
Provenance for Nondeterministic Order-Aware Queries

Antoine Amarilli
Télécom ParisTech; CNRS LTCI

M. Lamine Ba
Télécom ParisTech; CNRS LTCI

Daniel Deutch
Tel Aviv University

Pierre Senellart
Télécom ParisTech; CNRS LTCI

ABSTRACT
Data transformations that involve (partial) ordering, and con-
solidate data in presence of uncertainty, are common in the
context of various applications. The complexity of such trans-
formations, in addition to the possible presence of meta-data,
call for provenance support. We introduce, for the first time,
a framework that accounts for the conjunction of these needs.
To this end, we enrich the positive relational algebra with
order-aware operators, some of which are non-deterministic,
accounting for uncertainty. We study the expressive power
and the complexity of deciding possibility for the obtained
language. We then equip the language with (semiring-based)
provenance tracking and highlight the unique challenges in
supporting provenance for the order-aware operations. We
explain how to overcome these challenges, designing a new
provenance structure and a provenance-aware semantics for
our language. We show the usefulness of the construction,
proving that it satisfies common desiderata for provenance
tracking.

1. INTRODUCTION
Real world applications often involve transformations that

involve some (partial) ordering in the data; that need to con-
solidate the data in presence of uncertainty; and that can
greatly benefit from provenance support due to their com-
plexity and dependency on meta-data. We define and study
a framework that addresses, for the first time (to our knowl-
edge), the combination of these three challenges. We first
explain the need for such a framework and then highlight our
main contributions in this respect.

Ordered Data and its Consolidation. Queries involving
some form of (partial) ordering in the data, such as sorting
(ORDER BY in SQL), queries using ordered timestamps, or
top-k queries (LIMIT), play a fundamental role in many ap-
plications. When ordered datasets are consolidated, their
management becomes intricate. For example, what should be
the ordering of the union of ordered relations that may or may
not be disjoint? If they are not disjoint, how to solve conflicts
in the ordering? Assuming a global, total order on all tuples is
unrealistic in practice: perhaps the relations in question were
ordered by different incomparable attributes; or the attribute
used to order them was projected out; or, if the relations come
from different sources, each may be ordered following local,
unsynchronized timestamps. Such challenges are present
also in the context of rank aggregation [29] when the indi-
vidual aggregation functions are unknown and lists must be
merged and ordered in a way compatible with the individual

orderings; or for scheduling of workflows, with constraints
on tasks order and possible synchronization points. In all of
these cases there is an inherent uncertainty in the transforma-
tions. As explained below, we take the operational approach
of dealing with this uncertainty via non-determinism.

Consider for example a sensor network where each sensor
issues observations on events happening within its range. We
assume that information about events observed by a given
sensor is saved in a relation and are ordered by timestamps.
Observations of the different sensors need to be consolidated,
to provide a complete picture of events and allow for their
analysis. However, we may not trust the relative ordering of
observations across sensors, as global clock synchronization
is a tricky matter [30]; or maybe we can trust the relative
ordering between sensors but only once some synchronization
point has been reached (e.g. an event that is known to be
common has been reported).

A Need for Provenance Tracking. Importantly, meta-data
may affect the transformation and consolidation of data. Con-
tinuing with our sensors example, each observation of each
sensor may be associated with a different level of credibility
(trust), depending e.g. on the sensor quality; some observa-
tions may be associated with different access control privi-
leges, so that the result of data consolidation must not show
them to unauthorized users; etc. Also, due to the complicated
nature of such transformations, users may wish to explore
multiple scenarios, both with respect to presence or absence
of input data (“how would the result change if we omit a par-
ticular observation?”), or with respect to the multiple possible
ways for integration. Provenance management has proven
highly successful for such applications, in the context of dif-
ferent kinds of transformations (e.g. [5, 26, 31, 17, 11, 20]),
and so we identify the need for provenance tracking in the
context of order-aware transformations.

To our knowledge, no previously proposed framework can
be used for our needs. For instance, standard SQL is unsuit-
able as “ordering of the rows of the table specified by the
query expression is guaranteed only for the query expression
that immediately contains the ORDER BY clause” [23], which
means ordering is not preserved except at top-level. Existing
works on querying in presence of order typically do not ad-
mit a nondeterministic semantics: they either assume a total
order on the data elements [22, 32], forbid conflicts [27], or
choose one possible merge based on heuristics or rules [4,
25]. Other works such as [21] propose to capture results via
partially-ordered sets (with multiplicities), and we discuss the
unsuitability of this approach to our needs in Section 6. In

1

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

addition, to our knowledge, provenance management of the
aforementioned flavor has not been studied in the presence of
order, or for non-deterministic query languages.

We therefore propose in this paper a new non-deterministic
order-aware query language for relational data, study its prop-
erties in terms of expressivity and complexity, and equip
it with a specifically designed provenance model. We next
provide an overview of our main contributions.

A Nondeterministic Order-Aware Query Language (Sec-
tion 2). We focus on a relational setting, and capture order
by introducing a dedicated attribute Ord whose values are
natural numbers reflecting the relative order of a tuple. We
then define four new operations on relations, that pertain to
order: (i) a unary deterministic “constructor” that turns an
unordered relation into an ordered one (by introducing the
Ord attribute carrying the location of tuples in the order),
based on some given order specification, and (ii) three bi-
nary operations performing “order-aware union” on ordered
relations: Concat to deterministically concatenate tuples of
the first relation to those of the second (keeping their relative
order); Shuffle to nondeterministically choose an order over
the union of tuples that is consistent with the orders at the
two input relations; and Sync, which is similar to Shuffle
(and again nondeterministic) but uses matching tuples as
synchronization points.

We then define the OWALG language (for “order aware al-
gebra") as the language including these operators in addition
to the standard SPJ operators (regular union being express-
ible with the new operators). With the exception of some
restrictions imposed on joins, the SPJ operators may treat the
Ord attribute as any other attribute and interact with the non-
deterministic operators by being applied in every possibly
generated world1. We focus in this paper on set semantics
for the language, allowing no duplicates (tuples that have
the same values in all attributes, including Ord). This is due
to some inherent difficulties in the interaction of duplicates,
order and provenance, that we point out.

Expressiveness and Complexity (Sections 3 and 4). Be-
fore we study provenance for OWALG, we formalize its con-
nection to partial orders [28] (saying that an OWALG query
expresses a partial order P if its possible worlds are the total
orders consistent with P) and use this to study the expres-
siveness of OWALG. We show that OWALG can represent any
partial order, and conversely that any OWALG query of a
certain class essentially represents a partial order. We also
show that the fragment obtained by disallowing the Sync
operator expresses exactly the series-parallel [28] class of
partial orders. Building on this connection with order theory,
we determine the complexity of the possibility problem (iden-
tifying if a given instance is a possible world of an OWALG
query), showing that it is NP-complete in data complexity,
and identifying a tractable case.

Provenance (Section 5). We then present a provenance
model for the language. Frameworks based on algebraic
structures have proven successful in the context of the positive

1This is reminiscent of the approach in e.g. [19] to deal with uncer-
tainty in a different context of key violations.

relational algbera [20], queries with difference [18], queries
on (unordered) XML [15], SPARQL queries [17], and others,
for goals such as the incorporation of meta-data, explanation
of results and explorations of scenarios (exemplified above).
For this reason, we develop an appropriate algebraic structure
for provenance tracking for OWALG and a corresponding
provenance-aware semantics for the language.

To do so, we need to address three main challenges. First,
to our knowledge, semiring-based provenance has never been
studied in the context of ordered domains, as existing work
focuses on unordered relations [20], unordered XML [15], etc.
Second, our treatment of order involves non-deterministic
queries, while previous provenance constructions, though
they allow non-determinism in the input data (as we do),
assume deterministic queries. Third, to capture provenance,
the tuple annotations need to be combined with the ordered
values in a well-principled algebraic manner (the latter in a
similar way to the case of aggregate queries [2]).

This interplay of order, non-determinism and annotations
leads to novel challenges. To this end, we develop a suitable
algebraic structure, and show that it can be used to support
provenance. We justify the usefulness of our provenance
framework by proving that it satisfies the standard desider-
ata of [2] for such algebraic provenance frameworks, with
one notable exception caused by inherent limitations in the
treatment of bag semantics.

We discuss related work in Section 6 and conclude with
directions for future work in Section 7. Due to space restric-
tions, all complete proofs are deferred to the appendix.

2. ORDER-AWARE ALGEBRA
We assume that the reader is familiar with the positive rela-

tional algebra [1]. We start with the select-project-join (SPJ)
fragment for which we assume set semantics, and we enrich
it with a suite of new order-aware operators (equivalent to the
standard union operator in absence of order) whose syntax
and semantics is next introduced. To simplify the presentation
we assume for now that (1) SPJ operators are never applied
to the result of an order-aware operator; (2) no operators are
applied to the result of non-deterministic operators. This is
just to ease presentation, and both restrictions are lifted in
Section 2.5 we alleviate both assumptions.

Notations. Given a relation R we use attr(R) to denote its
set of attributes. For a tuple r ∈ R and attribute a ∈ attr(R),
we use r.a to denote the value of attribute a in r. We will
frequently project out attributes from a relation R or a tu-
ple r ∈ R, i.e., Πattr(R)\A(R) or Πattr(R)\A(t) to project out A,
which we write as Π−A(R) and Π−A(t).

Order. We consider one particular attribute, denoted Ord,
that we will use to carry information about the ordering of
data. Its domain is the natural numbers. We then say that a
relation is ordered if it has an attribute Ord whose domain
is totally ordered and no two tuples of R have the same Ord
value (ties will be considered in Section 2.5). As we only
care about the relative order of tuples rather then the exact
Ord values, we say that Ord is defined up to order-preserving
isomorphism, namely, two relations R and R′ are equivalent
(and we simply write R = R′) if there is an order-preserving

2

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

ID Read Loc Time Ord

R0 Light 1 3:30:02 0
R1 Door 1 3:30:04 2
R2 Light 3 3:30:03 1

(1.a) Relation R = RankTime,<(R1)

ID Read Loc Time Ord

T0 Beep 1 3:29 0
T1 Door 1 3:31 1

(1.b) Relation T

ID Read Ord

T0 Beep 0
R0 Light 1
R1 Door 2
R2 Light 3
T1 Door 4

(1.c) Result of qconcat

Read Ord

Beep 0
Light 1
Door 2
Light 3
Door 4

(1.d) Poss. for qs

Read Ord

Light 0
Door 1
Light 2
Door 3
Beep 4

(1.e) Imposs. for qs

isomorphism f mapping the domain of R.Ord to that of
R′.Ord so that f (R) = R′.

2.1 Rank
The first operator is a “constructor” for ordered relations,

that turns an unordered relation into an ordered one by lever-
aging an input order relation over preexisting attributes.

DEFINITION 2.1. Let R be a relation and A∈ attr(R) such
that the domain of values in ΠA(R) is totally ordered by <
and ΠA(R) includes no duplicates2. Then RankA,<(R) is
defined as a relation S satisfying:
• attr(S) = attr(R)∪{Ord}
• Π−Ord(S) = Π−Ord(R)
• For each s ∈ S, s.Ord = |{s′ ∈ S | s′.A < s.A}|

Observe that the definition also allows the application of
Rank to an ordered relation for ranking it anew, in which case
the existing Ord attribute of the relation is discarded.

EXAMPLE 2.2. Consider relation R from Table 1.a with-
out column Ord, and call this R1. Table 1.a represents R =
RankTime,<(R1) with < the usual order relation on Time.

Even though we have defined equivalence between ordered
relation up to order-preserving isomorphism, it will some-
times be convenient to assume that the values in the Ord
attribute are consecutive Interestingly, this may easily be
enforced by re-applying Rank:

PROPOSITION 2.3. Given an ordered relation R, the rela-
tion RankOrd,<(R) (where the “<" has its standard semantics
on natural numbers) is equivalent to R but is such that the
values of Ord are consecutive integers from 0 to |R|−1.

So, up to an additional application of Rank in every subex-
pression, we can assume that the domain of Ord is always a
sequence of consecutive integers.

2.2 Concat
The Concat operator takes the union of two relations R,R′

and orders them by placing all elements of R (in order) before
all elements of R′ (in order). If a tuple (maybe up to its
Ord attribute) appears in both R and R′, there will be two
counterparts of this tuple, with different Ord values, in the
output of Concat.

DEFINITION 2.4. Given two relations R,R′ such that Ord∈
attr(R)= attr(R′), Concat(R,R′) is the relation S with attr(S)=
attr(R) = attr(R′) such that there is an isomorphism h be-
tween the bag union3 R∪R′ and S satisfying:
2This assumption is relaxed in Section 2.5.
3This means in particular that if a tuple appears in both R and R′,
each of its occurrences is mapped to a different tuple in S

• For all s ∈ S, Π−Ord(s) = Π−Ord(h−1(s)).
• If s = h(r) such that r ∈ R then

s.Ord = |{r1 ∈ R | r1.Ord < r.Ord}|.
• If s = h(r′) such that r′ ∈ R′, then

s.Ord = |{r′1 ∈ R′ | r′1.Ord < r′.Ord}|+ |R|.

EXAMPLE 2.5. Consider the relations R and T of Ta-
bles 1.a and 1.b. The granularity of their Time column
differs, but we can consolidate them with Concat to spec-
ify that the tuples of T with timestamp 63:30 (resp., >3:30)
should precede (resp., follow) all the tuples of R.

qconcat = Concat(Concat(q1,R),q2)

where

{
q1 = RankTime,<(σT.Time63:30(T))
q2 = RankTime,<(σT.Time>3:30(T)).

The query result (omitting for brevity the Loc and Time
attributes) is given as Table 1.c. Observe that the definition
of Concat does not require unique IDs, so without the ID
column we would simply have multiple tuples in the result
distinguished only by their Ord value (but since Ord is one
of the attributes, this is still set semantics).

2.3 Shuffle
The Concat operator sets a particular order between tuples

of the relations on which it is applied; however, there is often
uncertainty in the relative order of tuples. We thus introduce
the Shuffle operator, which unions elements of two ordered
relations and nondeterministically chooses a new total order
over the tuples, respecting the orders of the original relations.

For an ordered relation R and tuples r1,r2 ∈ R, we say that
r1 precedes r2 (and r2 follows r1) if r1.Ord < r2.Ord.

DEFINITION 2.6. Given two relations R,R′ such that Ord∈
attr(R)= attr(R′), Shuffle(R,R′) nondeterministically chooses
a relation S, with attr(S) = attr(R) = attr(R′), with an isomor-
phism h between R∪R′ (bag union) and S, satisfying:
• For all s ∈ S, Π−Ord(s) = Π−Ord(h−1(s)).
• If s = h(r) such that r ∈ R, s precedes every s1 = h(r1)

such that r1 ∈ R precedes r.
• If s= h(r′) such that r′ ∈R′, s precedes every s1 = h(r′1)

such that r′1 ∈ R′ precedes r′.
We say that the set of relations S satisfying the above is the
set of possible worlds of Shuffle(R,R′).

Observe that Concat(R,R′) is always one of the possible
worlds of Shuffle(R,R′).

EXAMPLE 2.7. Reconsider R and T from Tables 1.a and 1.b.
Further consider the query:

qs = Shuffle(ΠRead,Ord(R),ΠRead,Ord(T)).

3

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

Intuitively, this query defines a set of possible worlds, corre-
sponding to the possible consistent orders interleaving the
tuples of R and T . Table 1.d is a possible world of the query,
but Table 1.e is not, intuitively because relation T requires a
Door event to follow the Beep event.

2.4 Sync
Intuitively, in Example 2.7, we assume that the events seen

by the different sensors are distinct: if a “Door” event is re-
ported by two sensors, Shuffle considers that they were two
different such events (which may be reasonable if e.g. values
in the Loc attribute of our example refer to large areas). Al-
ternatively, if, e.g., the sensors are monitoring the same room,
one may wish to “synchronize” the two event occurrences
reported in both relations.

This motivates the introduction of the Sync operator. Its
definition differs from that of Shuffle for the tuples which (up
to the Ord attribute) occur in both relations. While Shuffle
kept both tuples, Sync retains only one, in a way that is
consistent with both input relations.

In order to have no ambiguities when matching event oc-
currences, we assume as a precondition to the use of Sync
that each of its individual input relations R, R′ does not con-
tain two duplicate tuples t 6= t ′ that are the same up to the
Ord relation (i.e., Π−Ord(t) = Π−Ord(t ′)). Note that, since
we use set semantics, this is in particular true whenever R
and R′ are the result of an application of the Rank operator.

Before defining Sync, we note a subtelty in the way it deals
with contradictory information from both relations. We first
define the notion of conflict:

DEFINITION 2.8. We say that t and t ′ conflict in R and
R′ if Π−Ord(t),Π−Ord(t ′) ∈ Π−Ord(R)∩Π−Ord(R′) and we
have: R.Ord(t)< R.Ord(t ′) but R.Ord(t ′)< R.Ord(t).

When possible, Sync will make a non-deterministic choice
of “solving" the conflict for every pair of tuples. As we shall
show (Example 2.11) this may not be possible, and then we
allow Sync to fail.

We next introduce the semantics, then exemplify a case
where it succeeds and one where it must fail (i.e., fails in
every possible world).

DEFINITION 2.9. Given two relations R,R′ such that Ord∈
attr(R) = attr(R′) and R, R′ contain no duplicates up to Ord,
Sync(R,R′) nondeterministically chooses a relation S, with
attr(S) = attr(R) = attr(R′), such that either S = /0 or S satis-
fies the following:
• Π−Ord(S) = Π−Ord(R)∪Π−Ord(R′) (set union).
• For all t1, t2 in S, if t1 precedes t2 in S, if there are tuples

t ′1 ' t1, t ′2 ' t2 in one input table such that t ′2 precedes t ′1,
there are tuples t ′′1 ' t1, t ′′2 ' t2 in the other input table
such that t ′′1 precedes t ′′2 .

where we write t ' t ′ for Π−Ord(t) = Π−Ord(t ′).

Note that if the new ordering violates one of the two ex-
isting orderings, it is necessarily because these orderings
disagree. Conversely, whenever input relations agree on the
ordering of two tuples, the result of Sync will follow the con-
sensus. The empty relation is included for technical reasons,

as a default outcome: there may be no relation S satisfying
the constraints, or the user may find no possible merging op-
tion acceptable, but we want to guarantee that there is always
at least one possible choice for the operator. In this latter
case, we say that Sync fails, and otherwise that it succeeds.

EXAMPLE 2.10. Reconsider R and T from Tables 1.a
and 1.b, and define R′ = σLoc=1(R). Assume that the Time
and IDs are local to each sensor (i.e., to each relation), but
that the two events of type Door occurring at location 1 are
actually the same event witnessed by both sensors.

Consider therefore the relations R′′ = Π−{ID,Time}(R′) and
T ′′ = Π−{ID,Time}(T). The Shuffle operator is not suitable
for our purpose, because its possible worlds will contain
two occurrences of the Door event. In contrast, the Sync
operator merges those two occurrences and uses them as a
synchronization point, so that the Light and Beep events must
take place before the Door event (but their relative order is
still uncertain as each was witnessed by only one sensor).
The possible worlds of Sync(R′′,T ′′) are thus:

Read Loc Ord

Light 1 0
Beep 1 1
Door 1 2

Read Loc Ord

Beep 1 0
Light 1 1
Door 1 2

The following example shows a case where Sync must fail.

EXAMPLE 2.11. Consider the two relations U and U ′:

Read Ord

Beep 0
Door 1
Light 2

Read Ord

Light 0
Heat 1
Beep 2

As constraints on the possible worlds of Sync we have
(from U) Beep must precede Door and Door must precede
Light, so Beep must precede Light, but symmetrically (from
U ′) Light must precede Beep, so Sync(U,U ′) must fail: there
is no S satisfying the constraints. Intuitively, any solution of
this conflict will either allow no correct location of Heat or
no correct placement of Door.

The following propositions present natural cases in which
Sync will never be forced to fail.

PROPOSITION 2.12. If no t and t ′ conflict in R and R′ then
Sync(R,R′) may succeed unless R and R′ are both empty.

PROPOSITION 2.13. If R and R′ have the same elements
irrespectively of order, i.e., Π−Ord(R) = Π−Ord(R′), then
Sync(R,R′) may succeed unless R and R′ are both empty.

2.5 OWALG
We define OWALG as the algebra including the relational

selection, projection, and join (SPJ) operators under the usual
set semantics, as well as the four order-aware operations
just introduced. As mentioned above, when applied to un-
ordered relations, the semantics for SPJ is the standard set
semantics with duplicate elimination. We next lift the two as-
sumptions made earlier, i.e., (1) define the result of applying
SPJ operators on ordered relations, and (2) define the result

4

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

of applying (SPJ or order-aware) operators on the result of
non-deterministic sub-queries.

For (1), to the exception of the subtlety of the next para-
graph, our definition of ordered relations allows SPJ opera-
tions to treat them as any other relation, in particular treating
Ord as any other attribute. This is useful to, e.g., select the
i-th element of the order with a selection on Ord (assuming
Rank is used to keep the Ord values consecutive, as explained
above). Note that selection may lead to non-consecutive Ord
values (but this may be fixed by applying Rank), and project-
ing out the Ord attribute will lead to an unordered relation.

The only subtlety is then in the Join operation. First, join-
ing an ordered relation with an unordered one yields an or-
dered relation, possibly with multiple tuples with the same
Ord values (in addition to possible gaps); hence, when apply-
ing the Rank operator to renumber Ord to contiguous values,
these ties need to be broken, which is performed nondeter-
ministically following the semantics for tied values which
we will define shortly. Second, we do not allow joining two
ordered relations, as we would not know in this case which
of the input orders should be preserved: instead, one should
first project out the Ord attribute on one input so that we are
back to the previous case.

For (2), we use the intuitive approach of, e.g., [19]: when-
ever a sub-query generates a set of possible worlds, the rest of
the query is applied on every one of these worlds. Note that if
the next operator to be applied is again non-deterministic, this
may lead to the generation of multiple possible worlds for
each such world, etc. The set of possible worlds of the query
is then defined as the union of all possible worlds obtainable
in such a way (where no operations remain to be applied).
We note a subtlety with respect to Sync: now, when we say
that an application of Sync fails, we really mean that it fails
for all possible worlds of the sub-queries provided as input.

We have therefore defined a semantics for OWALG.

Ties. We have assumed that there are no ties in the attributes
to which Rank is applied. This does not restrict the expressive
power (up to adding the empty relation as a possible world):

PROPOSITION 2.14. Consider a schema attr(R) and A ∈
attr(R) such that there are duplicate values for A in R, and
let < be a total order on the domain of A. There is an OWALG
query Q such that, for every relation R with schema attr(R),
the possible worlds of Q(R) are exactly the possible ordered
relations obtained by ordering the tuples of R with < based
on their value on A (in addition to the empty relation), for all
possible ways of breaking ties.

PROOF SKETCH. We find two total orders over the tuples
of relation R which extend < in one direction and in the
reverse direction, rank R according to either, and Sync the
result, which can succeed by Proposition 2.13.

Bag Semantics. For now, we have only looked at set se-
mantics. We could also define a bag semantics for OWALG in
the expected way, associating multiplicities with tuples and
offsetting the Ord values according to them. However, the
presence of order makes multiplicity a lot less attractive, as
queries may force the explicit repetition of tuples, resulting
in an exponential blowup of the representation

EXAMPLE 2.15. Consider R= {(a,n)} and R′ = {(b,n)}
where n stands for multiplicity. One of the possible worlds
of Q = Shuffle(RankA,<(R),RankA,<(R′)) is the ordered re-
lation consisting of a sequence of 2n tuples which are al-
ternatively a and b. Because of the need to represent this
alternation, and thus the order between the individual copies
of the a and b tuple, the result of this query must be repre-
sented as 2n tuples with multiplicity 1.

For this reason, and because of related inherent limitations
in managing provenance with bags (section 5.5), we focus on
set semantics in the present paper.

3. EXPRESSIVE POWER
We now consider the expressive power of OWALG. In par-

ticular, the nondeterministic order-aware operators Shuffle
and Sync seem to enforce a partial order over the elements of
their possible worlds. In this section, we formalize this intu-
ition and characterize which orders may be thus represented.

Preliminaries. We recall definitions related to (labeled) par-
tially ordered sets. See, e.g., [7] for details.

DEFINITION 3.1. A poset, or partially ordered set, is a
pair P=(V,<) where < is an irreflexive and transitive binary
relation over V . An order is total if every pair of elements
x,y ∈V is comparable (i.e., x < y or y < x holds).

The domain of P = (V,<) is dom(P) =V .
An extension of a partial order P = (V,<) is an order

(V,<′) such that whenever x < y for x,y ∈V then x <′ y. A
linear extension is an extension which is a total order.

A labeled poset is a structure (V,Σ,µ,<) where µ : V 7→ Σ

is a mapping from the vertices set V to the label set Σ, and
< is a partial order over V . The notions of total orders and
extension are straightforwardly extended to labeled posets.

DEFINITION 3.2. The class of series-parallel posets is the
class including all single-element orders and closed under
the series and parallel composition operations. Given two
series-parallel posets P and Q with disjoint domains the
series composition of P and Q is the poset on dom(P)t
dom(Q) whose restriction to dom(P) and dom(Q) matches
P and Q, and such that p < q for any p ∈ dom(P) and q ∈
dom(Q). The parallel composition of P and Q is the poset
on PtQ whose restriction to dom(P) and dom(Q) matches
P and Q, and such that no p ∈ dom(P) and q ∈ dom(Q) are
comparable.

A series-parallel labeled poset is a labeled poset whose
underlying partial order is series-parallel.

EXAMPLE 3.3. All total orders are series-parallel. In
contrast, the “N-shaped” poset [21] with elements {a,b,c,d},
defined by a < b, a < c, and d < c, is not series-parallel.

We next define how a query may capture a labeled poset:

DEFINITION 3.4. For any labeled poset P = (V,Σ,µ,<),
database D and OWALG query Q, if Q(D) is an ordered rela-
tion, we say Q(D) represents P if Σ=∏A∈attr(Q(D))\Ord dom(A)
(the product of the domains of the attributes of Q(D)) and
the possible worlds of Q(D) are exactly the linear extensions

5

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

of P seen as an ordered relation in the straightforward way:
for each x ∈ dom(P), the relation contains the tuple (µ(x), i)
where the Ord value i is the position of x in the linear exten-
sion.

EXAMPLE 3.5. Consider the labeled poset P defined over
{a,a′,b} by the order relations a < b, a′ < b and the labeling
function µ(a) = (Light,1), µ(b) = (Door,1), and µ(c) =
(Beep,1), so that Σ = {µ(a),µ(b),µ(c)}. The Sync query
from Example 2.10 represents the partial order P.

Without Sync. We first consider the fragment of OWALG
where the Sync operation is disallowed. We show that this
fragment captures all series-parallel labeled posets, and (un-
der a reasonable restriction) captures exactly these posets
(along with the empty poset).

THEOREM 3.6. For any product Σ of domains and series-
parallel labeled poset P on Σ, there exists an OWALG query
Q without Sync and a database D, both of size polynomial in
P, such that Q(D) represents P.

Conversely, for any OWALG query Q without Sync and
database D, if Q(D) is ordered and Q does not include a
selection on the Ord attribute, there exists a series-parallel
or empty labeled poset P of size polynomial in Q and D such
that Q(D) represents P.

Interestingly, when a selection on the Ord attribute is al-
lowed, the result may not be representable by a poset any-
more, as the following example illustrates:

EXAMPLE 3.7. Consider relations R and T from Tables 1.a
and 1.b. Consider the query

ΠRead,Ord(σOrd=0(Shuffle(R,T)))

It has two possible worlds: a relation containing only a Light
tuple (at position 0) and a relation containing only a Beep
tuple (also at position 0). This is not representable by a poset.

Complete Language. When allowing Sync, for the expres-
siveness result we will need to forbid possible worlds in
which Sync operators fail:

DEFINITION 3.8. For an OWALG query Q and a database
D, the possible worlds of Q(D) up to failure are the possible
worlds of Q(D) obtained by some sequence of nondeterminis-
tic choices in which no Sync operator fails. We say that Q(D)
is completely failed if it has no possible world up to failure.

For the next result, we say that an OWALG query represents
a poset up to failure, if its possible worlds up to failure cor-
respond to linear extensions of the poset. Under this revised
definition, OWALG can capture every poset, and conversely,
if an OWALG query obeys the same restriction on selection as
in the previous paragraph then it represents a poset unless it
is completely failed.

THEOREM 3.9. For any product Σ of domains and labeled
poset P on Σ, there exist an OWALG query Q and database D,
both of size polynomial in P, such that Q(D) represents P up
to failure.

Conversely, for any OWALG query Q and database D, if
Q(D) is ordered, Q does not include a selection on Ord, and
Q is not completely failed, then there exists a labeled poset P
of size polynomial in Q and D such that Q(D) represents P
up to failure.

4. COMPLEXITY OF POSSIBILITY
As OWALG allows nondeterministic operations with a pos-

sibly exponential number of possible worlds that cannot be
all materialized, a natural way to characterize the complexity
of query evaluation is the possibility problem: decide, given
an ordered relation, if it is a possible query result, i.e., if it
obeys the order constraints of the query and input database.

EXAMPLE 4.1. Refer back to S = Sync(R′′,T ′′) from Ex-
ample 2.10. Assume that a third sensor in Location 1 is
supposed to have recorded reliably all of the events which
occurred, producing some table S′. We may want to know if
the output of this sensor is consistent with that of the others,
by checking if S′ is indeed a possible world of S. While in the
example there are only two possible worlds, in general an
approach based on enumeration would be intractable.

We formally define the possibility problem as follows:

DEFINITION 4.2. The POSS problem is to decide, given
a OWALG query Q, a database D and a relation I as input,
whether I is a possible world of Q(D).

We first show that, in the general case, the POSS problem
is NP-complete.

THEOREM 4.3. POSS is NP-complete (in data complex-
ity), even for the query ΠA(Sync(R,R′)) and input relations
R, R′ such that Π−Ord(R) = Π−Ord(R′).

Tractable Case. We now show a class of tractable cases for
which POSS has PTIME complexity.

DEFINITION 4.4. We say that a query Q is k-tractable
w.r.t. a database D if Q is of the form
ΠA(Sync(E1, · · · ,Sync(Ek−1,Ek) · · ·)) where Ord ∈ A and
E1, . . .En are deterministic subqueries (i.e., do not involve
Sync or Shuffle), and there is no conflict between any Ei(D)
and E j(D).

EXAMPLE 4.5. The Sync query of Example 2.10 is 2-
tractable with respect to the example database, with A =
{Read,Loc,Ord}.

Intuitively, the only nondeterminism in k-tractable cases is
how the elements belonging to only one input relation should
be interleaved, and the main difficulty when solving POSS
is to match the projection of the candidate world with the
possible worlds before projection.

Note that, even for 2-tractable cases, for an input database
of size n, there can be

(n
n/2

)
possible worlds, so we cannot

enumerate them. Despite this, we now show tractability for
k-tractable cases (for fixed k):

THEOREM 4.6. For any fixed k, the POSS problem re-
stricted to inputs where the query is k-tractable with respect
to the database, is in PTIME.

6

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

PROOF SKETCH. We evaluate subexpressions E1, . . . ,En
and present a dynamic algorithm to decide, given the result of
these queries, whether some possible world of the shuffle has
a projection which realizes the desired instance. The running
time of the algorithm is polynomial in the database size with
the exponent depending on k.

We show in the appendix (via a reduction from MIN-SAT)
that the exponential blowup of our algorithm w.r.t. k is un-
avoidable, unless P = NP, even if the query is very simple:

THEOREM 4.7. POSS is NP-hard w.r.t. k for k-tractable
inputs, even when every Ei is the identity query.

5. PROVENANCE FOR OWALG
We consider in this section provenance tracking for OWALG.

We start by recalling the standard approach of using semi-
rings as annotations, as well as some natural desiderata for
provenance tracking. While these desiderata are satisfied
by the framework of [20] for the positive relational algebra,
we highlight the novel challenges due to the incorporation
of order-aware operators which require the development of
an extended algebraic structure. We then introduce such a
structure and use it to define provenance propagation for
OWALG.

5.1 Algebraic Background
We review in this subsection the basic algebraic structures

previously used in the context of provenance in [2, 20]. They
will serve as a starting point for our construction.

A commutative monoid is an algebraic structure (M,+M ,0M)
where +M is an associative and commutative binary opera-
tion and 0M is an identity for +M . A monoid homomorphism
is a mapping h : M → M′ where M, M′ are monoids, and
h(0M) = 0

M′ , h(a+M b) = h(a) +M′ h(b). A commutative
semiring is a structure (K,+K , ·K ,0K ,1K) where (K,+K ,0K)
and (K, ·K ,1K) are commutative monoids, ·K is distributive
over +K , and a ·K 0K = 0 ·K a = 0K . A semiring homomor-
phism is a mapping h : K→ K′ where K, K′ are semirings,
and h(0K) = 0

K′ , h(1K) = 1
K′ , h(a +K b) = h(a) +K′ h(b),

h(a ·K b)= h(a) ·K′ h(b). Whenever we say semiring (monoid)
in the sequel, we mean a commutative one.

Examples [20] include the Boolean semiring (B,∨,∧,⊥,>),
the semiring (N[X],+, ·,0,1) of polynomials over a set of to-
kens X , the semiring of natural numbers (N,+, ·,0,1), and
the security semiring (S,min,max,0S ,1S) where S is the or-
dered set, 1S < C< S< T< 0S with the following respective
interpretations: Public (“always available”); Confidential;
Secret; Top secret; Never available.

Let K be a commutative semiring and M be a commutative
monoid. We now define a slight variation of their tensor
product, introduced in [2] for the support of aggregates: we
intuitively “pair” elements of K with those of M, then impose
desired axioms. We start by denoting a pair of elements
〈k ∈ K,m ∈M〉 by k⊗m. Next we consider the commutative
monoid of finite bags of such pairs, with bag union as +K⊗M

and empty bag as 0K⊗M . This forms a commutative monoid.
Abusing notation, we will denote singleton bags by the unique
element they contain. Then, every non-empty such bag can

be written as k1⊗m1 +K⊗M · · ·+K⊗M kn⊗mn (with possible
repetitions).

Let ∼ be the smallest congruence w.r.t. +K⊗M that satisfies
(for all k,k′,m,m′):

0K ⊗m∼ 0K⊗M

k⊗ (m+M m′)∼ k⊗m+K⊗M k⊗m′

k⊗0M ∼ 0K⊗M

We denote by K ⊗M the set of tensors, i.e., equivalence
classes of bags of k⊗m elements modulo ∼. Note that the
axiom of associativity w.r.t. K from [2] is omitted here.

5.2 Annotated Relations
The notion of semiring-annotated relations was introduced

in [20]. Given a commutative semiring K, a K-relation is
essentially a relation whose tuples are associated with el-
ements of K serving as their annotations. Formally, fix a
countably infinite domain D of values (constants). For any
finite set U of attributes, a tuple is a function t : U → D
and we denote the set of all such possible tuples by DU . A
K-relation (with schema U) is then a function R : DU → K
whose support supp(R) = {t | R(t) 6= 0K} is finite, so that the
annotation of tuple t in R is simply R(t). Given a relational
schema, K-databases are defined from K-relations just as
relational databases are defined from usual relations. Note
that B-relations are just the standard (set) relations. Also, a
semiring homomorphism h : K 7→ K′ can be used to “switch”
from a K-relation R to a K′-relation R′, by replacing every
annotation k with h(k). Abusing notation we will use h(R) to
denote this transformation.

As shown in [20] there is a close correspondence between
the semiring operations and the transformation of data. The
+ operation on annotations corresponds to alternative use
of data, the · operation to joint use of data, 1 annotates data
that is always and unrestrictedly available, and 0 annotates
absent data. This intuition is formalized in [20], where the
operations of the positive relational algebra were extended
to work on K-relations (as input and output). For example,
joining two K-relations R, S results in a K-relation where
each “joint” tuple obtained as a combination of a tuple t
in R and t ′ in S is annotated with the annotation of t in R
multiplied by the annotation of t ′ in S, namely R(t) · S(t ′),
intuitively indicating that t and t ′ were used jointly to derive
the new tuple. Similarly, projection leads to summation since
it involves alternative ways of generating a tuple.

More generally, a semantics for an algebra on K-relations
associates to each query in the algebra a mapping from K-
relations to K-relations. For a query Q and an K-relation R
we denote as Q(R) the result of evaluating Q on R following
the semantics. The semantics proposed in [20] satisfies the
following fundamental properties:

Set-compatibility. When K = B, the semantics coincides
with the set-semantics for the algebra.4

Commutation with homomorphisms. For every two semi-
rings K,K′, query Q in the algebra, K-relation R, and ho-
momorphism h : K 7→ K′, we have h(Q(R)) = Q(h(R)).

4We discuss bag-compatibility at the end of Section 5.5

7

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

Poly-size overhead. For every query Q in the algebra and
for every K-relation R, the size of Q(R) (including an-
notations) is polynomial in the size of R.

Intuitively, the first two properties justify the correctness
of the construction, in the sense that (i) it is a sound gen-
eralization of the semantics without annotations and (ii) it
allows to “switch” between annotation domains, which is fun-
damental for provenance applications such as hypothetical
reasoning [13]. The third property requires that the overhead
in tracking provenance is not too large.

We next pursue the definition of a semantics for OWALG
on annotated relations, using these properties as yardsticks.

5.3 A New Provenance Structure
A provenance construction for OWALG must address two

novel challenges. The first is nondeterminism of the query,
which, to our knowledge, has never been studied in this con-
text. A second challenge is deciding which values should be
used in the Ord attribute, and their interaction with nondeter-
minism and tuple annotations.

We will propose a novel structure for provenance for OWALG.
Before presenting it, we motivate it by observing that even
without non-determinism, K-relations are insufficient. The
deterministic fragment of OWALG contains only queries for
which there is exactly one possible world (when evaluated
with respect to a “regular", non-annotated database).

PROPOSITION 5.1. There is no semantics on K-relations
for the deterministic fragment of OWALG that satisfies set-
compatibility and commutation with homomorphisms.

The proof is by a simple adaptation of a similar result in
[2]. One may then ask whether the construction of [2] could
be used instead. As we shall see, it will indeed be useful, but
insufficient by itself.

We therefore construct a provenance structure as follows.
Let K be a commutative semiring and let X be a set of “fresh”
indeterminates (tokens), different from the tokens of K. In-
tuitively, we will use tokens from K for annotations and
tokens from X to express conditions and deferred nondeter-
ministic choices. Some care is then needed in the construc-
tion, to guarantee their correct interplay. We will assume
that the set X is infinite so that we can always generate a
new token in the construction. This is novel in the con-
text of provenance tracking based on algebaric expressions.
To capture conditions, we define comp[X] as the set of all
comparison expressions involving polynomials over X , i.e.,
comp[X] = {pop p′ | p, p′ ∈N[X]}, where op∈{=, 6=,<,6}.
Note that N[X] includes in particular the natural numbers, so
equations may involve e.g. elements of X on one side and
natural numbers on the other side. Intuitively, these equations
will be used as “abstract conditions", which may be “solved"
under a valuation for X (defined below).

We then recall that N[T] is the semiring of polynomials
with natural numbers as coefficients over a set T of inde-
terminates, and consider the semiring N[K∪ comp[X]]. that
combines a given commutative semiring K and conditions
over a given set X (i.e., symbolic indeterminates).

EXAMPLE 5.2. If x,y,z ∈ X then [x+ y 6 7], and [x2 +
2xy = zx] are in comp[X].

For K = B, ⊥+> · [x+ y 6 7] is an element of N[K ∪
comp[X]]. Similarly if K = N[Ann] for some set Ann =
{a1,a2, . . .} of (annotation) indeterminates then a1+a2 · [x2+
2xy = zx] is in comp[X].

While it may seem unnatural to thus combine elements
of K and elements of comp[X], the intuition is that once
elements of X are mapped to values, elements of comp[X]
will be mapped to 0K or 1K .

We finally define a semiring K(X) by taking the quotient
on N[K∪comp[X]] by the smallest congruence satisfying the
following axioms:

1. 0K(X) ≡ 0K and 1K(X) ≡ 1K
2. For each k1,k2 ∈ K it holds that k1 ·K(X) k2 ≡K(X) k1 ·K

k2, and k1 +K(X) k2 ≡K(X) k1 +K k2
3. For each k ∈K,n∈N it holds that n ·k≡K(X) k+ · · ·+k

(n times), and kn ≡K(X) k · · ·k (n times).

Valuations and Homomorphisms. The idea of “evaluat-
ing” the tokens is formalized by valuations for X . A val-
uation5 for a set of tokens X is a function V : X → N .
Note that such a function lifts naturally to a homomorphism
hV : N[X]→ N, which essentially replaces every occurrence
of x ∈ X in the polynomial by V (x), and then simplifies
with arithmetics on natural numbers. Finally we can fur-
ther lift a valuation to a homomorphism ĥV from K(X) to K
as follows. We define the result of applying ĥV to equation
elements [p1 op p2] as ĥV ([p1 op p2]) = 1K(X) if hV (p1) op
hV (p2) holds (which only involves comparing natural num-
bers), and ĥV ([p1 op p2]) = 0K(X) otherwise (this is well-
defined, even under the congruences). For k ∈ K, we define
ĥV (k)= k and then extend ĥV to a homomorphism on K(X) as
ĥV (exp1 ·exp2)= ĥV (exp1)· ĥV (exp2) and ĥV (exp1+exp2)=
ĥV (exp1)+ ĥV (exp2).

Note that applying ĥV has the effect of evaluating all
comp[X] subexpressions to elements of K, so the result is
in N[K], quotiented by the axioms above, and this structure
is isomorphic to K (intuitively, exponents and multiplications
by coefficients can be computed as elements of K by axiom
3, and then terms may be combined by axioms 1-2).

In addition, the standard way to “switch" between semi-
rings is through a semiring homomorphism, and we can easily
lift such homomorphisms h : K 7→ K′ to ĥ : K(X) 7→ K′(X)
which simply maps every occurrence of k ∈ K to h(k).

EXAMPLE 5.3. Consider a1 · [x+ y 6 3]+a2 · [x+ y 6 7],
which is in (N[Ann])(X). Given a valuation such as V (x) = 3,
V (y) = 2 we have hV (x+ y) = 5, ĥV ([x+ y 6 3]) = 0K , and
ĥV ([x+ y 6 7]) = 1K . We then have ĥV (a1 · [x+ y 6 3]+a2 ·
[x+y 6 7]) = a1 ·0K +a2 ·1K = a2 where the last equality is
by applying the congruences.

Tensors. K(X) provides a way to combine annotations and
conditions over non-deterministic choices. The last “ingre-
dient" required is the ability to pair such combinations with

5We restrict valuations to be only to natural numbers, due to the
particular way we use elements of X .

8

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

natural numbers, to allow representing order in a provenance-
aware fashion. This is done via the tensor product with the
monoid of natural numbers N with standard +N and 0N.

Annotated Relations. In our provenance construction, we
will use K(X)⊗N as domain of the Ord attribute (and only
Ord). By contrast, the annotations of tuples will be ele-
ments of some K(X). We call such relations (resp. databases)
(K(X)⊗N,K(X))-relations (resp. databases). We continue
to use K-relations to denote relations with tuples are anno-
tated by elements of K, and with no annotations in values. We
then define the effect of homomorphisms and valuations on
such relations in the natural way: given a (K(X)⊗N,K(X))
database D and a valuation V : X 7→ N we use V (D) to de-
note the (K ⊗N,K)-database obtained by replacing every
element exp of K(X) occurring in values or annotations of
D, by V (exp). Similarly, applying a semiring homomor-
phism h : K 7→ K′ to a (K(X)⊗N,K(X))-database (resp.
(K⊗N,K)-database) yields a (K′(X)⊗N,K′(X))-database,
(resp. a (K′⊗N,K′)-database).

We need one final construct that will allow us to “read"
elements in K⊗N as natural numbers. For that, when K = B
(the boolean semiring) we define the embedding function on
B⊗N by ι(>⊗n) = n and ι(⊥⊗n) = 0, and again extend it
to a homomorphism and to relations with the semantics that
it is applied on any element of the form b⊗n in the relation.

Now that we have defined the proper algebraic structure,
we are finally ready to define provenance for OWALG. This
is done in two steps. We first define the construction for
each order-aware operator (Rank, Concat, Shuffle, Sync) in-
dividually. We assume that the operator is the last to be
applied (following any combination of SPJ operators). Ex-
cept for Rank, we also assume the operator is applied on
already ordered relations. After studying the properties of the
construction in Section 5.5, we will extend it in Section 5.6
to account for any query in OWALG, in particular allowing
the composition of order-aware operators. We will assume,
throughout the construction, that X is a fixed infinite set of
variables.

5.4 Provenance for Order-Aware Operators
We define the semantics of each operator as a mapping

from K-relations to (K(X)⊗N,K(X))-relations.

Rank. Recall that the Rank operator generates an ordered
relation out of an unordered one, by introducing a new Ord
column, whose (numerical) values reflect the order of tuples.
For annotated relations, we need to reflect, as part of the order
of a tuple, the annotations of other tuples. The idea is that we
generate an expression combining value and annotations, that
“abstractly counts” the number of tuples with smaller values
in the column, which is made possible by the tensor product.
This is in fact equivalent to the result of a corresponding
count query according to the semantics of [2].

DEFINITION 5.4. Let K be a commutative semiring and
let R be a K-relation, A⊆ attr(R). We define RankA,<(R) as
a relation S, with:
• attr(S) = attr(R)∪{Ord}.
• Π−Ord(S) = Π−Ord(R).

• For each s ∈ S, S(s) = R(Πattr(R)(s)).
• For each ∈ S, s.Ord = ∑{t ′∈supp(R)|t ′.A<t.A}R(t ′)⊗ 1N

where we sum in K(X)⊗N, and 1N is the integer 1.

Note that Rank does not yet use the set X ; it will only be
needed for the nondeterministic operations.

EXAMPLE 5.5. Reconsider relation R1 in Table 1.a (with-
out the Ord attribute). further consider an N[Ann]-relation
Rann with same tuples as R1 and annotated with Ann =
{r0,r1, ...} s.t. the annotation of tuple with id Ri is ri.

Also reconsider the query RankTime,<(R). Its (provenance-
aware) result is (the Ann column indicates the annotations
of tuples and is not part of the relation):

ID Read Loc Time Ord Ann

R0 Light 1 3:30:02 0 r0
R1 Door 1 3:30:04 r0⊗1+ r2⊗1 r1
R2 Light 3 3:30:03 r0⊗1 r2

Intuitively, the Ord value of e.g. the R2 tuple adds a count of 1
“paired” with r0 (intuitively due to the r0-annotated tuple) and
another paired with r2. Intuitively6, we may then consider
hypothetical scenarios for the presence or absence of each
tuple (a tuple may e.g. be considered absent if it is untrusted),
express them as a homomorphism h from N[Ann] to B, and
lift it to both annotations and Ord values. E.g. if h(r0) = 0,
h(r1) = h(r2) = 1, the annotation of tuple R0 is 0, i.e. it is
discarded. For R1 in contrast we get 1 (i.e. it is present) and
its Ord is 0⊗1+1⊗1, which via ι is interpreted as 1 as, in
this scenario, there is just one tuple (R2) that precedes it.

Concat. The next operator to consider is Concat, with a sim-
ilar idea for provenance propagation: the rank of an item
is “parameterized” by provenance tokens indicating the exis-
tence of other tuples that may precede it.

DEFINITION 5.6. Let R,R′ be two K-relations. We define
Concat(R,R′) = S such that attr(S) = attr(R), and there is an
isomorphism h between R∪R′ (bag union) and S, satisfying:
• For all s ∈ S, Π−Ord(s) = Π−Ord(h−1(s)).
• For all s∈ S, S(s)=R(r) or R′(r′) depending on whether

h−1(s) is in R or R′.
• If s = h(r) s.t. r ∈ R, then we can define

s.Ord = ∑{r1∈R|r1.Ord<r.Ord}(R(r1)⊗1N)
• If s = h(r′) s.t. r′ ∈ R′, then s.Ord = ∑{r1∈R}(R(r1)⊗

1N)+∑{r′1∈R′|r1.Ord<r.Ord}(R
′(r′1)⊗1N)

Shuffle. We next consider Shuffle. Its nondeterminism poses
further challenges in the construction. Let R and R′ be two or-
dered K-relations over the same schema and assume w.l.o.g.7

that the Ord attribute of R (resp. R′) contains contiguous val-
ues 0, ...,n (resp. 0, ...,m). Let ri (r′i) be the tuple in R (resp.
R′) with Ord value i.

Further let Y = {Y0,Y1,Y2, ...,Yn} be a set of fresh variable
names from X . Intuitively, ∑ j6i Yj indicates how many tuples
of R′ appear before ri.
6Using commutation with homomorphisms, shown in Section 5.5.
7See discussion in Section 2, and the construction for nested opera-
tions in Section 5.6

9

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

We can now define the semantics of Shuffle for annotated
relations. Let S be the output of Shuffle(R,R′). For each
ri ∈ R there is a tuple si in S. The attribute Ord is defined as:

si.Ord=∑
j<i

(R(r j)⊗1N)+ ∑
j6m

((
R′(r j)·

[
j <∑

k6i
Yk

])
⊗1N

)
Intuitively, the first term counts the number of tuples of

R preceding ri, and the second one counts the number of
tuples of R′ preceding ri according to the chosen valuation
of X . Note the subtlety in using the annotation of tuples as
part of the expression: this is to account for their possible
mapping to 0 (see discussion on set compatibility below).
The other attributes of si have the same values as those of ri,
and likewise S(si) = R(ri).

Similarly, for each r′i ∈ R′, we have a tuple s′i in S s.t.:

s′i.Ord = ∑
j<i

(R′(r′j)⊗1)+ ∑
j6n

(([
∑

m6 j
Ym 6 i

]
·R(r j)

)
⊗1
)

The other attributes of s′i have the same values as those of
r′i. The annotation associated with the tuple si (s′i) is the same
as the annotation of ri in R (respectively r′i in R′).

EXAMPLE 5.7. Reconsider Example 2.7, assuming now
that tuples R0, R1, R2, T0, T1 are annotated with r0, r1, r2,
t0, t1 respectively. The annotated Shuffle result is then:

Read Ord Ann

Light (t0 · [0 < Y0])⊗1+(t1 · [1 < Y0])⊗1 r0
Door (t0 · [0 < Y0 +Y1])⊗1+(t1 · [1 < Y0 +Y1])⊗1 r1
Light (t0 · [0<Y0+Y1])⊗1+(t1 · [1<Y0+Y1])⊗1+(t2 · [1<

Y0 +Y1 +Y2])⊗1
r2

Beep (r0 · [Y0 6 0])⊗ 1+(r1 · [Y0 +Y1 6 0])⊗ 1+(r2 · [Y0 +
Y1 +Y2 6 0])⊗1

t0

Door t0⊗1+(r0 · [Y0 6 1])⊗1+(r1 · [Y0+Y1 6 1])⊗1+(r2 ·
[Y0 +Y1 +Y2 6 1])⊗1

t1

Now, one may use a valuation of the Y variables to choose
a possible world for the Shuffle: each Yi is used to decide how
many elements of S are to be placed between Ri−1 and Ri (Y0
is used to choose how many will precede R0). For instance by
choosing Y0 = 1,Y1 = Y2 = 0 we obtain the possible world in
Table 1.d. Furthermore, a scenario where some of the tuples
are omitted (e.g. as they are untrusted) may be expressed as
a homomorphism mapping r0, r1, r2, t0, t1 to truth values;
lifting this homomorphism to the annotated result allows
exactly all valid orderings of the tuples that remain.

Sync. Last, we define provenance for the Sync operation.
We introduce one new variable Yt ∈ X for every tuple t in
the set union of Π−Ord(R∪R′). Then, given two ordered
relations R and R′ with same schema we define Sync(R,R′)
as a relation S, as follows. Projected on attr(R)−{Ord}, the
tuples of S are exactly the tuples of Π−Ord(R

⋃
R′), and the

Ord attribute of a tuple t is defined as:

t.Ord = ∑
t ′∈R∪R′

([Yt ′ < Yt]⊗1N)

Note that so far the construction ignores the original orders
in R and S. These are accounted for by the expression:

G = Π{t,t ′∈R∪R′|precedes(t,t ′)}[Yt < Yt] ·Π{t 6=t ′∈R∪R′}[Yt 6= Yt ′]

where precedes(t, t ′) holds if and only if t must precede t ′

by the definition of the (un-annotated) Sync operator.
We then set the provenance of every tuple t to be (R(t)+

R′(t)) ·G. Thus, a valuation to the Yt’s must respect the
constraints imposed by G (agree with the original orders and
not assign the same location to two different tuples), or it will
lead to the empty relation (which is a possible world).

5.5 Properties of the Construction
Putting together the above definitions, with the semantics

for SPJ queries on K-relations, we obtain a semantics for a
fragment of OWALG (denoted in the sequel OWALG′), where
we apply only one order-aware operator, and do so as the
last operation (if Concat, Shuffle, Sync is used then the input
relation should already be ordered, that is, contain an Ord
attribute). This assumption is relaxed in Section 5.6, where
we consider the full language, but we can already examine
the usefulness of this simplified construction.

We therefore consider the desiderata for provenance con-
structions, and check that our construction satisfies them.

Set-compatibility. Recall that in our construction (unlike
previous provenance constructions for deterministic query
languages), there are two domains for which mappings may
be defined: the semiring K and the set of indeterminates X .
This affects the formulation of set-compatibility. Intuitively,
we claim that, for the Boolean semiring K =B. the valuations
for X allow to choose exactly from the possible worlds of the
nondeterministic query result.

To formalize the claim, recall that for a B-database D,
supp(D) is the (regular) database consisting of only the tuples
of D annotated with non-zero (in this case, >) annotations.
Further recall the definition of valuation V to variables and
the embedding ι of tensors into natural numbers, as well as
their extensions to application on databases. We have:

PROPOSITION 5.8. Let Q ∈ OWALG′ and let D be a B-
database. The following holds:

Q(supp(D)) = {supp(ι(V (Q(D)))) |V : X 7→ N}

Intuitively, Q(supp(D)) is the query result according to
the semantics in Section 2, on a non-annotated database ob-
tained from D by keeping only the tuples in its support. The
proposition means that this result (which is a set of possible
worlds, since Q is nondeterministic) is exactly the set of pos-
sible worlds one may obtain by (1) computing the annotated
output Q(D), (2) giving a valuation to the X variables (and
solving equation elements) and mapping tensors to natural
numbers to obtain an B-database D′, and (3) generating a
non-annotated database by keeping only the tuples of D′ that
are not annotated with 0.

Note that this correctly generalizes set-compatibility for
deterministic queries: if X is empty there is exactly one world,
and we get Q(supp(D)) = supp(ι(Q(D))).

Commutation With Homomorphisms. The next property
is commutation with semiring homomorphisms, which holds
for our semantics:

10

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

PROPOSITION 5.9. Let K,K′ be commutative semirings,
let h : K 7→ K′ be a semiring homomorphism, let D be a K-
database and let Q∈ OWALG′. We have h(Q(D)) = Q(h(D)).

We have already exemplified above the effect of applying
homomorphisms (using this property implicitly). We next
show another example, in the context of access control.

EXAMPLE 5.10. Consider the S semiring [20] and rela-
tion R of Example 5.5, but now replace r0, r1, r2 by 1S,C,S
(public, confidential, secret). This means that some observa-
tions are confidential and may only be revealed to users with
sufficient clearance. Now reconsider the query RankTime,<(R).
Its (provenance-aware) result is:

ID Read Loc Time Ord Ann

R0 Light 1 3:30:02 0 1S
R1 Door 1 3:30:04 1S⊗1+S⊗1 C
R2 Light 3 3:30:03 1S⊗1 S

Now every given clearance CL defines a homomorphism
from the access control semiring to N, in the following simple
way: if k > CL then h(k) = 0, and otherwise h(k) = 1. So,
for instance, for a user with “confidential” clearance, we
would map both P and C to 1 and S to 0. Commutation with
homomorphisms tells us we can apply this directly to the
annotated query result, to obtain order 0 and 1 for thhe R0
and R1 tuples, and to omit R2 since its annotation is 0.

Poly-size Overhead. We finally show (proof in the appendix)
that poly-size overhead holds:

PROPOSITION 5.11. Let D be a K-relation and let Q ∈
OWALG′. The size of Q(D) is polynomial in that of D.

Considering Bag-compatibility. Having focused on set-
compatibility, we conclude the discussion by pointing out
the fundamental difficulty in achieving a semantics that com-
mutes with homomorphisms and is bag-compatible (i.e. coin-
cides with the bag-semantics when applied on N-relations).

EXAMPLE 5.12. Reconsider Example 2.15, but now as-
sume that instead of multiplicities, we use abstract anno-
tations x and y for the multiplicities of a in R and b in R′

respectively (so they are now N-relations). Now for every n,
let hn be the valuation mapping x and y to n. For the result of
Q on R,R′ to commute with homomorphisms, it must have 2n
tuples (to account for the possible world of alternating a’s
and b’s). However, the size of the provenance representation
should not depend on the (yet unknown) n.

This indicates that a bag-compatible provenance tracking
would require a radically different approach. This is an in-
triguing task for future work.

5.6 Compositions of Operators
We have defined provenance-aware semantics for each

of the order-aware operators when applied to a K-relation.
However nested application of order-aware operators is not
well-defined yet, as the output of, say, Shuffle(R), is not a K-
relation but a (K(X)⊗N,K(X))-relation so it does not match
the expected input type of the operators. We can handle the
full language with the following modifications:

Provenance Structure. We refine the construction of the
structure as follows. Essentially, we need to be able to nest
comparison expressions and tensors at any depth. This means
that tensors as well as comparison expressions may be used in-
side comparison expressions. We thus refine the definition of
comp[·] so that it may be applied to the elements of arbitrary
tensor products K⊗M with K a commutative semiring and M
a commutative monoid. In particular, this allows the compar-
isons over tensors required for nested queries. For K = B, we
impose the additional congruences [k1⊗m1 = k2⊗m2]≡ 1
when ι(k1⊗m1) = ι(k2⊗m2), and equivalent to 0 otherwise.

We then let K(X)nest be the least solution (well-defined as
the right hand side is monotone) of the domain equation:

K(X)nest = K(X)∪ comp[K(X)nest ⊗N]

Semiring homomorphisms and indeterminates valuations
may be applied as usual, replacing every k ∈K with h(k)∈K′

and x ∈ X with v(x). To “solve" these equation elements (i.e.
map them to 1K or 0K) we need to be able to compare tensors
(and tensors with values). For that we use ι .

More concretely, let K = B and let V : X 7→ N be a valua-
tion. Further let exp ∈ K(X)nest be an expression of nesting
depth i (i.e. it is expressible in the domain obtained by i
iterations of the fixpoint equation). We define v(exp) via
recursion: If i = 0 then exp ∈ K(X) and V (exp) ∈ K is de-
fined as above. Otherwise by the recursive construction, V
may be applied to every exp′ such that exp′⊗n occurs in an
equation in exp. By lifting it we have V (exp′)⊗n ∈ K⊗N,
and by noting that K = B and using the congruences above,
we obtain an expression in K.

With this definition, we can apply valuations and homo-
morphisms to (K(X)nest ⊗N,K(X)nest)-relations as before.

Semantics of Operators. We can now build, using K(X)nest ,
a semantics satisfying the three desiderata of set-compatibility,
commutation with homomorphisms and poly-size overhead,
defined as in Propositions 5.8, 5.9, and 5.11.

THEOREM 5.13. There exists a semantics for OWALG on
(K(X)nest⊗N,K(X)nest)-relations which satisfies set-compatibility,
poly-size overhead, and commutation with homomorphisms.

6. RELATED WORK
We complete the discussion of related work, in addition to

the discussion in the Introduction.

Queries on Ordered domains. In the context of the ex-
pressive power of queries, the effect of having total ordering
on the universe has been studied extensively [22, 32]. In
applications such as those we have considered, one may not
be able to assume that a total order is available. Data trans-
formation in presence of partial order was also studied in
several contexts [27, 9, 4, 25, 21]. As mentioned in the In-
troduction, approaches differ in the way they address the
consolidation of data; but we are not aware of a query lan-
guage that includes explicit non-deterministic operators for
consolidating the data, in conjunction with deterministic op-
erators such as SPJ. Instead, some works choose one possible
solution or forbid conflicts, etc. Others, such as e.g. [21]
focus on manipulating ordered types (in this case partially

11

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

ordered multisets). As indicated by our expressiveness results
there are some connections between the approaches, and e.g.
our Concat and Shuffle operations for relations have counter-
parts as operations on partial orders. Two major conceptual
differences between the approaches are (1) our operational
approach leading to the non-deterministic semantics and (2)
our interest in capturing the order at the level of particular
tuples, rather then capturing an abstract representation of
the order as a whole. These two choices have the benefit of
allowing order-aware transformations to be easily expressed
alongside with “traditional" querying. Even more importantly,
our approach lends itself much more naturally to provenance
tracking (which was not considered in any of these previous
works). In particular, it allows our provenance construction
to build upon, and extends known principles of provenance
tracking for data transformations.

On the other hand, our approach leads to some limitations
in expressiveness w.r.t. the manipulation of abstract ordered
data types. A particular example is in the handling of mul-
tiplicities: in [21], the result of “shuffling" n copies of a
elements and n copies of b elements can be kept as an ab-
stract representation (the disjoint union of total orders on the
a’s and b’s). In contrast, as we are interested in the location
of each particular such a, we need to maintain its order in-
dividually, leading to the blowup observed in Example 2.15.
Since our language is still quite expressive – we are able to
capture all posets (rather than all partially ordered multisets
in [21]) – we believe that it constitutes a reasonable tradeoff
between expressiveness on the one hand and usability and
provenance tracking on the other hand.

Provenance. Recording provenance information for query
results, to explain the computational process leading to their
generation, is now a common technique (see also e.g. [18,
14, 8, 12, 10, 6]) with applications such as view maintenance,
trust assessment, or hypothetical reasoning. Some techniques
employed here for provenance construction, such as the use of
tensors for counting and ideas behind the nested construction
are based on those employed in [2] for aggregate queries. The
treatment of non-determinism, as well as its interplay with
annotations and values are the main novel challenges that
were addressed here. To our knowledge, provenance manage-
ment of the flavor studied here was neither previously studied
for order-aware transformation nor in the context of any non-
deterministic query language. Our approach may also serve
a first step towards the development of provenance frame-
works for other non-deterministic query languages, such as
languages with a repair operator [19].

7. CONCLUSION
We have proposed in this paper a non-deterministic lan-

guage for querying relational databases in presence of order.
We have exemplified the usefulness of the language, studied
both its expressiveness and its complexity in terms of decid-
ing whether a given instance is a possible world. We have
further introduced a semiring-based provenance framework
for the language. There are many intriguing directions that
we intend to pursue as future work, such as: extending the
approach to nested relations and XML; further refining the

tractability bounds for complexity; developing of optimiza-
tion techniques to further reduce provenance size in practice;
and implementing software prototypes using the framework.

Acknowledgements. We are grateful to Pálvölgyi Dömötör
and Marzio De Biasi, from cstheory.stackexchange.com,
for helpful suggestions.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate

queries. In PODS, 2011.
[3] D. Bechet, P. d. Groote, and C. Retoré. A complete axiomatisation for

the inclusion of series-parallel partial orders. In RTA, 1997.
[4] M. Benedikt and C. Koch. XPath leashed. ACM Comput. Surv., 41(1),

2008.
[5] O. Benjelloun, A. Sarma, A. Halevy, M. Theobald, and J. Widom.

Databases with uncertainty and lineage. VLDB J., 17, 2008.
[6] S. C. Boulakia and W. C. Tan. Provenance in scientific databases. In

Encyclopedia of Database Systems, pages 2202–2207. 2009.
[7] A. Brandstädt, V. B. Le, and J. P. Spinrad. Posets, chapter 6. SIAM,

1987.
[8] P. Buneman, J. Cheney, and S. Vansummeren. On the expressiveness

of implicit provenance in query and update languages. ACM Trans.
Database Syst., 33(4), 2008.

[9] P. Buneman, A. Jung, and A. Ohori. Using powerdomains to
generalize relational databases. Theor. Comput. Sci., 91(1), 1991.

[10] P. Buneman, S. Khanna, and W. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[11] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why,
how, and where. Foundations and Trends in Databases, 1(4), 2009.

[12] Y. Cui, J. Widom, and J. Wiener. Tracing the lineage of view data in a
warehousing environment. ACM Trans. Database Syst., 25(2), 2000.

[13] D. Deutch, Z. Ives, T. Milo, and V. Tannen. Caravan: Provisioning for
what-if analysis. In CIDR, 2013.

[14] R. Fink, L. Han, and D. Olteanu. Aggregation in probabilistic
databases via knowledge compilation. PVLDB, 5(5), 2012.

[15] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: Queries and
Provenance. In PODS, 2008.

[16] M. R. Garey and D. S. Johnson. Computers And Intractability. A
Guide to the Theory of NP-completeness. W. H. Freeman, 1979.

[17] F. Geerts, G. Karvounarakis, V. Christophides, and I. Fundulaki.
Algebraic structures for capturing the provenance of SPARQL queries.
In ICDT, 2013.

[18] F. Geerts and A. Poggi. On database query languages for k-relations. J.
Applied Logic, 8(2), 2010.

[19] M. Götz and C. Koch. A compositional framework for complex
queries over uncertain data. In ICDT, 2009.

[20] T. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
PODS, 2007.

[21] S. Grumbach and T. Milo. An algebra for pomsets. In ICDT. 1995.
[22] N. Immerman. Relational queries computable in polynomial time.

Information and Control, 68(1-3), 1986.
[23] ISO 9075:2008: SQL. International Standards Organization, 2008.
[24] R. Kohli, R. Krishnamurti, and P. Mirchandani. The minimum

satisfiability problem. SIAM J. Discret. Math., 7(2), 1994.
[25] T. Lindholm. A three-way merge for XML documents. In DocEng,

2004.
[26] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The

complexity of causality and responsibility for query answers and
non-answers. PVLDB, 4(1), 2010.

[27] W. Ng. An extension of the relational data model to incorporate
ordered domains. ACM TODS, 26(3), 2001.

[28] B. Schröder. Ordered Sets: An Introduction. Birkhäuser, 2003.
[29] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and M. Tagliasacchi.

Ranking with uncertain scoring functions: semantics and sensitivity
measures. In SIGMOD, 2011.

[30] B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock
synchronization for wireless sensor networks: a survey. Ad Hoc
Networks, 3(3), 2005.

[31] S. Vansummeren and J. Cheney. Recording provenance for SQL
queries and updates. IEEE Data Eng. Bull., 30(4), 2007.

[32] M. Y. Vardi. The complexity of relational query languages (extended
abstract). In STOC, 1982.

12

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

cstheory.stackexchange.com

APPENDIX
A. PROOFS FOR SECTION 2

A.1 Proof of Proposition 2.12
We use ' as shorthand like in Definition 2.9.
It suffices to show that Sync(R,R′) has a possible world.

Let t1, . . . , tn be a sequence enumerating a subset of the tuples
of R (in their order in R) satisfying that for each ti, there is t ′i in
R′ such that ti ' t ′i . (Possibly n = 0 and we have no common
elements). In this case, by the assumption that arguments of
Sync have no duplicates-up-to-Ord , t ′i is unique, and there is
no i 6= j such that ti ' t j.

Because we assumed that we have no conflicts between R
and R′, then, whenever i < j and thus ti precedes t j in R, we
know that t ′i precedes t ′j in R′. So, in fact, we have ti ' t ′j if
and only if i = j.

For 0 6 i 6 n, we write Ri the sequence of the tuples of R
which follow ti and precede ti+1 (ignoring the conditions of
following the non-existing t0 or preceding the non-existing
tn+1), in the order in which they appear in R. Define likewise
R′i for R′. By definition of the ti, for all i, j, there is no t ∈ Ri
such that t ' t ′ for some t ′ ∈ R′j.

Define the table S by putting the tuples in the following
order: R0,R′0, t1,R1,R′1, t2, . . . , tn−1,Rn,R′n, tn,Rn+1,R′n+1. As
R and R′ are not empty, clearly S is not empty. We verify that
S is a possible world of Shuffle(R,R′). The first condition
is immediate. As for the second, it is easy to see that there
are no two tuples t1, t2 ∈ S such that t1 precedes t2 in S but t ′2
precedes t ′1 in one of R,R′, t ′1 ' t1, t ′2 ' t2.

A.2 Proof of Proposition 2.13
We use ' as shorthand like in Definition 2.9.
Consider S = R. We check that S is indeed a possible world

of Sync(R,R′). The first condition is immediate. As for the
second, notice that, if t1 precedes t2 in S and there are t ′1 and
t ′2 in T ∈ {R,R′} such that t ′2 precedes t ′1 and t ′2 ' t2, t ′1 ' t1,
then necessarily (because there are no duplicates) T = R′; but
then there are t ′′1 = t1, t ′′2 = t2 in S = R such that t ′′1 precedes
t ′′2 in R.

A.3 Proof of Proposition 2.14
See Definition 3.2 for definitions of the order-theoretic

notions used here.
Consider <′ the partial order obtained by extending the

total order < on dom(A) to dom(R) (so that two tuples are
comparable for <′ if and only if they have different values
for attribute A).

Let <+ be a linear extension of <′ on attr(R) extending
<′ so that, for any value of attribute A, <+ is a total order on
all possible tuples with this value in attribute A, and clearly
those choices are independent (for every value of A, any total
order could be chosen). Let <− be a linear extension of <′ on
attr(R) obtaining by choosing the reverse total order for each
class. Hence, if t and t ′ have different values for attribute A,
then either t < t ′ and t <+ t ′, t <− t ′ or t ′ < t and t ′ <+ t,
t ′ <− t; if they do not, then t and t ′ are incomparable for <′

and either t <+ t ′ and t ′ <− t, or t ′ <+ t and t <− t ′.
Let R+ = Rankattr(R),<+

and R− = Rankattr(R),<− ; they are

well-defined, because if πattr(R)(t) = πattr(R)(t ′) then t = t ′ be-
cause we are in the set semantics. Consider R′=Sync(R+,R−).
Because they have same domain, Sync succeeds according to
Proposition 2.13.

Now, clearly πattr(R)(R′) = R except for the added Ord at-
tribute, and clearly if t1 precedes t2 in R then t1 precedes t2 in
R′ (because the corresponding t ′1 precedes the corresponding
t ′2 in both R+ and R−), so every possible world of R′ is a
possible way of of breaking ties. Conversely, any way of
breaking ties is a possible world of R′, because, between two
tuples t and t ′ tied in R because of an equal A-value, there is
no order constraint in R′ between the corresponding tuples,
because R+ and R− must disagree on them. Hence, we have
proved our result, up to the additional empty relation possible
world introduced by the Sync.

B. PROOFS FOR SECTION 3

B.1 Proof of Theorem 3.6

First claim. We first show that, for any OWALG query Q
without Sync and database D, if Q does not include a σOrd
operator and Q(D) is an ordered relation, then there is a
series-parallel poset P of size polynomial in Q and D such
that Q(D) represents P.

Let us first show the following:

LEMMA B.1. For any database D and OWALG query Q
not using Sync or σOrd, (i) if Q(D) is not ordered then it has
exactly one possible world (ii) if Q(D) is ordered then for
any possible worlds W and W ′ of Q(D) we have π−Ord(W) =
π−Ord(W ′).

PROOF. We proceed by structural induction on Q depend-
ing on the last operator applied. The base case of raw rela-
tions is clear (they are unordered and have only one possible
world):

Rank. By induction hypothesis, the unordered subexpression
under consideration has only one possible world. No
matter how we break ties, property (ii) holds.

Concat. By induction hypothesis, the subexpressions tables
satisfy property (ii), so the Concat also satisfies it by
definition.

Shuffle. By induction hypothesis, the two subexpressions
satisfy property (ii), so the Shuffle also satisfies it by
definition.

SPJ on unordered subexpression(s). By induction hypoth-
esis, the subexpression(s) have only one possible world,
and SPJ operators on unordered subexpression(s) are
deterministic so the result is unordered and has exactly
one possible world.

Projection keeping Ord. No tuples are eliminated when per-
forming a projection on an ordered subexpressions which
maintains the Ord column, because the Ord values en-
sure that no duplicates exist, so property (ii) is main-
tained.

Projection removing Ord. By property (ii), all the possible
worlds of the ordered subexpression collapse to the same

13

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

unordered possible world, so the unordered result has
exactly one possible world.

Selection on an ordered relation. As the selection is not on
Ord, property (ii) is preserved because Π−Ord(σ(A)) =
σ(Π−Ord(A)) if σ does not involve Ord.

Join on an ordered relation. As the join cannot involve Ord
by definition of the join, property (ii) is preserved be-
cause Π−Ord(A ./ B) = (Π−Ord(A)) ./ B (where A is the
ordered and B the unordered argument to ./) if ./ does
not involve Ord. Property (ii) is then preserved for all
possible ways of breaking ties in Ord in the result.

We next define the notion of restriction of a (labeled) poset:

DEFINITION B.2. A restriction of a partial order P =
(V,<) is a partial order
P′ = (V ′,<′) where V ′ ⊆V and <′ is the restriction of < to
V ′×V ′. This definition extends to labeled posets.

We show that the class of series-parallel posets is stable
under restriction:

LEMMA B.3 ([3]). Any non-empty restriction of a series-
parallel (labeled) poset is still a series-parallel (labeled)
poset.

We now introduce another operation that we need to sup-
port:

LEMMA B.4. Let P = (V,<) be a series-parallel poset
and consider v ∈ V . Let X = {x1, . . . ,xn} be a set of fresh
values, and define P′ = (V ∪X ,<′) as follows: for all v′ ∈V ,
x ∈ X, v′ <′ x if and only if v′ < v, and x <′ v′ if and only
if v < v′; for all v′,v′′ ∈ V , v′ <′ v′′ if and only if v′ < v′′,
and there is no x,x′ ∈ X such that x <′ x holds. Then P′ is a
series-parallel order.

PROOF. Consider an expression of series and parallel com-
positions yielding P from singleton orders, and replace the
singleton element {v} by a parallel composition of singleton
orders for X ∪{v}. It is clear that we obtain the prescribed
order.

We can now prove Theorem 3.6 by structural induction on
Q. We do a case disjunction on the last operator applied.

Rank. If the last operator is Rank then by Lemma B.1 its
unordered argument has exactly one possible world, so
Q(D) is a total order and it can be represented by a
series-parallel labeled poset of size linear in Q and D.

Concat. If the last operator is Concat and both subexpres-
sions represent labeled posets P1 and P2 respectively, the
possible worlds of Q(D) are the set of concatenations
of linear extensions of P1 and P2, so that Q(D) repre-
sents the series composition of P1 and P2. Likewise, if
the last operator is Shuffle, Q(D) represents the parallel
composition of P1 and P2.

Projection. If the last operation is a projection, it cannot
project out Ord as we assume the top-level expression

is an ordered relation. So it projects out some other
attribute, and the result is still representable by a la-
beled series-parallel poset (it amounts to relabeling the
elements).

Selection. As selections cannot involve Ord, they involve
some other attribute. Let P be the series-parallel labeled
poset represented by the subexpression of the expression
under consideration. By Lemma B.3, the restriction
of P to remove the elements that are removed by the
selection is either a series-parallel labeled poset or the
empty poset.

Join. If the last operation is a join between an ordered rela-
tion and an unordered one, remark first by Lemma B.1
that the unordered relation has exactly one possible
world. Let P be the poset represented by the ordered
relation being joined. By Lemma B.3, the restriction of
P to remove the elements for tuples that have been re-
moved is still series-parallel (or is empty). Now, observe
that the order between duplicate tuples in the result of
the join is entirely unspecified, but their order relative to
other tuples in the result is the same as that of the original
tuple. We can therefore apply Lemma B.4 and conclude
that the resulting order is still series-parallel. (The argu-
ment of the Lemma still applies to labeled posets.) As
for the tuple values, this amounts to changing the label
set and labeling function of the series-parallel poset.

Second claim. We now prove the second direction: for any
product Σ of domains and series-parallel poset P on Σ, there
exists an OWALG query Q without Sync and a database D of
size polynomial in P such that Q(D) represents P.

This claim is straightforward: consider the construction
of P from single-element posets using the series and parallel
composition, and, letting D be single-tuple relations matching
the single-element posets, write Q to mimic the construction
of P using Concat for series composition and Shuffle for
parallel composition.

B.2 Proof of Theorem 3.9

First claim. We show that, for any OWALG query Q and
database D, if Q(D) is ordered and Q does not include a σOrd
operator, then either Q(D) has no possible world where no
Sync operator fails or there is a poset P of size polynomial in
Q and D such that Q(D) represents P.

We first observe that the following variant of Lemma B.1
holds in this setting:

LEMMA B.5. For any database D and OWALG query Q
not using σOrd, (i) if Q(D) is not ordered then it has one
or zero possible worlds where no Sync operator has failed.
(ii) if Q(D) is ordered then for any possible worlds W and
W ′ of Q(D) where no Sync operator has failed, we have
π−Ord(W) = π−Ord(W ′).

PROOF. We adapt the proof of Lemma B.1 by observing
that the case of Sync is analogous to the case of Shuffle (the
worlds where Shuffle fails are ignored. Whenever a Shuffle
operator fails in all possible worlds, the result has no possible
worlds whatsoever, and the conditions are true.

14

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

We now prove Theorem 3.9 by structural induction on the
query Q, and by case disjunction on the last operator applied.

For all operations except Sync, we observe that the argu-
ments given in the proof of Theorem 3.6 still apply to general
posets. For indeed, the restriction operation and the operation
of Lemma B.4 can still be applied to general posets to yield
general posets, and all invocations of Lemma B.1 can be re-
placed with invocations of Lemma B.5. (The possibility that
there are no possible worlds where no Sync operator failed
is not a problem, as in such cases this will be the case of the
whole expression, and this is specifically permitted by the
statement of Theorem 3.9.

We thus focus on the case where the last operator is Sync,
and the subqueries Q1(D) and Q2(D) of Sync are assumed to
represent labeled posets P1 = (V1,<1,Σ,µ1) and P2 = (V2,<2
,Σ,µ2). (By the condition on Sync, the label set of both
posets must be the same.) We exclude the empty possible
world for Sync as such possible worlds are specifically pro-
hibited by Definition 3.4.

As Q1(D) and Q2(D) cannot contain duplicate tuples, the
label of each element of P1 (resp. P2) is unique among ele-
ments of P1 (resp. P2), and as the identity of the underlying
order elements is arbitrary we can assume that the elements
with same labels have the same identity. We consider the
labeled poset P = (V,<,Σ,µ) defined on V =V1∪V2 (under
this interpretation) by taking µ defined from µ1 and µ2 (as
we said, µ1(x) = µ2(x) for all x ∈V1∩V2), and defining < in
the following way, inspired by the definition of Sync: for all
x,y ∈ V , we have x < y if one of x <1 y, x <2 y holds (with
the interpretation that, say, x <1 y is undefined if x /∈ V1 or
y /∈V1, so it does not hold), and if none of the y <1 x, y <2 x
holds. Enforce transitivity by taking the transitive closure of
<. (We will deal with irreflexivity later.)

We first argue that this mimics exactly the definition of
Sync. If x < y, then, letting t1 and t2 be the corresponding
tuples of S, t2 cannot precede t1, for in this case, by our
definition, some tuples t ′1 and t ′2 for t1 and t2 are such that
t ′1 precedes t ′2 in one of R,R′, and no tuples t ′′1 , t ′′2 for t1, t2
can be such that t ′′2 precedes t ′′1 in the other table. Conversely,
if t precedes t ′ in every possible world of S, then t ′ cannot
precede t in a possible world of S, meaning that one of x <1 y,
x <2 y holds and none of y <1 x, y <2 x holds. So, by our
assumption that Sync succeeds, the existence of a relation
satisfying the constraints imposed by the definition of Sync
ensures that P is indeed irreflexive, for a cycle in the <
relation as defined would mean that the constraints assert that
certain tuples must occur in a cycle, which cannot be realized
in a possible world of Sync.

Hence, we now know that P captures the possible worlds
of Q(D) = Sync(Q1(D),Q2(D)): considering the total order
induced by a non-empty possible world of Q(D), it suffices
to check that it is a linear extension of P, namely, that it is
compatible with P, but we have just shown that the order
constraints respected by all possible worlds of Q(D) are con-
sistent with P; conversely a linear extension of P must respect
the constraints of P, which ensures that it is a possible world
of Q(D). Hence, Q(D) really represents the labeled poset P.

Second claim. We now prove the second direction: for any
product Σ = D1 × ·· · ×Dn of domains and poset P on Σ,
there exists an OWALG query Q and a database D of size
polynomial in P such that Q(D) represents P.

et P = (V,Σ,µ,<) be the labeled poset to represent.
Let C = {(x,y) | x,y∈V,x < y}. For each (x,y)∈C, define

the ordered relation Txy as follows, with attributes A1, . . . ,An
with domains respectively D1, . . . ,Dn and attribute A with
domain V , writing µ(z) = (µ1(z), . . . ,µ1(z)) for all z ∈V :

A A1 . . . An O

x µ1(x) . . . µn(x) 0
y µ1(y) . . . µn(y) 1

and the ordered relation Tx as follows:

A A1 . . . An O

x µ1(x) . . . µn(x) 0

Let T be the Π−Ord of the Sync of the RankO,<(Tp) for p∈
P. and RankO,<Tx for x∈V . This expression is of polynomial
size in (V,<), as is the input database.

Every Sync must succeed by Proposition 2.12 because
there are no conflicts between any of the Tx and Txy, so there
are non-empty possible worlds except if P is the empty poset
(which is trivial).

Consider a table T ′ representing a linear extension of
(V,Σ,µ,<). By definition of C, it is compatible with all
of the order constraints of the Tp’s, and thanks to the Tx’s its
domain is exactly that of the possible words of T . Hence, T ′

is a possible world of T .
Conversely, consider a non-empty possible world T ′ of T .

Its domain must be V because of the Tx’s, and it specifies a
total order consistent with P because, if x < y in V , letting tx
and ty be the tuples of the Sync (before the projection) that
correspond to x and y, tx must have preceded ty thanks to
the constraint imposed by Txy; so T ′ represents a total order
consistent with all constraints of (V,Σ,µ,<), that is, a linear
extension of (V,Σ,µ,<).

C. PROOFS FOR SECTION 4

C.1 Proof of Theorem 4.3

NP-hardness. Consider the UNARY-3-PARTITION prob-
lem [16]: given 3m integers N = (n1, . . . ,n3m) written in
unary and a number B, decide if the integers can be parti-
tioned in triples such that the sum of each triple is B. We
reduce an instance I of UNARY-3-PARTITION to an in-
stance I ′ of the POSS problem for a query and for relations
of the right form.

The domain of relations R and R′ will be an attribute A
(storing a unique ID) and an attribute L (storing a label):

• The domain of A is v−i , v j
i , v+i for all 1 6 i 6 3m and

1 6 j 6 ni.

• The domain of L is {l−, l, l+}.
• For every 1 6 i 6 3m, define the ordered relations Ri

and R′i:

15

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

A L Ord

v−i l− 0
v1

i l 1
...

...
...

vni
i l ni

A L Ord

v−i l− 0
vni

i l 1
...

...
...

v1
i l ni

• The encoding of I is the two relations defined by R =
R1 · · ·R3m and R′ = R′3m · · ·R′1, where · denotes concate-
nation (adjusting the Ord values). Note that this is not
the Concat operator, rather, it is computed offline when
performed the reduction (so that R and R′ are actual
relations of the mandated form).

• The possible world to test is I = I′ · · · I′, with m occur-
rences of I′, where I′ is as follows:

L Ord

l− 0
l− 1
l− 2
l 3
...

...
l B+2

l+ B+3
l+ B+4
l+ B+5

• The query is ΠL(Sync(R,R′)).

Clearly the instance I ′ can be computed in polynomial
time from I (remember that the ni are coded in unary) and I ′
respects the desired conditions. In particular, as Π−Ord(R) =
Π−Ord(R′), E = Sync(R,R′) does not fail by Proposition 2.13.
It is now easily observed that, for all x,y ∈ dom(A), the only
order constraints x < y enforced by E are for cases where x
and y are associated to the same ni and we have either x = v−i
or y = v+i . (When they are not associated to the same ni, R
and R′ disagree on their order, and for other cases where they
are associated to the same ni, namely where both are of the
form v j

i , then R and R′ also disagree about their order.)
We prove that the original UNARY-3-PARTITION instance

I has a solution if and only if the POSS instance I ′ has one.
Assume that I has a solution: P = P0, . . . ,Pm−1 where

each Pi is a triple of integers of N. We can see the partition
P as defining two functions f , g such that, for all i, ni is the
g(i)-th element of Pf (i) (0 6 g(i)6 2). Consider the possible
world where v−i appears at position f (i)× (B+6)+g(i), v+i
at position f (i)× (B+ 6)+B+ 3+ g(i), and v j

i at position
f (i)× (B + 6) + 3 + j, for all i and j. It is well-defined
(each element of E occurs at exactly one position and the
positions are indeed {0, . . . ,3m−1}), it is really a possible
world (it respects all of the order constraints imposed by E
as characterized before) and its projection to L achieves the
desired possible world I.

Conversely, from a solution to I ′, consider the possible
world W such that pro jL(W) = I. Consider three consecu-
tive l− labels of I, and the elements v−i1 , v−i2 and v−i3 whose
projection achieves these occurrences of l−. Necessarily the

three elements whose projections achieve the three next con-
secutive occurrences of l+ must be v+i1 , v+i2 and v+i3 . (Proof by
induction from the first l−’s and l+’s to the last ones.) Thus,
the elements achieving the B intermediate l elements must be
the v j

ik
for k ∈ {1, . . . ,3}, 1 6 j 6 ik. Thus they correspond a

3-tuple of elements of N whose sum is B, and all those groups
of l-elements summing to B yield a solution for I.

Hence the original 3-partition instance has a solution if and
only if the POSS problem it encodes to has a solution, and
the encoding PTIME, which establishes hardness.

NP membership. To solve the POSS problem in NP, eval-
uate the query Q on the database D, and, for each non-
deterministic subexpression, choose a possible world nonde-
terministically. As the query is fixed, such choices can be
represented in size polynomial in the input database D. Now,
having evaluated Q(D) to one of its possible worlds, check
if it is the desired possible world I or not. The computation
accepts if and only if I is indeed a possible world of Q(D).

Acknowledgement. This proof is inspired by the construc-
tion by user Marzio De Biasi8 to prove the hardness of de-
ciding the existence of bijections between partial orders of
dimension 2 (representable as intervals). Our setting dif-
fers as one of the orders (the possible world to test) is total,
but we can use the non-order attributes as labels to enforce
constraints on the bijection.

C.2 Proof of Theorem 4.6
We first detail the proof in the case where k = 2.
We write R, R′ the arguments of Sync (that we evaluate to

full relations, in PTIME data complexity) and I the possible
world to test. If I is the empty relation, we can return true,
otherwise we do as follows.

We define the function g(i, j)= |Π−Ord(R[0 : i])∪Π−Ord(R′[0 :
j])| where R[0 : i] denotes the tuples of R at positions from
0 to i (inclusive) in the total order. This function is clearly
computable in PTIME.

Define the following aliases, where ?
= denotes an equality

test:

• FR(i, j) = ΠA(R[i])
?
= I[g(i, j)]

• FR′(i, j) = ΠA(R′[i])
?
= I[g(i, j)]

Define a function f : {0, . . . , |R|}×{0, . . . , |R′|} 7→ {true, false}
as follows:

1. f (|R|, |R′|) = true,

2. f (|R|, j) = FR′(|R|, j)∧ f (|R|, j+1)

3. f (i, |R′|) = FR(i, |R′|)
?
= I[g(i, |R′|)])∧ f (i+1, |R′|),

4. f (i, j), if Π−Ord(R[i]) /∈Π−Ord(R′) but Π−Ord(R′[j]) ∈
Π−Ord(R), is FR(i, j)∧ f (i+1, j)

5. f (i, j), if Π−Ord(R′[j]) /∈ Π−Ord(R) but Π−Ord(R[i]) ∈
Π−Ord(R′), is FR′(i, j)∧ f (i, j+1)

6. f (i, j), if Π−Ord(R′[j]) /∈Π−Ord(R) and Π−Ord(R[i]) /∈
Π−Ord(R′), is (FR(i, j)∧ f (i+1, j))∨(FR′(i, j)∧ f (i, j+
1))

8http://cstheory.stackexchange.com/a/19415

16

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

http://cstheory.stackexchange.com/a/19415

7. f (i, j), if Π−Ord(R[i])=Π−Ord(R′[j]), is FR(i, j)∧FR′(i, j)∧
∧ f (i+1, j+1).

8. f (i, j) = false otherwise.

Intuitively, the value of f (i, j) reflects the following: hav-
ing passed the first i elements of relation R and the first j
elements of relation R′, which match the first g(i, j) letters of
w, can I match the rest of w with the rest of R and R′? The
gloss of the rules is the following:

1. If we matched all of I, we have nothing more to do.

2. If we have matched all tuples of R, we must check if all
remaining tuples of R′ match the rest of I.

3. Likewise symmetrically.

4. If we have one element from Π−Ord(R)\Π−Ord(R′) and
one element of Π−Ord(R)∩Π−Ord(R′), we cannot pass
the one from Π−Ord(R)∩Π−Ord(R′) yet, so we match
take the one from Π−Ord(R)\Π−Ord(R′) with the current
position in I.

5. Likewise symmetrically.

6. If we have one element from Π−Ord(R)\Π−Ord(R′) and
one from Π−Ord(R′)\Π−Ord(R), we can take choose to
match either of those two (this is the only case where
we have a choice).

7. If the same element is at the current position in both
Π−Ord(R) and Π−Ord(R′), we must take it from both
relations and check that it matches.

8. Otherwise, we do nothing.

Computing these values bottom-up (from f (|R|, |R′|) to
f (0,0)) can be done in PTIME and it is easily seen that f
matches its informal meaning.

For larger values of k, we generalize this method to a
function f of n parameters with the same intuition: at each
step, we can take an element from the current position at any
sequence as long as all of its occurrences are at the current
position of their respective sequences, and we must enforce
that the label of this element is the correct one, and pop it
from all the sequences where it appears; the running time is
polynomial if the number of sequences is fixed.

As for the fact that Sync operators may fail, observe that,
whenever some Sync operator fails, failures occurring in its
arguments are irrelevant. So, to take into account possible
failures of the Sync operators, we can apply the above algo-
rithm first assuming that no Sync fails. If it returns false, we
can assume that the innermost Sync fails, replacing it with an
empty relation, and applying the algorithm again. If it fails
again, we can assume that the second innermost Sync fails,
etc., until we reach the outermost Sync. So this only adds a
multiplicative factor of k, which we assume is fixed.

C.3 Proof of Theorem 4.7
We know from [24] that the following problem (MIN-SAT)

is NP-complete:

Input A set U = {x1, . . . ,xk} of k variables, a collection C =
{c1, . . . ,cn} of n clauses over U such that each clause
c ∈C has |c|= 2 literals, a positive integer d 6 n.

Output Whether there exists an assignment of U such that
no more than d clauses in C are true.

We now describe how to encode an instance I of MIN-SAT
to an instance I ′ of POSS. The domain of the input relations
will be A and L, where A is a unique ID and L is a label.

• dom(L) is {l1, . . . , lk}∪{lC}.

• dom(A) is
⋃

16i6x{e+i ,e
−
i }∪{eC

j | 1 6 j 6 n}.

• The encoding of a clause c j = ±1xp ∨±2xq is two or-
dered relations R1

j and R2
j defined as follows:

A L Ord

e±1
p lp 0

eC
j lC 1

A L Ord

e±2
q lq 0
eC

j lC 1

• I is ΠL,Ord(I′) where I′ is the following relation (with
attribute P added for convenience later):

L Ord P

l1 0 pl
1

...
...

...
lk k−1 pl

k
lC k pC

1
...

...
...

lC k+n−d−1 pC
n−d

l1 k+n−d pr
1

...
...

...
lk 2k+n−d pr

k
lC 2k+n−d +1 pC

1
...

...
...

lC 2k+n pC
n

• The query is πL(Sync(R)) whereR=
⋃

16i6n{R1
i ,R

2
i },

where we abusively write Sync as an n-ary operator to
mean that we nest binary invocations of Sync; so the
query is (2n)-safe and has no SPJ subqueries.

Clearly the instance I ′ can be computed in polynomial
time from the original instance I.

By Proposition 2.12, as there are no conflicts between any
of the tables, every Sync succeeds. We prove that I has a
solution if and only if I ′ has one.

First, assume that I has a solution: let ν : U →{−,+} be
the valuation of the xi’s such that 6 d clauses of C are true
under ν . Let Ci1 , . . . ,Cin be a renumbering of the clauses so
that Ci1 , . . . ,Cin−d are false.

We consider the possible world W defined by the follow-
ing function f indicating the row of I′ with which we want
to match every element of

⋃
j,a Π−Ord(Ra

j): f (e±1
i) = pr

i if
ν(xi) =±1 and pl

i if ν(xi) 6= b, and f (eC
i j
) = pC

j . Clearly this
is a bijection from dom(A) to dom(P), so we must only prove
that this is a possible world, namely, that it respects all the
order constraints of the tablesR.

To prove that it is indeed a possible world, consider some
relation ofR:

17

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

A L Ord

e±1
i li 0
eC

j lC 1

and show that the one corresponding order constraint (infor-
mally, e±1

i < eC
j) is preserved. If the clause c j is true under ν ,

then f (eC
j) = pd

j′ for some d ∈ {l,r} and j′ > n−d, so that

f (eC
j)> pb′

i for any b′ and i, so indeed f (eC
j)> f (eb

i). Other-
wise, if c j is false, we must have ν(xi) 6= b, because otherwise
the occurrence of xi or ¬xi in c j (depending on whether b =+
or b = −) would make c j true. Hence, f (eb

i) = pl
i , and in-

deed pl
i < pC

j for all j so f (eb
i)< f (eC

j). So f really defines
a possible world which achieves I, so I ′ has a solution.

Conversely, assume that I ′ has a solution that we represent
by a bijection f : dom(A)→ dom(P) as before. We must
have f (eb

i) ∈ {pl
i , pr

i}, so we can define an assignment ν on
U by: ν(xi) = + if f (e+i) = pr

i and ν(xi) =− if f (e+i) = pl
i .

Observe that whenever f (e+i) = pl
i we must have f (e−i) = pr

i
because f is bijective (observation (*)).

We now show that ν makes at least n− d clauses false.
Specifically, we consider the clauses c j1 , . . . ,c jn−d such that
the image by f of the corresponding eC

j1 , . . . ,e
C
jn−d

are the pC
j

with j 6 n− d, and show that those n− d clauses must be
false under ν . Consider such a clause cq. Let xi be a positive
literal occurring in c. By construction the following relation
occurs in a Sync subexpression:

A L Ord

e+i li 0
eC

q lC 1

Hence we must have f (e+i) < f (eC
q) because f is order-

preserving. Because f (eC
q) = pC

j with j 6 n−d, and f (e+i)∈
{pl

i , pr
i} because pro jA(W) = w, and pC

j < pr
i , we must have

f (e+i) = pl
i so by definition of ν we must have ν(xi) =−, so

the occurrence of xi in c j does not make c j true. Symmetri-
cally, if ¬xi is a positive literal in c, we must have f (e−i) = pl

i ,
so by observation (*) f (e+i) = pr

i and ν(xi) =+ so the occur-
rence of ¬xi in c j does not make c j true. Hence, ν witnesses
that I has a solution.

We have proved that I has a solution if and only if I ′
has one, and the encoding is clearly PTIME. Hence, the NP-
hardness follows from that of MIN-SAT.

Acknowledgement. This proof is inspired by the construc-
tion by user domotorp9 to prove the hardness of deciding
the existence of topological sorts satisfying a compatibility
condition between vertices and positions. In our setting, the
order on which to perform the topological sort is encoded as
applications of Sync, and the compatibility is enforced using
the non-Ord attributes as labels.

9http://cstheory.stackexchange.com/a/19081

D. PROOFS FOR SECTION 5

D.1 Proof of Proposition 5.1
Consider the relation R = {(0,s),(1, t)} whose only at-

tribute is Id and Ann, and the OWALG query R′=RankId,<N(R).
Assume that R′ can be represented as an (M,K)-relation. By
the semantics of the Rank operator, {(0,s,0)} and {(1, t,0)}
are possible worlds of R′. Hence, by monotonicity of (M,K)-
relations, there must be a possible world of R′ containing
both tuples {(0,s,0),(1, t,0)}, but it is not well-formed, con-
tradicting the intended semantics of Rank.

D.2 Proof of Proposition 5.8
Let Q ∈ OWALG′ be a query. We note that by definition of

OWALG′, Q= op(Q′) where Q′ is a positive relational algebra
query. Let D be a B-database, then Q(D) = op(Q′(D)). We
know from [20] that Q′(D) = D′ is a B-database and Q′ is
set-compatible. As noted, set-compatibility for the determin-
istic case is indeed a particular case of our set-compatibility
definition.

So it is enough to show that the single application of op
satisfies set-compatibility. This is shown through a by-case
reasoning on op:

Rank. The Rank operation is deterministic, thus its prove-
nance representation includes no element of X and we only
need to show that Rank(supp(R)) = supp(ι(Rank(R)) for
every B-relation R. First, note that up to the Ord attribute,
Rank(R) has the same tuples as R with the same annotations.
So in particular their subsets of tuples annotated with > coin-
cide up to the Ord attribute. This means that up to the Ord
attribute, we have even Rank(supp(R)) = supp(Rank(R)).
To see that the corresponding values in the Ord attribute
coincide after applying ι , observe that for each tuple s ∈
supp(Rank(R)) (whose corresponding tuple in supp(R) is t)
we have

s.Ord= ∑
{t ′∈supp(R)|t ′.A<t.A}

1B⊗1N+ ∑
{t ′ 6∈supp(R)|t ′.A<t.A}

0B⊗1N

= 1B⊗ ∑
{t ′∈supp(R)|t ′.A<t.A}

1N

Where the last transformation is enabled due to the axioms
imposed on the structure. By applying ι we get

∑
{t ′∈supp(R)|t ′.A<t.A}

1N

which is exactly

|{t ′ ∈ supp(R) | t ′.A < t.A}|

i.e. the rank of t in supp(R).

Concat. Again, Concat is deterministic so we need to show
Concat(supp(R),supp(R′))= supp(ι(Concat(R,R′)) for any
B-relations R,R′. Here again, we first show that the tuples of
the two sides of the equation coincide up to the Ord attribute.
Note that a tuple in Concat(R,R′) is annotated with the an-
notation of its counterpart in R or R′ (recall that if a tuple
appears in both, then two “copies” of it up to the Ord attribute
will be generated in the result of Concat). So a tuple is in

18

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

http://cstheory.stackexchange.com/a/19081

the support of the Concat result if and only if its counterpart
in R or R′ is in the input. As for the Ord attribute, note that
for a tuple s such that s = h(r) (referring to the h used in the
definition of Concat) for r ∈ R then for the boolean case we
get

s.Ord = ∑{r1∈R|r1.Ord<r.Ord}(R(r1)⊗1N)
= ∑{r1∈supp(R)|r1.Ord<r.Ord} 1B⊗1N
= 1B⊗∑{r1∈supp(R)|r1.Ord<r.Ord} 1N
And by applying ι we get ∑{r1∈supp(R)|r1.Ord<r.Ord} 1N
= |{r1 ∈ supp(R) | r1.Ord < r.Ord}|.
For s = I(r′) we get via the same transformations that

s.Ord = |supp(R)|+|{r1 ∈ supp(R′) | r1.Ord< r.Ord}|. This
is exactly the Ord value of s in the (not annotated) relation
Concat(supp(R),supp(R′).

Shuffle. The Shuffle operator is nondeterministic, and so
uses variables in X . The same arguments of compatibility
up to the Ord attribute given for Rank and Concat continue
to hold for Shuffle (note that up to the Ord attribute the
values are the same in all possible worlds). We then show
set-compatibility by induction on the number of tuples that
are annotated with ⊥. We show that every valuation yields
exactly the set of correct worlds with consecutive ordering.

Induction basis. We need to show that if all tuples are an-
notated with >, then the possible valuations to
Y = {Y0,Y1,X2, ...,Yn} yield exactly the possible valuations
to the additional Ord attribute that are ”correct” according
to the nondeterministic semantics of Shuffle when applied
on the un-annotated R,R′. For the first direction, consider
a given order consistent with the orders in R,R′. Let Y0 be
the number of elements from R′ that precede R0 in the order,
and for i > 0 let Yi be number of elements from R′ that are
between Ri−1 and Ri. Note that this uniquely defines the
order. Now the order we obtain for si in the construction is
i+ | { j 6 m | j < ∑k6i Yk}. The former is exactly the number
of elements of R that precede Ri, while the latter is by defini-
tion of Yk exactly the number of elements of R′ that precede
Ri. Similarly for s′i we get i+ | { j | ∑m6 j Ym 6 i}. Now the
former is exactly the number of elements of R that precede
Ri, while the latter is exactly the number of elements of R′

whose “offset" is less or equal to i, i.e. precede Ri. For the
converse we note that any valuation to the Yi’s encodes an
order in the above way (note that since we are using each
Yi as a relative offset, there is no need to impose any con-
straints on the assigned values) ; the only subtlety is in the
case V (∑ j6i Yi)> m for some i – but note that such valuation
yields the same possible world as a valuation that “truncates"
any value greater than m to be m (in both cases it means all
tuples of R′ will appear exactly before Ri in a consecutive
order.

Induction step. We assume correctness for N ⊥ values and
prove for N + 1. Let r j ∈ R be a tuple whose annotation
“flips" from > to ⊥, and note that (1) If i < j then si.Ord
remains unaffected (with respect to the world in which r j was
annotated with >), (2) if i > j then si.Ord is lower by 1, (3)
if for a given valuation and given i, r j was chosen to precede

r′i (i.e. (
[

∑m6 j Ym < i) then the order of r′i is lower by 1 and

(4) otherwise the order of r′i stays intact. This means that the

“flip" of annotation has the correct affect on any order (and
any valuation).

Sync. The same arguments of compatibility up to the Ord at-
tribute given for Rank and Concat continue to hold for Shuffle
(note that up to the Ord attribute, and up to the empty relation
which is a possible world in both sides of the equation, the
values are the same in all possible worlds). For values in
the Ord attribute we consider the possible valuations to the
NewOrd(t) variables and note that for any given valuation we
obtain consecutive values in the Ord attribute respecting the
order imposed by the valuation (i.e. the i’th tuple according
to its NewOrd value will have Ord value i). If the valuation
satisfies the ordering constraints imposed by shuffle, then we
obtain a possible world of Sync(supp(R),supp(R′)). Oth-
erwise we get the empty relation, which is also a possible
world.

D.3 Proof of Proposition 5.9
Similarly to the proof of set-compatibility (Section D.2),

it is enough to consider the order-aware operators, and show
commutation with homomorphisms for it (as commutation
with homomorphisms for the positive relational algebra oper-
ators was shown in [20]). In all of the following let K,K′ be
commutative semirings and let D be a K-database.

The application of h on the annotated result of an order-
aware query has two affects: the first is mapping every tuple
annotation a to h(a). Here note that by definition h(a1 +
a2) = h(a1) + h(a2) and h(a1 · a2) = h(a1) · h(a2), so that
commutation holds. The second is mapping values in Ord
attributes. Here we use our definition of lifting h to K(X):
the effect of the lifted operation is to replace each occurrence
of k by k′. This means that we can invariably apply h on
annotations of D to obtain a K′-database and then apply an
order-aware operator, or first apply the operator and then the
mapping. In both cases we get get equivalent expressions in
K(X).

D.4 Proof of Proposition 5.11
Poly-size overhead of each of the SPJ operators was shown

in [20]. For each of the newly defined operators:

Rank and Concat. The Ord expression for each tuple is
linear in the number of tuples (involves sum over all tuples),
so the result is of overall quadratic size.

Shuffle. The Ord expression for each tuple is at most of
quadratic size in the number of tuples, so the result is of
overall cubic size.

Sync. The dominant factor here is G which is of quadratic
size in the number of tuples, and appears as the annotation of
every tuple, so the result is of overall cubic size.

And so we have poly-size overhead in data complexity.

D.5 Proof of Theorem 5.13
We next explain the required changes to the semantics, to

obtain a semantics for the full OWALG language.

Rank In defining the Rank operator, we have assumed an
order relation on the A attribute according to which
ranking is performed. If values in the A attribute (We

19

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

assume for simplicity that ranking is done based on a
single attribute) are in fact elements in (K(X)nest ⊗N
(e.g. one uses the Rank operator with the Ord attribute
as parameter, after applying shuffle), it may be the case
that the order between them cannot be decided. To this
end we replace in the definition:

t.ord = ∑
{t ′∈supp(R)|t ′.A<t.A}

R(t ′)⊗1M

with

t.ord = ∑
{t ′∈supp(R)}

(R(t ′) · [t ′.A < t.A])⊗1M

Concat Similarly, in defining the Concat operator, instead of
enumerating tuples satisfying r1.Ord < r.Ord we enu-
merate over all tuples and multiply by an abstract condi-
tion [r1.Ord< r.Ord]. Namely ∑{r1∈R|r1.Ord<r.Ord}(R(r1)⊗
1N) is replaced by ∑r1∈supp(R)([r1.Ord< r.Ord]·(R(r1))⊗
1N

Shuffle In defining the Shuffle operator, we have assumed
that we can know which is the i’th tuple; instead, we
choose some arbitrary order over the tuples and impose
the order using condition, utilizing the fact that to check
if a tuple t is in location k we can use [∑{t ′∈supp(R)}(R(t ′)·
[t ′.Ord < t.Ord])⊗1M = k]. And so we can define:

si.Ord = ∑
j<n

(R(r j) · [R(r j).Ord < R(ri).Ord])⊗1N)

+ ∑
loc<n

[
∑

{t ′∈supp(R)}
(R(t ′) · [t ′.Ord < R(ri).Ord])

⊗1M = loc
]

· ∑
j6m

((
R′(r j) ·

[
j < ∑

k6n
Yk · [k < loc]

])
⊗1N

)
And symmetrically apply the changes for the definition
of s′i.Ord.

s′i.Ord = ∑
j<n

(R′(r j) · [R′(r′j).Ord < R′(r′i).Ord])⊗1N)

+ ∑
loc<n

[
∑

{t ′∈supp(R)}

(R(t ′) · [t ′.Ord < R(ri).Ord])⊗1M = loc
]

·

∑
j6n

(([
∑

m6 j
Ym 6 loc

]
·R(r j)

)
⊗1
)

Sync For Sync we need to encode the precedes relation,
used in the construction in the global condition G, us-
ing expressions. For a tuple t in the sync result let
r(t) be its origin from R and r′(t) be its origin from
R′. For each t, t ′ we then use the following “macro":
not precedes(t, t ′) is encoded by:
[[r(t)⊗1 = 0]⊗1+[r(t ′)⊗1 = 0]⊗1
+ [r′(t)⊗1 = 0]⊗1+[r′(t ′)⊗1 = 0]⊗1

+ ([r(t).Ord < r(t ′).Ord] · [r′(t).Ord < r′(t ′).Ord])⊗1

= 0]
And then:

G = Π{t,t ′∈R∪R′}[not precedes(t, t ′)+ [Yt < Yt]·
Π{t 6=t ′∈R∪R′}[Yt 6= Yt ′] 6= 0]

Observe that the obtained expressions are in K(X)nest (com-
parison expressions involve tensors with N of elements from
K or other equation elements (which by definition then have
a lower level of nesting). We can then adapt the proofs of
Propositions 5.8, 5.9 and 5.11. For set-compatibility, we then
note that when the semiring is B the equation elements en-
code the same conditions that were encoded as part of the
construction for the non-nested case. Since the defined notion
of applying a valuation over just nested expressions in this
case corresponds to testing the equation and replacing it with
⊥ or > according to its truth values, this means that the same
arguments for set-compatibility of the individual operators
apply. The proof then proceeds by induction on the query
structure. The inductive step for SPJ is immediate, and that
for the order-aware operators was given above. We further
note that the queries combine sub-expression in a way that
commutes with homomorphisms, either through the semiring
structure (and then it applies by definition of a homomor-
phism) or though the generation and combination of (nested)
equation elements or tensors, for which again semiring ho-
momorphism commutes. For poly-size overhead we note that
the changes in construction, while cumbersome to write, did
not increase the asymptotic dependency of the output size on
the input database size.

20

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

W
e
d

D
e
c

1
1

2
1
:
0
0
:
3
3

C
E
T

2
0
1
3

	Introduction
	Order-Aware Algebra
	Rank
	Concat
	Shuffle
	Sync
	OWALG

	Expressive power
	Complexity of Possibility
	Provenance for OWALG
	Algebraic Background
	Annotated Relations
	A New Provenance Structure
	Provenance for Order-Aware Operators
	Properties of the Construction
	Compositions of Operators

	Related Work
	Conclusion
	References
	Proofs for Section 2
	Proof of Proposition 2.12
	Proof of Proposition 2.13
	Proof of Proposition 2.14

	Proofs for Section 3
	Proof of Theorem 3.6
	Proof of Theorem 3.9

	Proofs for Section 4
	Proof of Theorem 4.3
	Proof of Theorem 4.6
	Proof of Theorem 4.7

	Proofs for Section 5
	Proof of Proposition 5.1
	Proof of Proposition 5.8
	Proof of Proposition 5.9
	Proof of Proposition 5.11
	Proof of Theorem 5.13

