
distribution B(i, n+ 1− i) scaled and shifted to [α, β], namely: α+ i(β−α)

n+1 . Note that this
corresponds to a linear interpolation of the unknown variables between α and β. The pdf of
the marginal distribution pxi : [α, β]→ [0, 1] is a polynomial derived from the expression of
the Beta distribution. The following proposition summarizes our findings:

I Proposition 10. Given Cn1 (α, β), i.e., a constraint set implying a total order bounded by α
and β, the expected value and the marginal distribution of any variable xi can be computed
in PTIME, and the marginal distribution is a polynomial of degree at most n.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 7

Exact-Value Constraints. In the case where C is allowed to contain more exact-value
constraints than the ones on α and β, we observe that we can split the total order into
sub-sequences of variables with no exact-value constraints, and then compute the expected
values and marginal distributions of each sub-sequence independently.

The soundness of splitting can be proved via the possible world semantics: assume
that there is an exact-value constraint on xi. Then the possible valuations of x1, . . . , xi−1
are affected only by the constraints in C on x1, . . . , xi, and similarly for xi+1, . . . , xn. The
possible worlds pw(C) are then equivalent to the concatenation of every possible valuation of
x1, . . . , xi−1, v for xi, and every possible valuation of xi+1, . . . , xn. Formally:

I Lemma 11. Let Cn1 (α, β) be the constraint set on X := {x1, . . . , xn} defined as in the
previous section, let C= be a non-empty set of exact-value constraints on X , and let xi = v

be a constraint of C=. Write X1,...,i−1 := {x1, . . . , xi−1}, Xi+1,...,n := {xi+1, . . . , xn}, and
C=

1,...,i−1 (resp., C=
i+1,...,n) the subset of C= on X1,...,i−1 (resp., Xi+1,...,n). Then we have:

pwX (Cn1 (α, β)∪C=) = pwX1,...,i−1(Ci1(α, v)∪C=
1,...,i−1)×{v}×pwXi+1,...,n(Cni+1(v, β)∪C=

i+1,...,n)

Hence, given a constraint set C imposing a total order and possibly exact-value constraints,
the expected value of xi can be computed as follows. If xi has an exact-value constraint, its
marginal distribution and expected value are trivial. Otherwise, we consider the total order
Cq−1
p+1(vp, vq), where p is the maximal index such that 0 6 p < i and xp has an exact-value

constraint (where x0 is the leftmost variable α and v0 = α). Similarly, q is the minimal index
such that i < q 6 n+ 1 and xq has an exact-value constraint, where xn+1 is β and vn+1 = β.
The expected value and marginal distribution of xi can be computed using the expression of
the mean and pdf of Beta distributions for Cq−1

p+1(vp, vq).

3.2 General Constraint Sets
We can now extend the result for total orders to an expression of the expected value and
marginal distribution for a general constraint set C. We will focus on expected values, and
return to the marginal distributions at the end of the section. To compute expected values,
we apply the previous process to each possible total ordering of the variables. To do this, we
define the notion of linear extensions, inspired by partial order theory:

I Definition 12. Given a constraint set C over X , we say that a constraint set T is a linear
extension of C if (i) T is a total order; (ii) the exact-value constraints of T are exactly those
of C; and (iii) C ⊆ T , namely every constraint x 6 y in C also holds in T .4

We now partition the possible worlds of pw(C) that have no ties, according to the linear
extension of C which is realized by their values. Worlds with ties can be neglected as having
zero probability, as we assumed using Proposition 6. Algorithm 1 presents this general
scheme to compute the expected value of a variable x ∈ X under an arbitrary constraint
set C assuming the uniform distribution on pw(C). For each linear extension T of C, we
compute the expected value of x in T and the overall probability of T in pw(C). Since a
linear extension is a total order, the expected value of x relative to T , denoted by ETi [x],
is computed at line 7 as explained at the end of Section 3.1: perform linear interpolation
within the total order of the contiguous unknown variables in T that contain x. As for the

4 The linear extensions of C in this sense are thus exactly the linear extensions of the partial order on X
imposed by C: this partial order is indeed antisymmetric because C has no ties.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

8 Top-k Querying of Unknown Values under Order Constraints

Algorithm 1: Compute a variable’s expected value
Input: Constraint set C on variables X with n := |X |, variable x ∈ X
Output: Expected value of x

1 if x has an exact value constraint to some value v in C then return v;
2 EC [x]← 0; V (C)← 0;
3 foreach linear extension T of C do
4 Write T as y1 6 y2 6 · · · 6 yn and yi1 = v1, . . . , yim = vm with i1 < . . . < im;
5 Add {y0 6 y1, yn 6 yn+1, y0 = 0, yn+1 = 1} to T on fresh variables y0 and yn+1;
6 Set i0 ← 0, im+1 ← n+ 1, v0 ← 0, vm+1 ← 1;
7 ET [x]← vj + k × vj+1−vj

ij+1−ij with 0 6 j 6 m and 0 < k < ij+1 − ij s.t. x is yij+k;

8 V (T)←
∏m
j=0

(vj+1−vj)ij+1−ij−1

(ij+1−ij−1)! ;
9 V (C)← V (C) + V (T);

10 EC [x]← EC [x] + V (T)× ET [x];

11 return EC [x]
V (C) ;

probability of T , we compute it as the volume of T (line 8): following Lemma 11, we can
compute it as a product of the volume of constraint sets of the form Cq−1

p+1(α, β), where it
is (β−α)(q−p−1)

(q−p−1)! because the overall volume is split evenly among the (q − p − 1)! possible
orderings.

Finally, the total volume of pw(C) is computed as the sum of volumes of the linear
extensions T (line 9), and the overall expected value EC [x] of x in C is the sum of expected
values for each T weighted by their volume (line 10) and normalized by the total volume
(line 11). Hence, Algorithm 1 correctly computes the expected value of x.

The complexity of Algorithm 1 is polynomial in the number of linear extensions of C,
as we can enumerate them in constant amortized delay [31]). However, in the general
case, there may be up to |X |! linear extensions. To obtain an upper bound in the general
case, we note that we can rescale all constraints so that all numbers are integers, and then
nondeterministically sum over the linear extensions. This yields an FP#P upper bound:

I Theorem 13. Given a constraint set C over X and x ∈ X , determining the expected value
of x in pw(C) under the uniform distribution is in FP#P.

This FP#P membership result (proved in the Appendix) is not immediate: we compute
the volume of the polytope pw(C) in FP#P, but this task is not in FP#P for general convex
polytopes [24], so our algorithm relies on the fact that pw(C) is defined from order constraints.

Given the expected value of each variable in Xσ, retrieving the top-k such values can
naturally be done in PTIME, and thus the following is an immediate corollary of Theorem 13.

I Corollary 14. Given a constraint set C over X , a selection predicate σ, and an integer k,
the top-k computation problem over X , C, and σ is in FP#P.

We will show in Section 4 that this FP#P upper bound is tight, even if we just wish to
compute the top-1 variable without its expected value.

We close the section with three concluding observations. First, we observe that Algorithm 1
generalizes to the computation of the marginal distributions of the variables. Second, we
note that the expected values computed by Algorithm 1 relate to the center of mass of the
polytope pw(C). Third, we provide a complete example to illustrate the constructions of this
section.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 9

Marginal Distributions. We note that Algorithm 1 can be adapted to compute the marginal
distribution of variable x instead of its expected value, so that our results generalize to other
tasks, such as computing other moments of the variables, their median value, etc. To do
so, let v0 = 0 < v1 < · · · < vm < vm+1 = 1 be the different values that occur in exact value
constraints of C. We adapt Algorithm 1 by replacing line 7 to compute instead the polynomial
marginal distribution of x in T on variables xij . . . xij+1 : according to Proposition 10, this
marginal distribution is polynomial and defined on the range [vj , vj+1]. We modify line 10 to
compute the sum of the marginal distributions instead, seeing them as piecewise polynomial
functions (which are zero outside of their range), and still weighted by the volume of T .
We deduce that the marginal distribution of x in C (computed by modifying line 11) is a
piecewise polynomial function with at most |X | pieces and degree at most |X |.

Center of Mass. We can show that the expected values computed by Algorithm 1 coincide
with the center of mass of the admissible polytope. The center of mass of a polytope is the
point G such that all vectors relative to G originating at points within the polytope sum to
zero: if the polytope is convex, G is located within the polytope. We show:

I Proposition 15. For any constraint set C on X , if x̄i is the expected value of xi for all
xi ∈ X , then x̄ is the center of mass of the admissible polytope pw(C).

x

y′ = γy

zFull Example. We exemplify our scheme on variables X = {x, y, y′, z}
and on the constraint set C generated by the order constraints x 6 y,
y 6 z, x 6 y′, y′ 6 z and the exact-value constraint y′ = γ for some
fixed 0 < γ < 1. Remember that we necessarily have 0 6 x and z 6 1
as well. The constraints of C are closed under implication, so they also
include x 6 z. The figure shows the Hasse diagram of the partial order
defined by C on X . Note that ties have a probability of zero in pw(C).

The two linear extensions of C are T1 : x 6 y 6 y′ 6 z and T2 : x 6 y′ 6 y 6 z. By
Lemma 11, we have pw(T1) = pw{x,y}(C′) × {γ} × [γ, 1] where C′ is defined on variables
{x, y} by 0 6 x 6 y 6 γ. We can compute the volume of pw(T1) as α1 = γ2

2 × (1− γ), and
similarly the volume of pw(T2) is α2 = γ × (1−γ)2

2 .
Let us compute the marginal distribution and expected value of y for C. We do so

by computing the marginal distribution of y for T1 and T2. We first study T1, where by
Lemma 11 it suffices to determine the marginal distribution of y for C′: we compute by
Proposition 10 that it has pdf f1 : t 7→ 2

γ ×
t
γ for t ∈ [0, γ]. Its expected value is µ1 := 2

3γ.
For T2 we determine in the same way that the pdf of y is f2 : t 7→ 2

1−γ ×
1−t
1−γ for t ∈ [γ, 1]

which has expected value µ2 := 1+2γ
3 . We deduce that the marginal distribution of y for C

has pdf α1f1 on [0, γ] and α2f2 on [γ, 1], and that its expected value is µ = α1µ1+α2µ2
α1+α2

.

4 Hardness and Approximations

We next show that the intractability of Algorithm 1 in Section 3 is probably unavoidable, by
proving matching lower bounds for interpolation and top-k in Section 4.1. However, we show
in Section 4.2 that it is tractable to approximate expected values. We will show in the next
section that exact computation for our problems can be tractable under some assumptions
on the input constraint sets.

4.1 Hardness of Exact Computation
We now analyze the complexity of computing an exact solution to our two main problems.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

10 Top-k Querying of Unknown Values under Order Constraints

Interpolation. In the previous section, we have shown that the interpolation problem is in
FP#P (Theorem 13). We now show a matching lower bound, implying that the problem is
FP#P-complete.

I Theorem 16. Given a set C of order constraints with variable set X and x ∈ X , determining
the expected value of x in pw(C) under the uniform distribution is FP#P-hard.

Proof sketch. This follows from the known hardness of computing the expected rank of an
element in a partial order without exact values [7]. See the Appendix for the full proof. J

Top-k computation. If top-k queries must return the expected values of their output, then
the previous interpolation result immediately implies the hardness of top-k. However, we
can show a more interesting result: computing a top-k (or top-1) query is still FP#P-hard,
even without returning the expected value.

I Theorem 17. Given a constraint set C over X , a selection predicate σ, and an integer k,
the top-k computation problem over X , C and σ is FP#P-hard even if k is fixed to be 1, |Xσ|
is 2, and the top-k answer does not include the expected value of the variables.

Proof sketch. To prove hardness in this case, we reduce from interpolation. We show that a
top-1 computation oracle can be used as a comparison oracle to compare the expected value
of a variable x to any other rational value α, by adding a fresh element with an exact-value
constraint to α. What is more technical is to show that, given such an comparison oracle,
we can perform the reduction and determine exactly the expected value v of x (a rational
number) using only a polynomial number of comparisons to other rationals. This follows
from a bound on the denominator of v, and by applying the rational number identification
scheme of [29]. See the Appendix for full details. J

A simple corollary of Theorem 17 is then the intractability of the top-k decision problem,
that we show by reducing from the top-k computation problem that we previously studied:

I Corollary 18. The top-k decision problem of deciding, given a constraint set C over X , a
selection predicate σ, an integer k, and a set X ⊆ X of size k, whether the k items of Xσ
that have maximal expected values are exactly those of X, is NP-hard.

4.2 Complexity of Approximate Computation
In light of the previous hardness results, we now consider approximation algorithms.

Interpolation. First, we show that the interpolation problem admits a fully polynomial-time
randomized approximation scheme (FPRAS):

I Proposition 19. Let C be a set of constraints with variable set X and x ∈ X . There is an
FPRAS that determines an estimate ÊC [x] of the expected value EC [x] of x in pw(C) under
the uniform distribution.

Proof sketch. This relies on the characterization of the set of possible worlds in our setting
as a convex polytope: we use the algorithm by Kannan, Lovász, and Simonovits to tractably
sample from a convex body [23]. The sampling is almost uniform in the sense that it has a
bounded total variation distance to the uniform distribution, which we can use to bound the
error on the expected value caused by this non-uniformity; we combine this with a bound on
the error from the sampling itself, obtained from Hoeffding’s inequality. See Appendix. J

This result is mostly of theoretical interest, as the polynomial is in |X |7, but recent
theoretical improvements on the underlying sampling algorithm [28] may ultimately yield a
practical approximate interpolation technique for general constraint sets (see [15,27]).

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 11

Top-k computation. We now study approximations for top-k computation. There are two
natural ways to define randomized approximations for this problem:

We can define the approximate top-k as an ordered list of k items whose expected value
does not differ by more than some ε > 0 from that of the item in the actual top-k at the
same rank. An FPRAS for this definition of approximate top-k, with the same reserve
on practicality, can be obtained from that of Proposition 19. Indeed, if we approximate
within ε the expected value of each item in Xσ with probability > (1− δ)

1
|Xσ| , the list of

top-k results will be an ε-approximation of the actual top-k with probability > 1− δ.
We can look for a PTIME algorithm that returns the actual top-k with high probability.
However, if we could decide the top-k problem with high probability in PTIME, then
this problem would be in the BPP (bounded-error probabilistic time) complexity class.
However, as it is NP-hard by Corollary 18, we would have NP ⊆ BPP, so that the
polynomial hierarchy collapses at the second level (Theorem 10 of [39]): this is open but
considered to be highly unlikely.

5 Tractable Cases

Given the hardness results in the previous section and the impracticality of approximation, we
now study whether exact interpolation and top-k computation can be tractable on restricted
classes of constraint sets. We consider tree-shaped constraints (defined formally below) and
generalizations thereof: they are relevant for practical applications (e.g., classifying items
into tree- or forest-shaped taxonomies), and we will show that our problems are tractable on
them (we will even compute marginal distributions, as in Section 3). We start by a splitting
lemma that generalizes Lemma 11, and then define and study our tractable class.

5.1 Splitting Lemma
We will formalize the cases in which the valuations of two variables in X are probabilistically
dependent (the variables influence each other), according to C. This, in turn, will enable us
to define independent subsets of the variables and thus independent subsets of the constraints
over these variables. In what follows, we use xi ≺ xj to denote the covering relation of the
partial order 6, i.e., xi 6 xj is in C but there exists no xk /∈ {xi, xj} such that xi 6 xk and
xk 6 xj are in C.

I Definition 20. We say that x influences x′, written x→ x′, if there is a path x1 ≺ . . . ≺ xk
with x1 = x, xk = x′, such that none of the xi has exact-value constraints.

The influence relation x↔ x′ is the symmetric, reflexive, and transitive closure of →.
The uninfluenced classes of X under C are the classes of the equivalence relation ↔

consisting of variables with no exact-value constraints, and singleton classes for each variable
with an exact-value constraint.

Intuitively, the uninfluenced classes of X under C are just the connected components of
the relation “x and y co-occur in some order constraint” (forgetting about the direction of the
order) when the variables with an exact value constraint are removed. We write C1, . . . ,Cm
for the uninfluenced classes of X under C. We call the uninfluence decomposition the set
C1, . . . , Cm of subsets of C, such that Ci contains the (implication closure of) constraints on
the variables of Ci. We can show that the possible worlds of C can be decomposed following
the uninfluence decomposition:

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

12 Top-k Querying of Unknown Values under Order Constraints

I Lemma 21. There exists a bijective correspondence between pw(C1)× · · · × pw(Cm) and
pw(C), obtained by merging the variables with exact-value constraints.

Note that this lemma subsumes Lemma 11 (and generalizes it beyond total orders). We
will use it to analyse restricted classes of constraint sets in the next section.

5.2 Tree-Shaped Constraints
We define the first restricted class of constraints that we consider: tree-shaped constraints.
Recall that a Hasse diagram is a representation of a partial order as a directed acyclic graph,
whose nodes correspond to X and there is an edge (x, y) if x ≺ y (used, e.g., in the diagram
in Section 3.2).

I Definition 22. A constraint set C over X is tree-shaped if the probability of ties is zero, the
Hasse diagram of the partial order induced on X by C is a directed tree, the root has exactly
one child, and exactly the root and leaves have exact-value constraints. C thus imposes a
global minimal value, and maximal values at each leaf, and no other exact-value constraint.

We call C reverse-tree-shaped if the reverse of the Hasse diagram (obtained by reversing
the direction of the edges) satisfies the requirements of being tree-shaped.

I Example 23. Consider the taxonomy of Figure 1 (without the indicated compatibility
scores). Remove Wearable Devices and Diving Watches and add dummy variables with exact-
value constraints to 0 and 1 as respectively the leaves and root, to materialize the fact that
all variables are assumed to be > 0 and 6 1. The resulting monotonicity constraints can be
expressed as a reverse-tree-shaped constraint set.

We now show that for a tree-shaped constraint set C, unlike in the general case, we can
tractably compute exact expressions of the marginal distributions and expected values of
variables. In the next two results, we assume arithmetic operations on rationals to have unit
cost, e.g., they are performed up to a fixed numerical precision. Otherwise, the complexities
remain polynomial but the degrees may be larger.

I Theorem 24. For any tree-shaped constraint set C over X , we can compute V (C) in time
O(|X |2).

Proof sketch. We process the tree bottom-up, propagating a piecewise polynomial function
expressing the volume of the subpolytope on the subtree rooted at each node as a function
of the value of the parent node: we compute it using Lemma 21 from the child nodes. J

See Appendix for the complete proof. This result can be applied to prove the tractability
of computing marginal probabilities in a tree-shaped constraint set:

I Theorem 25. For any tree-shaped constraint set C on variable set X and variable x ∈ X
with no exact-value constraint, the marginal distribution for x is piecewise polynomial and
can be computed in time O(|X |3).

Proof sketch. We proceed similarly to the proof of Theorem 24 but with two functions: one
for x and its descendants, and one for all other nodes. The additional factor in |X | is because
the second function depends on how the value given to x compares to the tree leaves. J

We last note that our results on tree-shaped constraint sets extend to reverse-tree-shaped
constraint sets: any reverse-tree-shaped constraint set C can be transformed to a tree-
shaped constraint set C′ such that EC′(x) = 1− EC(x) for every x ∈ X , by reversing order

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 13

constraints and replacing exact-value constraints x = α with x = 1− α. Further, if C is not
(reverse-)tree-shaped but each Ci in its uninfluence decomposition C1, . . . , Cm is, then we can
compute the expected and top-k values in C from each Ci using Lemma 21. We deduce:

I Corollary 26. The top-k and interpolation problems can be solved in PTIME for con-
straint sets whose uninfluence decomposition contains only tree-shaped or reverse-tree-shaped
constraint sets.

6 Other Variants

We have defined top-k computation on constraint sets by considering the expected value of
each variable under the uniform distribution. However, many other definitions of top-k on
unknown values have been studied in previous work. We now compare them to our definition,
which we call local-top-k, for the constraint sets that we study.

U-top-k. The U-top-k variant does not study individual variables but defines the top-k as
a choice between variable sequences, namely, the ordered sequence of k variables with the
highest probability of being the k largest variables (in decreasing order) among those of Xσ,
for the uniform distribution on pw(C). We call this alternative definition U-top-k by analogy
with [10, 34]. Note that U-top-k does not give a score per variable, but instead considers
the global probability that the k variables returned are indeed the top-k. We show that the
U-top-k and local-top-k definitions sometimes disagree in our setting:

I Lemma 27. There is a constraint set C and selection predicate σ such that local-top-k and
U-top-k do not match, even for k = 1 and without returning expected values or probabilities.

We can easily design an algorithm to compute U-top-k in PSPACE and in polynomial
time in the number of linear extensions of C: compute the probability of each linear extension
as in Algorithm 1, and then sum on linear extensions depending on which top-k sequence
they realize (on the variables selected by σ), to obtain the probability of each answer. Hence:

I Proposition 28. For any constraint set C over X , integer k and selection predicate σ, the
U-top-k query for C and σ can be computed in PSPACE and in time O(poly(N)), where N
is the number of linear extensions of C.

Unlike Theorem 13, however, this does not imply FP#P-membership: when selecting the
most probable sequence, the number of candidate sequences may not be polynomial (as k is
not fixed). We leave to future work an investigation of the precise complexity of U-top-k.

We can also show that, in our setting, U-top-k does not satisfy the containment property
of [10]. We define the containment property as follows, taking variable order into account:

I Definition 29. A top-k definition satisfies the containment property if for any constraint
set C on variables X , for any predicate σ (where we write Xσ the selected variables), and
for any k < |Xσ|, letting Sk and Sk+1 be the top-k and top-(k + 1) variables (i.e., without
scores), Sk is a strict prefix of Sk+1.

The containment property is a natural desideratum: computing the top-k for some k ∈ N
should not give different variables or a different order for the top-k′ with k′ < k. Our
local-top-k clearly satisfies the containment property by definition, except in the case of ties.
However:

I Lemma 30. There is a constraint set C without ties such that U-top-k does not satisfy the
containment property for the uniform distribution on pw(C).

We see this as a drawback of U-top-k compared to our local-top-k definition.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

14 Top-k Querying of Unknown Values under Order Constraints

Global-top-k. We now study the global-top-k definition [40], and show that it does not
respect the containment property either, even though it is defined on individual variables:

I Definition 31. The global-top-k query, for a constraint set C, selection predicate σ, and
integer k, returns the k variables that have the highest probability in the uniform distribution
on pw(C) to be among the variables with the k highest values, sorted by decreasing probability.

I Lemma 32. There is a constraint set C without ties such that global-top-k does not satisfy
the containment property for the uniform distribution on pw(C).

Other Variants. Additional variants of top-k have been studied, see [10,40]. However, in
the context of [10], these definitions do not satisfy the containment property either, except
for two. The first, U-kRanks [34], does not satisfy the natural property that top-k answers
always contain k different variables. The second, expected ranks [10], resembles local-top-k
but uses ranks instead of values, so the definition is value-independent. While this makes
sense for top-k queries designed to return tuples, as in [10], we argue it is less sensible when
focusing on the numerical value of variables; this justifies our focus on local-top-k.

7 Related Work

We extend the discussion about related work from the Introduction.

Ranking queries over uncertain databases. A vast body of work has focused on providing
semantics and evaluation methods for order queries over uncertain databases, including top-k
and ranking queries (e.g., [10, 12, 18, 19, 21, 25, 32, 33, 37, 38]). Such works consider two main
uncertainty types: tuple-level uncertainty, where the existence of tuples (i.e., variables) is
uncertain, and hence affects the query results [10, 12, 19, 21, 25, 32, 37, 38]; and attribute-level
uncertainty, more relevant to our problem, where the data tuples are known but some of
their values are unknown or uncertain [10, 18, 21, 33]. Top-k queries over uncertain data
following [33] was recently applied to crowdsourcing applications in [8]. These studies are
relevant to our work as they identify multiple possible semantics for order queries in presence
of uncertainty, and specify desired properties for such semantics [10, 21]; our definition of
top-k satisfies the desiderata that are relevant to attribute-level uncertainty [21].

We depart from this existing work in two main respects. First, existing work assumes that
each variable is given with an independent function that describes its probability distribution.
We do not assume this, and instead derive non-independent marginal distributions for the
variables in a principled way from a uniform prior on the possible worlds. Our work is
thus well-suited to the many situations where probability distributions on variables are not
known, or where they are not independent (e.g., when order constraints are imposed on
them). For this reason, the problems that we consider are generally computationally harder.
For instance, [33] is perhaps the closest to our work, since they consider the total orders
compatible with given partial order constraints. However, they assume independent marginal
distributions, so they can evaluate top-k queries by only considering k-sized prefixes of the
linear extensions; in our setting even computing the top-1 element is hard (Theorem 17).

The second key difference is that other works do not try to estimate the top-k values,
because they assume that the marginal distribution is given: they only focus on ranks. In
our context, we need to compute missing values, and need to account, e.g., for exact-value
constraints and their effect on the probability of possible worlds and on expected values
(Section 3).

We also mention our previous work [2] which considers the estimation of uncertain values
(expectation and variance), but only in a total order, and did not consider complexity issues.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 15

Partial order search. Another relevant research topic, partial order search, considers queries
over of elements in a partially ordered set to find a subset of elements with a certain
property [1, 11, 14, 17, 30]. This relates to many applications, e.g., crowd-assisted graph
search [30], frequent itemset mining with the crowd [1], and knowledge discovery, where
the unknown data is queried via oracle calls [17]. These studies are complementary to ours:
when the target function can be phrased as a top-k or interpolation problem, if the search is
stopped before all values are known, we can use our method to estimate the complete output.

Interpolation. While various interpolation methods are known for totally ordered data, we
are the first, to our knowledge, to propose a principled interpolation scheme for partially
ordered values. A non-linear interpolation method based on spline curves was proposed
in [13] for partial orders, but with no possible world semantics or complexity analysis.

Tree-shaped partial orders. Our analysis of tractable schemes for tree-shaped partial orders
is reminiscent of the well-known tractability of probabilistic inference in tree-shaped graphical
models [5], and of the tractability of probabilistic query evaluation on trees [9] and treelike
instances [4]. However, we study continuous distributions on numerical values, and the
influence between variables when we interpolate does not simply follow the tree structure; so
our results do not seem to follow from these settings.

Algebra for partial orders. Some of the present authors are also authors of another sub-
mission to the same venue [3] dealing with incompleteness in ordered data. The problem
considered there is however very different: [3] proposes an algebra for complex queries over
ordered relational data, where order is not fully known. In contrast to our work, [3] does
not consider querying unknown data values, nor their interpolation. Instead its goal is to
develop a formalism to represent and query all compatible orders on tuples, and study the
complexity of possible and certain answers, with no quantitative notion of their probability.

8 Conclusion

In this paper, we have studied the problems of top-k computation and interpolation for
data with unknown values and order constraints. We have provided foundational solutions,
including a general computation scheme, complexity bounds, and analysis of tractable cases.

One natural direction for future work is to study whether our tractable cases (tree-shaped
orders, sampling) can be covered by more efficient PTIME algorithms, or whether more
general tractable cases can be identified. Another interesting question is to extend our
scheme to request additional values from the crowd, as in [1, 8], and reduce the expected
error on the interpolated values or top-k query, relative to a user goal. In such a setting, how
should we choose which values to retrieve, and could we update incrementally the results of
interpolation when we receive new exact-value constraints? Another question is whether our
results generalize to arbitrary linear constraints, or to different prior distributions on the
polytope.

We also note that the uniform interpolation scheme that we have described, while intuitive,
fails to respect a natural stability property. Intuitively, an interpolation scheme is stable if
adding exact-value constraints to fix some variables to their interpolated values does not
change the interpolated values of the other variables. We can show that this property is not
respected by our scheme (see Appendix F). We leave for future work the study of alternative
interpolation schemes on partial orders that would be stable in this sense.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

16 Top-k Querying of Unknown Values under Order Constraints

References
1 A. Amarilli, Y. Amsterdamer, and T. Milo. On the complexity of mining itemsets from the

crowd using taxonomies. In ICDT, 2014.
2 A. Amarilli, Y. Amsterdamer, and T. Milo. Uncertainty in crowd data sourcing under

structural constraints. In UnCrowd, 2014.
3 A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart. Possible and certain answers

for queries over order-incomplete data. http://pierre.senellart.com/publications/
amarilli2016possible.pdf, 2016. Submitted for publication.

4 A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike instances.
In ICALP, 2015.

5 C. M. Bishop. Graphical models. In Pattern Recognition and Machine Learning, chapter 8.
Springer, 2006.

6 J. Bragg, Mausam, and D. S. Weld. Crowdsourcing multi-label classification for taxonomy
creation. In HCOMP, 2013.

7 G. Brightwell and P. Winkler. Counting linear extensions. Order, 8(3), 1991.
8 E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Crowdsourcing for top-k

query processing over uncertain data. Knowledge and Data Engineering, IEEE Transactions
on, 28(1):41–53, 2016.

9 S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree automata on probabilistic XML. In
PODS, 2009.

10 G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data and
expected ranks. In ICDE, 2009.

11 S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and group-by
queries. In ICDT, 2013.

12 L. Detwiler, W. Gatterbauer, B. Louie, D. Suciu, and P. Tarczy-Hornoch. Integrating and
ranking uncertain scientific data. In ICDE, 2009.

13 T. Došlić and D. J. Klein. Splinoid interpolation on finite posets. JCAM, 177(1), 2005.
14 U. Faigle, L. Lovasz, R. Schrader, and G. Turán. Searching in trees, series-parallel and

interval orders. SIAM J. Comput., 15(4), 1986.
15 C. Ge and F. Ma. A fast and practical method to estimate volumes of convex polytopes.

In FAW, 2015.
16 J. E. Gentle. Computational Statistics. Springer, 2009.
17 D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma. Dis-

covering all most specific sentences. TODS, 28(2), 2003.
18 P. Haghani, S. Michel, and K. Aberer. Evaluating top-k queries over incomplete data

streams. In CIKM, 2009.
19 M. Hua, J. Pei, and X. Lin. Ranking queries on uncertain data. VLDB J., 20(1), 2011.
20 Y. E. Ioannidis and R. Ramakrishnan. Efficient transitive closure algorithms. In VLDB,

1988.
21 J. Jestes, G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic

data. TKDE, 23(12), 2011.
22 F. Jones. Lebesgue Integration on Euclidean Space. Jones & Bartlett Learning, 2001.
23 R. Kannan, L. Lovász, and M. Simonovits. Random walks and an o∗(n5) volume algorithm

for convex bodies. Random Struct. Algorithms, 11(1), 1997.
24 J. Lawrence. Polytope volume computation. Mathematics of Computation, 57(195), 1991.
25 J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in probabilistic databases.

PVLDB, 2(1), 2009.
26 X. Lian and L. Chen. A generic framework for handling uncertain data with local correla-

tions. VLDB, 4(1), 2010.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

http://pierre.senellart.com/publications/amarilli2016possible.pdf
http://pierre.senellart.com/publications/amarilli2016possible.pdf

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 17

27 L. Lovász and I. Deák. Computational results of an O∗(n4) volume algorithm. European
Journal of Operational Research, 216(1), 2012.

28 L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4), 2006.
29 C. H. Papadimitriou. Efficient search for rationals. Information Processing Letters, 8(1),

1979.
30 A. Parameswaran, A. Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom. Human-

assisted graph search: it’s okay to ask questions. PVLDB, 4(5), 2011.
31 G. Pruesse and F. Ruskey. Generating linear extensions fast. SIAM J. Comput., 23(2),

1994.
32 C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data.

In ICDE, 2007.
33 M. A. Soliman, I. F. Ilyas, and S. Ben-David. Supporting ranking queries on uncertain and

incomplete data. VLDB J., 19(4), 2010.
34 M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query processing in uncertain

databases. In ICDE, 2007.
35 J. Stoyanovich, S. Amer-Yahia, S. B. Davidson, M. Jacob, T. Milo, et al. Understanding

local structure in ranked datasets. In Proc. CIDR, 2013.
36 C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale classification using

machine learning, rules, and crowdsourcing. PVLDB, 7(13), 2014.
37 C. Wang, L. Yuan, J. You, O. R. Zaïane, and J. Pei. On pruning for top-k ranking in

uncertain databases. PVLDB, 4(10), 2011.
38 K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k queries in uncertain

databases. In ICDE, 2008.
39 S. Zachos. Probabilistic quantifiers and games. JCSS, 36(3), 1988.
40 X. Zhang and J. Chomicki. Semantics and evaluation of top-k queries in probabilistic

databases. DAPD, 26(1), 2009.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

18 Top-k Querying of Unknown Values under Order Constraints

A Proofs for Section 2 (Preliminaries and Problem Statement)

I Lemma 2. Given a set of order and exact-value constraints C, we can compute in PTIME
the dimension of the admissible polytope.

Proof. The result follows from the more general fact that we can compute the dimension
of a convex polyhedron in PTIME from the inequalities that define it, by determining
which constraints are redundant and then computing the rank of the matrix of redundant
constraints (see [Sch86]). However, for completeness, we will give a self-contained proof of
this fact in our context.

We can compute this dimension of pwX (C) by viewing the set of constraints as a graph.
First, consider C̃, the version of C extended with 0 6 x 6 1 constraints for all x ∈ X . Second,
build a directed graph GC,X of all variables in X and all constant values within C̃, with
an edge between u and v if u 6 v holds in C̃, for any variables or constant values u and v.
Since C is not contradictory, GC,X has no cycle containing two different constant values. The
dimension is then the number of strongly connected components of GC,X that do not contain
any constant α. J

I Example 33. Refer back to Example 3. For the original C, the graph GC,X has 5 strongly
connected components, 3 of which have no constants. Once we add y = 0.3, the graph GC,X
still has 5 strongly connected components, but the one of y also contains the constant 0.3, so
the dimension becomes 2. When we add y 6 x, the graph GC,X loses one strongly connected
component, and the dimension becomes 1.

B Proofs for Section 3 (Analysis of the General Case)

We first define formally the notion of tied values.

I Definition 34. Given a constraint set C, we say that x and y have a persistent tie if C
contains x 6 y and y 6 x. (Remember that C is closed under implication; so in particular x
and y have a persistent tie if they have an exact-value constraint to the same value.)

We write x ∼ y if x and y have a persistent tie. It is immediate that ∼ is an equivalence
relation.

We say that C has a persistent tie if there are x 6= y such that x ∼ y.

I Lemma 35. For any constraint set C which has no persistent tie, the mass under the
uniform distribution of possible worlds with ties is 0.

Proof. Let d be the dimension of pw(C) and n := |X |. Let W be the subset of pw(C) of the
possible worlds that have ties. We write W as

⋃
xi,xj∈X
i 6=j

Wi,j , where Wi,j is the subset of

pw(C) of the possible worlds where there is a tie between xi and xj . We clearly have:

Vd(W) 6 |X |2 max
xi,xj∈X
i 6=j

Vd(Wi,j)

Hence, it suffices to show that for any xi, xj ∈ X , i 6= j, Vd(Wi,j) = 0.
Hence, fix xi, xj ∈ X , i 6= j. Remember that we have assumed that we only consider

constraint sets C such that pw(C) is non-empty. Because C is closed under implication, it
cannot be the case that ti = tj in every possible world t ∈ pw(C); otherwise this implies
that the constraints xi 6 xj and xj 6 xi are implied by C, so they hold in C, and C has a
persistent tie, contradicting our assumption. Thus pw(C) is a convex polytope of dimension d

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 19

in [0, 1]n which is not included in the hyperplane defined by the equation xi = xj . We deduce
that Wi,j , the projection of pw(C) to that hyperplane, has dimension d−1, so that its volume
Vd(Wi,j) =

∫
Wi,j

dµd
Vd(C) is 0. This concludes the proof. J

In the situation with persistent ties, we observe that, informally, tied variables can be
collapsed to single variables, so as to remove the persistent ties without changing substantially
the possible worlds and their probability. Formally:

I Definition 36. We define X/∼ as the set of equivalence classes of X for ∼, and we define
C/∼ to be the constraint set where every occurrence of a variable xi of X is replaced by the
variable of X/∼ corresponding to its equivalence class.

The following is immediate:

I Lemma 37. For any constraint set C on variable set X with uniform distribution pu, the
constraint set C/∼ is without persistent ties, can be computed in PTIME, and there is a
bijection f from pw(C) to pw(C/∼).

Proof. The computation of C/∼ can be performed by computing in PTIME the strongly
connected components of the graph of the ∼ relation, which we can clearly compute in
PTIME from C. The absence of persistent ties is by observing that any persistent tie in the
quotient between Xi and Xj in X/∼ would imply the existence of xi, x′i ∈ Xi and xj , x′j ∈ Xj

such that C contains xi 6 xj and x′j 6 x′i, from which we deduce the existence of a persistent
tie between xi and xj as C contains xj 6 x′j , x′i 6 xi by definition of xi ∼ x′i, xj ∼ x′j , so
that we should have identified xi and xj when constructing X/∼.

The bijection between the possible worlds is obtained by mapping any possible world
t ∈ pw(C) to t′ obtained by choosing, for every Xi ∈ X/∼, the value t′i as tj such that
xj ∈ Xi. (The choice of representative does not matter as the definition of ∼ implies that
tj = tj′ for every t ∈ pw(C) whenever xj ∼ xj′ .) J

We conclude by showing how problems on C can be reduced to problems on C/∼,
concluding the proof of Proposition 6.

The interpolation problem for a variable xi on C clearly reduces to interpolation for
variable Xj on C/∼.

The top-k computation problem on C for a selection predicate σ reduces to the top-k
computation problem on C/∼ for the selection predicate σ′ that selects variables Xi such
that some xj ∈ Xi is selected by σ. Given the top-k result (X1, . . . , Xk) on C/∼, we rewrite
it to the top-k result on C by replacing each Xi by all the variables xj ∈ Xi selected by σ
(there is at least one of them), and truncating to length k.

B.1 Total Orders (Section 3.1)

I Observation 9. The marginal distribution of xi within the admissible polytope of Cn1 (α, β)
is the distribution of the i-th order statistic for n samples of the uniform distribution on [α, β].

Proof. The distribution on n uniform independent samples in [α, β] can be described as first
choosing a total order for the samples, uniformly among all permutations of {1, . . . , n} (with
ties having a probability of 0 and thus being neglected). Then, the distribution for each total
order is exactly that of xi when variables are relabeled. J

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

20 Top-k Querying of Unknown Values under Order Constraints

B.2 General Constraint Sets (Section 3.2)
I Theorem 13. Given a constraint set C over X and x ∈ X , determining the expected value
of x in pw(C) under the uniform distribution is in FP#P.

Proof. Let C be an arbitrary constraint set with order constraints and exact-value constraints
on a variable set X , and let n := |X |. Use Proposition 6 to ensure that there are no ties.
To simplify the reasoning, we will make all values occurring in exact-value constraints be
integers that are multiples of (n + 1)! as follows: let ∆ be (n + 1)! times the product of
the denominators of all exact-value constraints occurring in C, which can be computed in
PTIME, and consider C′ the constraint set defined on [0,∆]n by keeping the same variables
and order constraints, and replacing any exact-value constraint xi = v by xi = v∆; the
constraint set C′ is computable in PTIME from C, and the polytope pw(C′) is obtained by
scaling pw(C) by a factor of ∆ along all dimensions; hence, if we can compute the expected
value of xi in C′ (which is the coordinate of the center of mass of pw(C′) on the component
corresponding to xi), we can compute the expected value of xi in C′ by dividing by ∆. So
we can thus assume that pw(C′) is a polytope of [0,∆]n where all exact-value constraints are
integers which are multiples of (n+ 1)!.

We use Lemma 5.2 of [ACK+11] to argue that the volume of pw(C) can be computed
in #P. The PTIME generating Turing machine T , given the constraint set C, chooses
nondeterministically a linear extension of (X ,6C), which can clearly be represented in
polynomial space and checked in PTIME. The PTIME-computable function g computes, as
a rational, the volume of the polytope for that linear extension, and does so according to
the scheme of Section 3: the volume is the product of the volumes of each Cn1 (α, β), whose
volume is (β−α)n

n! . This is clearly PTIME-computable, and as α and β are values occurring
in exact-value constraints, they are integers and multiples of n!, so the result is an integer,
so the overall result is a product of integers, hence an integer. By Lemma 5.2 of [ACK+11],
V (C′), which is the sum of V (T) across all linear extensions T of C′ (because there are no
ties), is computable in #P.

We now apply the same reasoning to show that the sum, across all linear extensions T ,
of V (T) times the expected value of xi in T , is computable in #P. Again, we use Lemma 5.2
of [ACK+11], with T enumerating linear extensions, and with a function g that computes
the volume of the linear extension as above, and multiplies it by the expected value of xi, by
linear interpolation in the right Cn1 as in the previous section (it is an integer, as all values of
exact-value constraints are multiples of n+ 1). So this concludes, as the expected value v
of xi is 1

V (C′)
∑
T V (T)vT where vT is the expected value of xi for T , and we can compute

both the sum and the denominator in #P. Hence, the result of the division, and reducing
back to the answer for the original C, can be done in FP#P. J

I Proposition 15. For any constraint set C on X , if x̄i is the expected value of xi for all
xi ∈ X , then x̄ is the center of mass of the admissible polytope pw(C).

Proof. Fix C and a variable xi. We show that the expected value x̄i of xi is the coordinate
of the center of mass x̄ of pw(C) along vector ui, where ui is the unit vector for the i-th
coordinate.

The vector of the center of mass of pw(C) is given by: x̄ := 1
V (C)

∫
pw(C) r dw where r

is the function that gives the coordinates of each point in the basis of the ui’s. Hence,
x̄i = 1

V (C)
∫

pw(C) r · ui dw. Since the coordinate of the center of mass along ui must be in
[0, 1], because pw(C) ⊆ [0, 1]n, we can split the integral to an integration along ui (for t
on the finite interval [0, 1]), and then on the section of pw(C) projecting to coordinate t

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 21

on ui; in other words, the intersection of pw(C) with the hyperplane with coordinate t on
axis ui. Formally, x̄i = 1

V (C)
∫ 1
t=0 tVt dt, where Vt is the volume of the section of pw(C) along

the hyperplane with coordinate t on axis ui, i.e., x̄i = 1
V (C)

∫ 1
t=0 tV (C|x=t) dt. But this is

exactly the definition of the expected value of the marginal distribution of Definition 5, which
concludes the proof. J

C Proofs for Section 4 (Hardness and Approximations)

C.1 Hardness of Exact Computation (Section 4.1)
I Theorem 16. Given a set C of order constraints with variable set X and x ∈ X , determining
the expected value of x in pw(C) under the uniform distribution is FP#P-hard.

To prove this result, we will rely on the following known result, in the context of partial
orders without known values:

I Theorem 38 ([BW91], Theorems 6 and 7). For any input partial order (X ,6P) and
two elements x and y of X , it is #P-complete to compute the expected rank of x among linear
extensions of (X ,6P), or the probability that x < y holds in linear extensions of (X ,6P).

We now prove Theorem 16:

Proof. We prove hardness by showing a reduction from the problem of computing the
expected rank of an element in a partial order, which is #P-hard by Theorem 38. Let
P = (X ,6P) be a partial order, and let C = {x 6 y | x, y ∈ X , x 6P y} be the set of
constraints over X corresponding to 6P . Note that C contains no exact-value constraints,
and that we can assume ties have a zero probability. We claim that, writing n := |X |, if the
expected value of x is v, then the expected rank r of x in P is (n+ 1)v, which can clearly be
computed in PTIME from v. We now justify that this reduction is correct.

Let T1, . . . , TN be the linear extensions of P . Consider the partition of the set of possible
worlds pw(C) into subsets W1, . . . ,WN , where Wi := pw(Ti) for each i. Their union is indeed
exactly pw(C), as every possible world of C realizes some linear extension of P (possibly
many, if there are ties), and as we assumed that the probability of a tie is 0, this is indeed
a partition of pw(C) up to worlds that have a total probability of 0. Now, it is easily seen
by symmetry that all Ti have the same volume. Hence, denoting v the (unknown) expected
value of x in C, we have v = 1

N

∑N
i=1 vi, where vi is the expected value of x in Ti. As there

are no exact-value constraints, by Section 3.1, we know that, following linear interpolation
between 0 and 1, for any i, we have vi = ri

n+1 , where ri is the rank of x in Ti (that is, its
index in the total order Ti, between 1 and n). Hence, we have v = 1

N ·(n+1)
∑N
i=1 ri. Now,

the expected rank of x in P is defined as r = 1
N

∑N
i=1 ri, so it is clear that r = (n + 1)v,

showing the correctness of the reduction. J

I Theorem 17. Given a constraint set C over X , a selection predicate σ, and an integer k,
the top-k computation problem over X , C and σ is FP#P-hard even if k is fixed to be 1, |Xσ|
is 2, and the top-k answer does not include the expected value of the variables.

Proof. We will perform a reduction from the interpolation problem (i.e., expected value
computation): given a constraint set C and a variable xi in the variable set X of C, determine
the expected value of xi in C, which is #P-hard by Theorem 16. From the proof of that
theorem, we can further assume that C contains no exact-value constraints, and hardness

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

22 Top-k Querying of Unknown Values under Order Constraints

still holds. Write n := |X |. Assume using Proposition 6 that the probability of ties in pw(C)
is zero.

We first observe, as in the proof of Theorem 16, that the expected value v of xi can
be written as 1

N(n+1)
∑
T rT , where the sum is over all the linear extensions T of C, rT ∈

{1, . . . , n} is the rank of xi in the linear extension T , and N 6 n! is the number of linear
extensions. This implies that v can be written as a rational p/q with 0 6 p 6 q and
0 6 q 6M , where we write M := (n+ 1)!.

We determine this fraction p/q using the algorithm of [Pap79], that proceeds by making
queries of the form “is p/q 6 p′/q′” with 0 6 p′, q′ 6M , and runs in time logarithmic in the
value M , so polynomial in the input C. To do so, we must describe how to decide in PTIME
whether v 6 p′/q′ for 0 6 p′, q′ 6 M , using an oracle for the top-1 computation problem
that does not return the expected values.

Fix v′ = p′/q′ the query value and let v = p/q be the unknown target value, the expected
value of xi. We illustrate how to decide whether v 6 v′. The general idea is to add a
variable with exact-value constraint to v′ and compute the top-1 between xi and the new
variable, but we need a slightly more complicated scheme because the top-1 answer variable
can be arbitrary in the case where v = v′ (i.e., we have a tie in computing the top-1). Let
ε := 1/(2(M2 + 1)), which is computable in PTIME in the value of n (so in PTIME in
the size of the input C). Construct C′ (resp., C′−, C′+) by adding an exact-value constraint
x′ = v′ (resp., x′− = v′ − ε, x′+ = v′ + ε) for a fresh variable x′ (resp., x′−, x′+). Now use
the oracle for C′ (resp., C′−, C′+) and the selection predicate that selects xi and x′ (resp.,
x′−, x′+), taking k = 1 in all cases. The additional variables do not affect the expected
value of xi in C′, C′+, and C′−, so it is also v in them. Further, we know that v = p/q,
v′ = p′/q′, with 0 6 p, q, p′, q′ 6 M , hence either v = v′, or |v − v′| > 1

M2 . Hence, letting
S = {v′, v′ − ε, v′ + ε}, there are three possibilities: v = v′, v < v′′ for all v′′ ∈ S, or v > v′′

for all v′′ ∈ S. Thus, if the top-1 variable in all oracle calls is always xi (resp., never xi),
then we are sure that v > v′ (resp., v < v′). If some oracle calls return xi but not all of them,
we are sure that v = v′. Hence, we can find out in PTIME using the oracle whether v 6 v′.
This concludes the proof, as we then have an overall PTIME reduction from the FP#P-hard
problem of interpolation (i.e., expected value computation) to the top-1 computation problem,
showing that the latter is also FP#P-hard. J

I Corollary 18. The top-k decision problem of deciding, given a constraint set C over X , a
selection predicate σ, an integer k, and a set X ⊆ X of size k, whether the k items of Xσ
that have maximal expected values are exactly those of X, is NP-hard.

Proof. We reduce from the top-k computation problem, which is #P-hard, and hence NP-
hard. As per Theorem 17, we can fix an instance (C,X , σ, k) of that problem with k = 1
and |Xσ| = 2. Let x be one of the two variables of Xσ. Then (C,X , σ, k, x) is an accepted
instance of the top-1 decision problem if and only if x is the answer to the top-1 computation
problem. J

C.2 Complexity of Approximate Computation (Section 4.2)
I Proposition 19. Let C be a set of constraints with variable set X and x ∈ X . There is an
FPRAS that determines an estimate ÊC [x] of the expected value EC [x] of x in pw(C) under
the uniform distribution.

Proof. We rely on a result by Kannan, Lovász, and Simonovits (Theorem 2.2 of [KLS97])
that shows that sampling a point almost uniformly from a convex body in dimension n can be

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 23

done by Õ(n5) calls to an oracle deciding membership in the body, and an additional factor of
Õ(n2) arithmetic operations (here, Õ(·) is the soft-O notation, where polylogarithmic factors
are ignored). By “almost uniformly” we mean that the total variation distance between
the uniform distribution and the actual distribution realized by the sampling is less than
any fixed number ε′ > 0. The dependency of the running time in ε′ is logarithmic and thus
hidden in the polylogarithmic complexity analysis.

Let ε, δ > 0 be two reals. For some number N that we define further, we first apply N
times consecutively the sampling algorithm of [KLS97] with ε′ := ε

4 to obtain N independent
samples p1, . . . , pN . The algorithm uses an oracle for membership to the polytope, which
in our setting can be determined in time O(|C|); hence, as the dimension of pw(C) is
bounded by |X |, by the complexity analysis of [KLS97], this process has a running time of
O(N × |X |7 × |C|).

We then consider the projection of every point pi to the dimension defined by the variable
x, resulting in N values v1, . . . , vN . We then compute the estimate ÊC[x] as 1

N

∑N
i=1 vi.

Clearly this has no impact on the running time. It only remains to show that this estimate
satisfies the given bounds, that is, that we have

∣∣∣ÊC [x]− EC [x]
∣∣∣ 6 ε with probability at least

1− δ.
Let f : pw(C) → [0; 1] be the probability density function of the distribution realized

by the algorithm of [KLS97], according to which the independent samples were drawn. By
definition of the total variation distance, we know that 1

2
∫

pw(C)

∣∣∣ 1
V (C) − f(p)

∣∣∣dp 6 ε
4 . If we

denote by µv the average of the (independent) x-value samples v1, . . . , vN , and we denote by
fx=t the function obtained from f by setting to t the coordinate corresponding to x, we have:

|µv − EC [x]| =

∣∣∣∣∣
∫ 1

0
t

∫
pw(Cx=t)

fx=t(p)dpdt −
∫ 1

0
t

∫
pw(Cx=t)

1
V (C)dpdt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
t

∫
pw(Cx=t)

(
fx=t(p)−

1
V (C)

)
dpdt

∣∣∣∣∣
6
∫ 1

0
1×

∫
pw(Cx=t)

∣∣∣∣ 1
V (C) − fx=t(p)

∣∣∣∣dpdt
=
∫

pw(C)

∣∣∣∣ 1
V (C) − f(p)

∣∣∣∣dp 6 ε

2 .

Now, as the vi are independent and identically distributed, we obtain by Hoeffding’s
inequality [Hoe63]:

Pr
(∣∣∣ÊC [x]− µv

∣∣∣ > ε

2

)
6 2 exp

(
−ε2N

2

)
.

Therefore, setting N := 2 ln(2
δ)

ε2 , we have:

Pr
(∣∣∣ÊC [x]− EC [x]

∣∣∣ 6 ε
)
> Pr

(∣∣∣ÊC [x]− µv
∣∣∣ 6 ε

2 ∧
∣∣∣µv − EC [x]

∣∣∣ 6 ε

2

)
> 1− δ. J

D Proofs for Section 5 (Tractable Cases)

I Lemma 21. There exists a bijective correspondence between pw(C1)× · · · × pw(Cm) and
pw(C), obtained by merging the variables with exact-value constraints.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

24 Top-k Querying of Unknown Values under Order Constraints

Proof. It is immediate that any t ∈ pw(C) yields a tuple of possible worlds of C1, . . . , Cm.
Conversely, consider any tuple of possible worlds of C1, . . . , Cm. Note first that, indeed, those
tuples match on the variables that occur in multiple sets (which are exactly the variables with
exact-value constraints, which occur in all sets). Let us show that combining them yields a
possible world of C. Assume by contradiction that some constraint is violated. Clearly it
cannot be an exact-value constraint, because all are reflected in all Ci, so it must be an order
constraint of the form x 6 x′. Clearly x and x′ cannot be part of the same uninfluenced
class Ci, otherwise the constraint is reflected in Ci; so we must have x 6↔ x′. Now, as x 6 x′,
there must be a path x = x1 ≺ · · · ≺ xn = x′, but as x 6↔ x′ there must be a variable xk in
the sequence with an exact-value constraint. Hence, the constraint x 6 xk is reflected in the
uninfluence class of x, and the constraint xk 6 x′ is reflected in the uninfluence class of x′,
so we deduce that the constraint x 6 x′ is respected overall. J

I Theorem 24. For any tree-shaped constraint set C over X , we can compute V (C) in time
O(|X |2).

Proof. Let T be the tree with vertex set X which is the Hasse diagram of the order constraints
imposed by C. For any variable x ∈ X that has no exact-value constraint (so it is not the
root of T or a leaf of T), let Cx be the constraint set obtained as a subset of C by keeping
only constraints between x and its descendants in T , as well as between x and its parent. For
v ∈ [0, 1], we call Vx(v) the d-volume of pw(Cx ∪ {x′ = v}) where x′ is the parent of x and d
is the dimension of pw(Cx). In other words, Vx(v) is the d-volume of the admissible polytope
for the subtree T|x of T rooted at x, as a function of the minimum value on x imposed by
the exact-value constraint on the parent of x. It is clear that, letting x′r be the one child of
the root xr of T , we have V (C) = Vx′r(vr), where vr is the exact value imposed on xr.

We show by induction on T that, for any node x of T , letting mx be the minimum, among
all leaves that are descendants of x, of the values to which those leaves have an exact-value
constraint, the function Vx is zero in the interval [mx, 1] and can be expressed in [0,mx] as
a polynomial whose degree is at most the number of nodes in T|x, written |T|x|. Since the
probability of ties is 0, we have mx > 0 for all x.

The base case is for a node x of T which has only leaves as children; in this case it is
clear that Vx(v) is mx − v for v ∈ [0,mx], and is zero otherwise. For the inductive case,
let x be a variable. It is clear that Vx(v) is 0 for v ∈ [mx, 1]. Otherwise, let v′ ∈ [0,mx]
be the value of the parent x′ of x. For every value v′ 6 v 6 mx of x, consider the
constraint set Cx,v,v′ = Cx ∪ {x′ = v′, x = v}. By Lemma 21, we have V (Cx,v,v′) =

∏
i Vxi(v)

where x1, . . . , xl are the children of x. Hence, by definition of the volume, we know that
Vx(v′) =

∫mx
v′

∏
i Vxi(v)dv. Now, we use the induction hypothesis to deduce that Vxi(v), for

all i, in the interval [0,mx], is a polynomial whose degree is at most |T|xi |. Hence, as the
product of polynomials is a polynomial whose degree is the sum of the input polynomials,
and integrating a polynomial yields a polynomial whose degree is one plus that of the input
polynomial, Vx in the interval [0,mx] is a polynomial whose degree is at most |T|x|.

Hence, we have proved the claim by induction, and we use it to determine V (C) as
explained in the first paragraph.

We now prove that the computation is quadratic. We first assume that the tree T is
binary. We show by induction that there exists a constant α > 0 such that the computation
of the polynomial Vxi in expanded form has cost less than αn2

i , where ni is |T|xi |. The claim
is clearly true for nodes where all children are leaves, because the cost is linear in the number
of child nodes as long as α is at least the number the number of operations per node α0. For
the induction step, if xi is an internal node, let xp and xq be the two children. By induction

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 25

hypothesis, computing Vxp and Vxq in expanded form has cost 6 α(n2
p + n2

q). Remembering
that arithmetic operations on rationals are assumed to take unit time, computing the product
of Vxp and Vxq in expanded form has cost linear in the product of the degrees5 of Vxp and
Vxq which are less than np and nq, so the cost of computing the product is 6 α1npnq for
some constant α1. Integrating has cost linear in the degree of the resulting polynomial, that
is, np + nq. So the total cost of computing Vxi is 6 α(n2

p + n2
q) + α1npnq + α2(np + nq) + α3

for some constants α2, α3. Now, as nq = ni − np − 1, computing Vxi costs less than:

αn2
i + 2αn2

p + α− 2αninp − 2αni + 2αnp + α1npnq + α2ni − α2 + α3

= αn2
i + (α1 − 2α)npnq + (α2 − 2α)ni + α− α2 + α3

As long as α is set to be > max(α1
2 ,

α2
2), the second and third terms are negative, which

means (since npnq and ni are both > 1) that Vxi costs less than:

αn2
i + α1 − 2α+ α2 − 2α+ α− α2 + α3

= αn2
i − 3α+ α1 + α3 6 αn2

i

if α > α1+α3
3 . This concludes the induction case, by setting α to any arbitrary value which

is greater than max
(
α0,

α1
2 ,

α2
2 ,

α1+α3
3
)
. Hence the claim is proven if T is binary.

If T is not binary, we use the associativity of product to make T binary, by adding virtual
nodes that represent the computation of the product. In so doing, the size of T increases
only by a constant multiplicative factor (recall that the number of internal nodes in a full
binary tree is one less than the number of leaves, meaning that the total number of nodes
in a binary expansion of a n-ary product is less than twice the number of operands of the
product). So the claim also holds for arbitrary T . J

I Theorem 25. For any tree-shaped constraint set C on variable set X and variable x ∈ X
with no exact-value constraint, the marginal distribution for x is piecewise polynomial and
can be computed in time O(|X |3).

Proof. Recall that C|x=v is C plus the exact-value constraint x = v. For any variable x′,
we let mx′ be the minimum, among all leaves reachable from x′, of the values to which
those leaves have an exact-value constraint. By definition, the marginal distribution for x is
v 7→ 1

V (C)V (C|x=v). We have seen in Theorem 24 that 1
V (C) can be computed in quadratic

time; we now focus on the function V (C|x=v).
By Lemma 21, letting x1, . . . , xk be the children of x, D1, . . . , Dk be their descendants

(the xi included), and D be all variables except x and its descendants, that is, D :=
X\({x} ∪

⊔
iDi), we can express V (C|x=v) as V ′x(v)×

∏
i Vxi(v), where Vxi is as in the proof

of Theorem 24, and V ′x(v) is the volume of the constraint set C′x,v over D obtained by keeping
all constraints in C about variables of D, plus the exact-value constraint x = v. Indeed, the
uninfluenced classes of C|x=v are clearly D, D1, . . . , Dk, except that the root and leaves are
in singleton classes because they have exact-value constraints.

We know by the proof of Theorem 24 that Vxi , in the interval [0,mx], is a polynomial
whose degree is at most |T|xi |, and that it can be computed in O(|T|xi |2). Hence, the product
of the Vxi(v) can be computed in cubic time overall and has linear degree. We thus focus
on C′x,v, for which it suffices to show that V (C′x,v) is a piecewise polynomial function with
linearly many pieces, each piece having a linear degree and being computable in quadratic

5 We could compute the product of the polynomials more efficiently using the FFT, but this would not
improve the overall complexity bound.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

26 Top-k Querying of Unknown Values under Order Constraints

time. Indeed, this suffices to justify that computing the product of V (C′x,v) with
∏
i Vxi(v),

and integrating to obtain the marginal distribution, can be done in cubic time, and that the
result is indeed piecewise polynomial.

For any node xi of D with no exact-value constraint, we let V ′xi,x(v, v′) be the volume
of the constraint set obtained by restricting C′x,v′ to the descendants of the parent x′i of xi
and adding the exact-value constraint x′i = v. We let (v1, . . . , vq) be the values occurring in
exact-value constraints in C, in increasing order. We show by induction on D the following
claim: for any 1 6 i < q, for any variable xi in D with no exact-value constraint, in the
intervals v ∈ [0,mxi] and v′ ∈ [vi, vi+1], V ′xi(v, v

′) can be expressed as P (v) + v′P ′(v), where
P and P ′ are polynomials of degree at most |T|xi | and can be computed in quadratic time.

The proof is the same as in Theorem 24: for the base case where all children of xi have
exact-value constraints, Vxi(v, v′) is either mxi − v if x is not reachable from xi or vi > mx,
or v′ − v otherwise. For the inductive case, we do the same argument as before, noting that,
clearly, taking the product of the V ′·,·(v, v′) among the children of xi, the variable v′ occurs
in at most one of them, namely the one from which x is reachable. We conclude that V ′x(v)
is indeed a piecewise polynomial function with linearly many pieces that have a linear degree,
by evaluating V ′x′′,x(v′′, v), where x′′ is the one child of the root of T and v′′ is the value to
which it has an exact-value constraint, and the overall computation time is cubic. J

E Proofs for Section 6 (Other Variants)

I Lemma 27. There is a constraint set C and selection predicate σ such that local-top-k and
U-top-k do not match, even for k = 1 and without returning expected values or probabilities.

Proof. Let µ = 2/3, m = 1/
√

2, and any v such that µ < v < m. Consider variables x,
x′ and y, with the constraint set that imposes x′ 6 x and y = v. Fix k = 1 and consider
the predicate σ that selects all variables. It is immediate by linear interpolation that the
expected value of x is µ. Further, it is easily computed that the marginal distribution px
of x has the pdf px : t 7→ 2t on [0, 1], for which we can check that

∫m
0 px(t)dt =

∫ 1
m
px(t)dt.

Hence, as v < m, the probability that x is larger than v in pw(C) is > 1/2. This implies that
the U-top-1 answer is x. By contrast, as µ < m, the local-top-1 answer is y. J

I Lemma 30. There is a constraint set C without ties such that U-top-k does not satisfy the
containment property for the uniform distribution on pw(C).

Proof. Consider variables xl, xh, x+
f , and x−f , and the constraint set C that imposes xl 6 xh,

x+
f = .7, and x−f = .69. Consider the selection predicate σ that selects all variables. The

total volume of the constraint set is clearly V = 1/2.
We first set k = 1. The first possible answer is (x+

f) with probability .7×.7
2·V = .49, and the

second is (xh) with probability .51, so the U-top-1 is (xh).
We then set k = 2. There are four possible answers. The first possible answer is (x+

f , x
−
f)

with probability .69×.69
2·V = .4761. The second possible answer is (xh, x

+
f) with probability

.3×.7
V = .42. The third possible answer is (xh, xl) with probability .09. The fourth possible

answer is (x+
f , xh) with probability .01×.69+.01×.01×.5

V = .0139. Hence, the U-top-2 is (x+
f , x

−
f).

Hence, the U-top-1 variable does not occur in the U-top-2. J

I Lemma 32. There is a constraint set C without ties such that global-top-k does not satisfy
the containment property for the uniform distribution on pw(C).

Proof. Consider variables xs, xf , xl and xh and the constraint set C that imposes xl 6 xh,
xl = .45 and xf = .73. Consider σ that selects all variables.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 27

Set k := 1. Variable xh has the highest value with probability 1
V (.73× (1− .73) + (1−

.73)2/2). Variable xf has the highest value with probability 1
V (.73− .45)× .73, which is less.

The probability for xs is also less. So the global-top-1 is (xh).
Now, set k := 2. Variable xh has one of the two highest values in all cases except for

xf > xs > xh > xl and xs > xf > xh > xl, so it has one of the two highest values with
probability 1− 1

V ((.73− .45)× (1− .73) + (.73− .45)2/2). However, variable xf has one of
the two highest values in all cases except for xh > xs > xf > xl and xs > xh > xf > xl, so it
has one of the two highest values with probability 1− 1

V (1− .73)2, which is more. Hence the
first variable of the global-top-2 is xf and not xh. J

F Alternative Interpolation Scheme

We now consider variants of the interpolation problem, thus far performed by considering
the expected value under the uniform distribution. Since we are not aware of candidate
variants in previous work, for interpolating over partial orders with exact value constraints,
we propose a new alternative variant. Rather than imposing the connection to the uniform
prior, we present natural desiderata for an interpolation scheme on partial orders. We show
that they are not respected by our current definition, and show that a definition that respects
them can be proposed for tree-shaped partial orders (Definition 22), it is in fact unique, and
it can be computed tractably.

We first define the notion of interpolation scheme.

I Definition 39. An interpolation scheme is a function that maps any constraint set C on
variables X to a mapping from X to its interpolated value in [0, 1].

For instance, the interpolation scheme that we have studied thus far maps each variable
to its expected value under the uniform distribution on pw(C). We refer to this scheme as
Uniform in the sequel.

We define the first natural desideratum for interpolation schemes, stability: intuitively,
an interpolation scheme is stable if assigning variables to their interpolated value does not
change the result of interpolation elsewhere. Formally,

I Definition 40. An interpolation scheme S is stable if, for every constraint set C over X
and every x ∈ X , S assigns the same mapping f : X → [0, 1] to both C and C ∪ {x = f(x)}.

This property can be shown to be respected, e.g., by linear interpolation on total orders.
However, a counterexample shows that the stability property is not respected by the uniform
scheme:

I Lemma 41. The Uniform scheme is not stable, even on tree-shaped constraint sets.

Proof. Consider the set of variables {xr, xa, xb, xc, xd, xe} and the constraint set C formed of
the order constraints xr 6 xa, xa 6 xb 6 xc, xa 6 xd 6 xe, and the exact-value constraints
xr = 0, xc = .5 and xe = 1. We can compute that the interpolated values for xa and for xb
are 3/20 and 13/40 respectively. However, adding the exact-value constraint xb = 13/40, the
interpolated value for xa becomes 611/4020, which is different from 3/20. J

Let us use stability as a guide to design a different interpolation scheme. We impose
another desideratum to act as a base case, specifying what one expects from an interpolation
scheme when there is only a single unknown variable:

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

28 Top-k Querying of Unknown Values under Order Constraints

I Definition 42. Let C be a (non-contradictory) constraint set such that x is the only
unknown variable; y1, . . . , yn are variables with exact value constraints such that yi 6 x; and
z1, . . . , zm are variables with exact value constraints such that x 6 zi (having n,m > 1). We
say an interpolation scheme is balanced if, for each such C, its interpolated value for x is
maxi(v(yi))+mini(v(zi))

2 .
In particular, the Uniform scheme is balanced in this sense. However, we would like to

find a scheme that is both balanced and stable. For the case of general constraint sets, this
problem remains open, and we leave it for future work. For tree-shaped constraint sets, we
next not only show such a scheme, but also prove it is unique, as follows.
I Proposition 43. There is at most one interpolation scheme on trees that is both stable
and balanced.
Proof. We first observe that, because of the balanced requirement, in any constraint set C, for
any unknown variable x whose parent y was interpolated to value v and whose children zi were
interpolated to wi, x must have be interpolated to (v+ (mini wi))/2. Indeed, considering the
constraint set C′ where y and zi have been set to those values, by stability, the interpolation
value of x does not change. Hence, as the interpolation scheme is balanced, we conclude that
the claimed property holds.

We now show that the resulting set of equations always has at most one solution on
any tree-shaped constraint sets. Indeed, assume that there are two stable and balanced
interpolation schemes f and g which yield different results on a tree-shaped constraint set
C. For all variables x of C, let d(x) := g(x) − f(x). Calling xr the root variable of C, we
must have d(xr) := 0 for the root, because it has an exact value constraint by definition of
tree-shaped constraint sets.

Now, as f and g differ on C, there must be a variable x where d(x) 6= 0. Without loss of
generality, we have d(x) > 0. Hence, let us consider a variable x with parent y so that we
have d(x) > d(y): as d(xr) = 0, we can find such a variable x by picking a variable which is
as high as possible in the tree, such that d(x) > 0 but d(y) = 0. Necessarily x is not a leaf
(as they have exact value constraints, so d(x) = 0), so x has children. We show that x has a
child xg such that d(xg) > d(x).

Consider xf the child of n such that f(xf) is minimal among children of x, and xg defined in
the analogous manner for g. Now, as f and g are balanced, by our preliminary observation we
have f(x) = (f(y)+f(xf))/2 hence f(xf) = 2·f(x)−f(y), and likewise g(xg) = 2·g(x)−g(y).
But then, by minimality of g(xg), we have g(xg) − f(xf) 6 g(xf) − f(xf). Now, we have
g(xg)− f(xf) = 2 · d(x)− d(y). Now, as we have d(y) < d(x), we have d(xf) > d(x), which
is what we wanted to show.

Now, repeating the argument on xf , we obtain a child x2
f of xf such that d(x2

f) > d(xf).
Repeating the argument, we thus build a descending chain of variables x in the tree-shaped
constraint set C along which d is strictly increasing. When we reach the leaves, we obtain
a contradiction. This implies that we must have d(x) = 0 for all x ∈ X , so that f = g

on C. Hence, there cannot be two different stable and balanced interpolation schemes on
tree-shaped constraint sets. J

We now prove the existence of a stable and balanced interpolation scheme on trees, which
we dub Stable, and show that expected values under this scheme can be computed in linear
time:
I Proposition 44. There exists a stable and balanced interpolation scheme on tree-shaped
constraint sets, and we can compute the interpolated values of all variables according to this
scheme in time O(|X |2).

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart 29

Proof. We compute the interpolation scheme on a tree-shaped constraint set C top-down.
For each variable x which has no exact value constraint or interpolated value, but whose
parent y has an exact value or an interpolated value vy, we consider all leaves z which
are descendants of x (and have an exact value constraint to some value vz), and set the
interpolated value of x to be the minimum of linear interpolation from y to z; namely, letting
dx(z) be the depth of leaf z in the subtree rooted at x, we set vx := minz

(
vy + vz−vy

dx(z)+1

)
.

This can clearly be done in the indicated time bound.
We now show that the resulting interpolation scheme is indeed balanced and stable. It is

immediate to observe that this scheme is balanced. We now show that it is stable. Towards
this, let us first show that for every variable x with parent y, if z is a leaf that achieved
the minimum when interpolating x to its value, then for all variables on the path from x

to z, z was also a leaf that achieved the minimum when interpolating their value. Indeed,
it suffices to show the claim for the first variable x′ of this path, a child of x, and then
repeat the argument. We know that, from our choice when interpolating x, by minimality
of the interpolation result for x using z, we have vz−vy

dx(z)+1 6 vz′−vy
dx(z′)+1 , where vy is the value

of the parent y of x; let us call the first quantity δ and the second δ′. By definition of the
interpolation of x, we then have vx := vy + δ. Now, consider any leaf z′ reachable from x′.
We must show that z achieves the minimum when interpolating x′; in other words, we must
compare η := vz−vx

dx′ (z)+1 and η′ := vz′−vx
dx′ (z′)+1 , and show that η 6 η′; note that dx′(z) + 1 = dx(z)

and dx′(z′)+1 = dx(y). The quantity η can then be rewritten as dx(z)+1
dx(z) ×

1
dx(z)+1 (vz−vy−δ),

i.e., dx(z)+1
dx(z) ×

(
δ − δ

dx(z)+1

)
, which simplifies to δ: hence, η = δ. The quantity η′ can be

written as dx(z′)+1
dx(z′) ×

1
dx(z′)+1 (vz′ − vy − δ), i.e., dx(z′)+1

dx(z′) ×
(
δ′ − δ

dx(z′)+1

)
, which simplifies

to (dx(z′)+1)δ′−δ
dx(z′) . Now, as δ′ > δ, we deduce that η′ > (dx(z′)+1)δ−δ

dx(z′) , so that η′ > δ. Hence,
we have η′ > η, so that the leaf z also achieves the minimum for variable x′. Repeating the
argument on the path from x to z, we have shown the claim.

From this initial claim, we deduce the following (*): for any variable x, letting z be
a leaf that achieves the minimum when interpolating x (once the value of its parent y is
known), then the variables in the path from y to z are interpolated according to linear
interpolation on that chain. This is immediate by the previous claim, as all variables on
that path are interpolated using linear interpolation from their parent to that same leaf (or
another minimal leaf that sets them to the same value).

We now show a similar auxiliary claim. Let us define, once we have interpolated in C,
the function u that maps each non-root variable x to u(x) defined as the interpolated value
of x minus that of its parent. We show that (**): for any variables y, x, x′, where y is the
parent of x and x is the parent of x′, then u(x) 6 u(x′). Indeed, let vy, vx and vx′ be the
interpolated values, and let z′ be the witness leaf used to interpolate for x′. By definition of
the scheme, we have u(x′) = vz′−vx

dx′ (z′)+1 . Furthermore, letting z be the witness leaf used to
interpolate for x, we have u(x) = vz−vy

dx(z)+1 . Using the notation above, note that u(x′) = η′

and u(x) = δ. By the same reasoning as for claim (*) to show δ = η 6 η′, we conclude that
u(x) 6 u(x′).

We are now ready to show that the scheme is stable. Consider the initial tree-shaped
constraint set C, and let us set a variable x to its interpolated value vx, yielding C′. Note that
C′ is no longer tree-shaped, but it can be rewritten by Lemma 21 to two tree-shaped constraint
sets. It is then clear that all variables that are descendants of x in C are interpolated in the
same manner in C′ and in C, as the scheme proceeds top-down and the value of x in C′ is by
definition the same as its interpolated value in C. We now show that the ancestors of x in C

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

30 Top-k Querying of Unknown Values under Order Constraints

are interpolated in the same way in C′ than in C, which is clearly sufficient to justify the
claim that all variables in C′ are interpolated in the same way as in C. Let us therefore pick
an ancestor x′ of x, which is neither x nor the root variable, otherwise the claim is trivial;
we pick it as high as possible in the tree, so the interpolated value vy of its ancestor y is the
same in C and in C′.

We first show that the interpolated value for x′ in C′ is no higher than in C. Assuming
to the contrary that it is, then it must be the case that x′ was interpolated in C using as
minimal leaf z some leaf which is a descendant of x in C, as otherwise we can still interpolate
using z in C′ and obtain the same result. Now, if x′ was interpolated in C using z as minimal
leaf, then, by our preliminary claim (*), x was interpolated in C following linear interpolation
between the parent y of x′ and the leaf z. Hence, using the new leaf x in C′ to interpolate x′
in C′ yields the same result as the interpolation in C. Contradiction.

Second, we show that the interpolated value for x′ in C′ is no lower than in C. Assuming
to the contrary that it is, then, if x′ was interpolated in C′ following a leaf z which is not
x, then we immediately reach a contradiction as we should have used the same leaf z to
interpolate to the same value in C. Hence, we must have interpolated x′ in C′ using the new
leaf x, and x′ was interpolated in C′ following linear interpolation between y and x. Let γ
be the value difference between two consecutive nodes in C′ on this path, and l the length
of the path. Calling u(x) for a variable x the difference between its interpolated value and
the value of its parent in C, we must then have u(x′) > γ, because the value of x′ in C is
strictly greater than in C′, and y has same value in C and C′. By preliminary claim (**), we
have reached a contradiction, because then the function u always takes values which are > γ

on the path from x′ to x in C, so that when we reach x we know that the value of x in C is
> l · γ, contradicting the fact that it is l · γ, as we know from C′. J

REFERENCES FOR THE APPENDIX
ACK+11 S. Abiteboul, T.-H. H. Chan, E. Kharlamov, W. Nutt, and P. Senellart. Capturing contin-

uous data and answering aggregate queries in probabilistic XML. TODS, 36(4), 2011.
BW91 G. Brightwell and P. Winkler. Counting linear extensions. Order, 8(3), 1991.
Hoe63 W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58(301), 1963.
KLS97 R. Kannan, L. Lovász, and M. Simonovits. Random walks and an o∗(n5) volume algorithm

for convex bodies. Random Struct. Algorithms, 11(1), 1997.
Pap79 C. H. Papadimitriou. Efficient search for rationals. Information Processing Letters, 8(1),

1979.
Sch86 A. Schrijver. The structure of polyhedra. In Theory of Linear and Integer Programming,

chapter 8. Wiley-Interscience, 1986.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

M
o
n

M
a
r

2
8

1
0
:
0
0
:
4
6

C
E
S
T

2
0
1
6

	Introduction
	Preliminaries and Problem Statement
	Unknown Data Values under Constraints
	Possible World Semantics
	Probability Distribution
	Top-k Queries

	Analysis of the General Case
	Total Orders
	General Constraint Sets

	Hardness and Approximations
	Hardness of Exact Computation
	Complexity of Approximate Computation

	Tractable Cases
	Splitting Lemma
	Tree-Shaped Constraints

	Other Variants
	Related Work
	Conclusion
	Proofs for Section 2 (Preliminaries and Problem Statement)
	Proofs for Section 3 (Analysis of the General Case)
	Total Orders (Section 3.1)
	General Constraint Sets (Section 3.2)

	Proofs for Section 4 (Hardness and Approximations)
	Hardness of Exact Computation (Section 4.1)
	Complexity of Approximate Computation (Section 4.2)

	Proofs for Section 5 (Tractable Cases)
	Proofs for Section 6 (Other Variants)
	Alternative Interpolation Scheme

